Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:proof_of_first_lecture01_example [2008/02/19 14:16]
vkuncak
sav08:proof_of_first_lecture01_example [2015/04/21 17:30] (current)
Line 21: Line 21:
 By translating Java code into math, we obtain the following mathematical definition of $f$: By translating Java code into math, we obtain the following mathematical definition of $f$:
  
-\[+\begin{equation*}
     f(x,y) = \left\{\begin{array}{rl}     f(x,y) = \left\{\begin{array}{rl}
 0, & \mbox{ if } y = 0 \\ 0, & \mbox{ if } y = 0 \\
Line 27: Line 27:
 x + f(x,y-1), & \mbox{ if } y > 0, \mbox{ and } y=2k+1 \mbox{ for some } k \\ x + f(x,y-1), & \mbox{ if } y > 0, \mbox{ and } y=2k+1 \mbox{ for some } k \\
 \end{array}\right. \end{array}\right.
-\]+\end{equation*}
  
 By induction on $y$ we then prove $f(x,y) = x \cdot y$. By induction on $y$ we then prove $f(x,y) = x \cdot y$.
Line 34: Line 34:
      * Goal: show that it holds for $y$ where $y > 0$.       * Goal: show that it holds for $y$ where $y > 0$. 
      * **Case 1**: $y = 2k$. Note $k < y$. By definition and I.H.      * **Case 1**: $y = 2k$. Note $k < y$. By definition and I.H.
-\[+\begin{equation*}
    ​f(x,​y) = f(x,2k) = 2 f(x,k) = 2 (x k) = x (2 k) = x y    ​f(x,​y) = f(x,2k) = 2 f(x,k) = 2 (x k) = x (2 k) = x y
-\]+\end{equation*}
   *   *
-     * **Case 2**: $y = 2k+1$. Note $y-1 < y$ and $k < y$. By definition and I.H. +     * **Case 2**: $y = 2k+1$. Note $y-1 < y$. By definition and I.H. 
-\[ +\begin{equation*} 
-   ​f(x,​y) = f(x,2k+1) = x + f(x,2k) = x + 2 f(x,k) = x + 2 (x k) = x (2 k + 1) = x y +   ​f(x,​y) = f(x,2k+1) = x + f(x,2k) = x + x \cdot (2k) = x (2 k + 1) = x y 
-\]+\end{equation*}
 This completes the proof. This completes the proof.
  
 
sav08/proof_of_first_lecture01_example.txt · Last modified: 2015/04/21 17:30 (external edit)
 
© EPFL 2018 - Legal notice