LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:simple_qe_for_integer_difference_inequalities [2009/04/21 19:19]
vkuncak
sav08:simple_qe_for_integer_difference_inequalities [2015/04/21 17:30]
Line 1: Line 1:
-====== Simple QE for Integer Difference Inequalities ====== 
- 
- 
-===== Language of Less-Than-Equals Over Integers ===== 
- 
-Consider language: ${\cal L} = \{ {\le} \}$ and the theory of structure $I = (\mathbb{Z},​\alpha)$ where  
-\[ 
-    \alpha({\le}) = \{ (x,y) \mid x \le y \} 
-\] 
- 
-**Lemma:** This theory does not admit quantifier elimination. 
- 
-**Proof.** 
- 
-Suppose the theory admits quantifier elimination.  ​ 
- 
-++++|What is the quantifier-free formula equivalent to 
-\[ 
-    \exists x. x \le y \land x \neq y 
-\] 
-++++ 
- 
-++++|It is formula with one free variable, $y$. 
-So it must be built out of atomic formulas $y \leq y$ and $y=y$, and is therefore either true or false. 
-++++ 
-**End.** 
- 
-So $<$ must be expressible. ​ Let us extend the language: consider theory in language ${\cal L} = \{ \le, < \}$ with $<$ interpreted as $<$ on integers. 
- 
-Does the theory of this structure admit quantifier elimination?​ 
-++++| 
-Consider quantifier-free formula $F(x,z)$ equivalent to 
-\[ 
-    \exists y_1. \ldots \exists y_n.\  x < y_1 < y_2 < \ldots < y_n < z 
-\] 
-++++ 
- 
- 
-===== Extending the Language ===== 
- 
-Language: ${\cal L} = \{ R_K \mid K \in \mathbb{Z} \}$ 
- 
-Theory of structure $I = (\mathbb{Z},​\alpha)$ where  
-\[ 
-    \alpha(R_K) = \{ (x,y) \mid x + K \leq y \} 
-\] 
-Note that $R_0$ is the less-than-equal relation on integers. 
- 
-In other words, we look at the language of this syntax, where $V$ is the set of variables: 
-<​code>​ 
-F ::= A | (F&F) | (F|F) | ~F | ALL V.F | EX V.F 
-A ::= v=v | v + K ≤ v | true | false 
-K ::= ... -2 | -1 | 0 | 1 | 2 | ... 
-</​code>​ 
- 
- 
- 
- 
-Equality is expressed by ++| $x + 0 \leq y \wedge y + 0 \leq x$ ++ 
- 
- 
- 
-===== Quantifier Elimination in the Extended Language ===== 
- 
-Quantifier elimination for this language is similar to [[Simple QE for Dense Linear Orders]]. 
- 
-What is $\lnot (x + K \le y)$ equivalent to?++|\\ 
-$y < x + K$\\ 
-$y + 1 \le x + K$\\ 
-$y + (1-K) \le x$++ 
- 
-What are conjunctions of literals equivalent to? ++|$\exists y. \bigwedge_{i=1}^n x_i+K_i \le y \land \bigwedge_{j=1}^m y + L_j \le z_j$ ++ 
- 
-How do we eliminate existential quantifier? ++++ |\\ 
-Using $x_i + K_1 \le y$ and $y \le z_j - L_j$\\ 
- 
- 
-$\bigwedge_{i,​j} x_i + K_i \le z_j - L_j$\\ 
-$\bigwedge_{i,​j} x_i + (K_i + L_j) \le z_j$ 
-++++ 
- 
- 
-==Example== 
- 
-Prove:\\ 
-  
-$\forall y \exists x . x \leq y \wedge x \neq y $ 
- 
-++++|\\ 
-$\exists x . x \leq y \wedge (x < y \vee y  < x)$\\ 
-$\exists x . x \leq y \wedge (x + 1 \leq y \vee y + 1 \leq x)$\\ 
-$(\exists x . x \leq y \wedge x + 1 \leq y) \vee (\exists x . x \leq y \wedge y + 1 \leq x)$\\ 
-$true \vee false$\\ 
-$true$ 
- 
-++++ 
- 
-If we apply this technique to a closed formula in this theory, what formulas do we obtain as a result?