Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:introductory_remarks_on_smt_provers [2009/05/06 09:45]
vkuncak
sav08:introductory_remarks_on_smt_provers [2015/04/21 17:30] (current)
Line 25: Line 25:
  
 Note: formulas that are valid in the combination of quantifiers,​ linear integers, and uninterpreted functions are not enumerable (and neither are formulas that are not valid). ​ The situation is worse than in pure first-order logic. Note: formulas that are valid in the combination of quantifiers,​ linear integers, and uninterpreted functions are not enumerable (and neither are formulas that are not valid). ​ The situation is worse than in pure first-order logic.
 +
  
 ===== Example ===== ===== Example =====
  
 Consider the following formula, where $f$ denotes functions from integers to integers and $a,b$ are integers. Consider the following formula, where $f$ denotes functions from integers to integers and $a,b$ are integers.
-\[\begin{array}{l}+\begin{equation*}\begin{array}{l}
    ​(\forall x.\forall y.\ x \le y \rightarrow f(x) \le f(y))\ \land \\    ​(\forall x.\forall y.\ x \le y \rightarrow f(x) \le f(y))\ \land \\
    ​(\forall x.\forall y. f(x)=f(y) \rightarrow x=y)\ \land\\    ​(\forall x.\forall y. f(x)=f(y) \rightarrow x=y)\ \land\\
Line 35: Line 36:
    b < a    b < a
 \end{array} \end{array}
-\] +\end{equation*} 
-Is this formula satisfiable?​ ++|No. Why?+++Is this formula satisfiable?​ 
 +  * over integers  ​++|No. Why?++ 
 +  * over reals  ++|Yes. Why?++ 
 
sav08/introductory_remarks_on_smt_provers.txt · Last modified: 2015/04/21 17:30 (external edit)
 
© EPFL 2018 - Legal notice