LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
sav08:homework03 [2008/03/06 19:29]
vkuncak
sav08:homework03 [2015/04/21 17:30] (current)
Line 4: Line 4:
  
 Extend propositional formulas with NAND operator, denoted $\barwedge$ and defined by Extend propositional formulas with NAND operator, denoted $\barwedge$ and defined by
-\[+\begin{equation*}
     x \barwedge y = \lnot (x \land y)     x \barwedge y = \lnot (x \land y)
-\]+\end{equation*}
 Show that for each propositional formula $F$ there exists an equivalent formula that uses $\barwedge$ as the only operator. Show that for each propositional formula $F$ there exists an equivalent formula that uses $\barwedge$ as the only operator.
  
Line 12: Line 12:
  
 Your goal here is to prove key steps in transformation of a formula containing $\land,​\lor,​\lnot$ to equisatisfiable CNF formula. ​ The key transformation steps that introduce fresh variables for formula subtrees can be summarized as follows: Your goal here is to prove key steps in transformation of a formula containing $\land,​\lor,​\lnot$ to equisatisfiable CNF formula. ​ The key transformation steps that introduce fresh variables for formula subtrees can be summarized as follows:
-\[\begin{array}{l}+\begin{equation*}\begin{array}{l}
     F\ \ \leadsto\ \ (p_i \leftrightarrow (q \land r)) \land subst(\{q \land r \mapsto p_i\},F) \\     F\ \ \leadsto\ \ (p_i \leftrightarrow (q \land r)) \land subst(\{q \land r \mapsto p_i\},F) \\
     F\ \ \leadsto\ \ (p_i \leftrightarrow (q \lor r)) \land subst(\{q \lor r \mapsto p_i\},F) \\     F\ \ \leadsto\ \ (p_i \leftrightarrow (q \lor r)) \land subst(\{q \lor r \mapsto p_i\},F) \\
     F\ \ \leadsto\ \ (p_i \leftrightarrow (\lnot q)) \land subst(\{(\lnot q) \mapsto p_i\},F) \\     F\ \ \leadsto\ \ (p_i \leftrightarrow (\lnot q)) \land subst(\{(\lnot q) \mapsto p_i\},F) \\
 \end{array} \end{array}
-\]+\end{equation*}
 Note that each introduced equivalence,​ such as, $(p_i \leftrightarrow (q \land r))$ can generate several clauses. ​ Suppose now that $F$ is in negation-normal form.  Show that we can replace some of these equivalences with implications. ​ Write the new transformation rules and prove that they produce equisatisfiable formulas. Note that each introduced equivalence,​ such as, $(p_i \leftrightarrow (q \land r))$ can generate several clauses. ​ Suppose now that $F$ is in negation-normal form.  Show that we can replace some of these equivalences with implications. ​ Write the new transformation rules and prove that they produce equisatisfiable formulas.