LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
sav08:substitution_theorems_for_propositional_logic [2008/03/11 16:11]
vkuncak
sav08:substitution_theorems_for_propositional_logic [2008/03/11 16:11]
vkuncak
Line 42: Line 42:
 ++++ ++++
  
-Corollary (tautology instances): if $\models F$, then $\models (subst(\sigma)(F))$ for every variable substitution $\sigma$.+**Corollary (tautology instances):** if $\models F$, then $\models (subst(\sigma)(F))$ for every variable substitution $\sigma$.
  
 We say that two formulas are equivalent if $\models (F \leftrightarrow G)$. We say that two formulas are equivalent if $\models (F \leftrightarrow G)$.
-**Lemma**If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$.+ 
 +**Lemma:** If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$.
  
 From the tautology instances Corrolary we obtain. From the tautology instances Corrolary we obtain.
  
-Corollary: if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then $\models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G))$.+**Corollary:** if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then $\models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G))$.
  
 Does the theorem hold if $\sigma$ is ++not a variable substitution?​|No,​ because a general substitution could produce an arbitrary formula.++ Does the theorem hold if $\sigma$ is ++not a variable substitution?​|No,​ because a general substitution could produce an arbitrary formula.++