LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:homework10 [2008/04/30 16:56]
vkuncak
sav08:homework10 [2015/04/21 17:30]
Line 1: Line 1:
-====== Homework 10, Due May 7th ====== 
  
-===== Problem 1 ===== 
- 
-Let ${\cal F}$ be the set of all first-order formulas (viewed as syntax trees) and let $r$ be the implication relation on formulas: 
-\[ 
-   r = \{ (F_1,F_2) \mid \models F_1 \rightarrow F_2 \} 
-\] 
-Check whether $r$ is reflexive, antisymmetric,​ and transitive relation. 
- 
-===== Problem 2 ===== 
- 
-Let $(A,​\sqsubseteq)$ be a [[:partial order]] such that every set $S \subseteq A$ has the greatest lower bound. ​ Prove that then every set $S \subseteq A$ has the least upper bound. 
-===== Problem 3 ===== 
- 
-Let $A = [0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}$ be the interval of real numbers. ​ Recall that, by definition of real numbers and complete lattice, $(A,\le)$ is a complete lattice with least lattice element $0$ and greatest lattice element $1$.  Here $\sqcup$ is the least upper bound operator on sets of real numbers, also called //​supremum//​ and denoted //sup// in real analysis. 
- 
-Let function $f : A \to A$ be given by 
-\[ 
-    f(x) = \left\{\begin{array}{l} 
-\frac{1}{2} + \frac{1}{4}x,​ \mbox{ if } x \in [0,​\frac{2}{3}) \\ 
-\ \\ 
-\frac{3}{5} + \frac{1}{5}x,​ \mbox{ if } x \in [\frac{2}{3},​1] 
-\end{array}\right. 
-\] 
-(It may help you to try to draw $f$.) 
- 
-=== Part a) === 
- 
-Prove that $f$ is monotonic and injective (so it is strictly monotonic). 
- 
-=== Part b) === 
- 
-Compute the set of fixpoints of $f$. 
- 
-=== Part c) === 
- 
-Define $iter(x) = \sqcup \{ f^n(x) \mid n \in \{0,​1,​2,​\ldots \}\}$. ​ (This is in fact equal to $\lim_{n\to\infty} f^n(x)$.) 
- 
-Compute $iter(0)$ (prove that the computed value is correct by definition of $iter$, that is, that the value is indeed $\sqcup$ of the set of values). ​ Is $iter(0)$ a fixpoint of $f$?  Is $iter(iter(0))$ a fixpoint of $f$? Is $f$ an $\omega$-continuous function? 
- 
-=== Optional part d) === 
- 
-Define a monotonic function $f : A \to A$ such that, for every natural number $k$, the value $iter^k(0)$ is not a fixpoint of $f$.  (It may be difficult to draw $f$.)