LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:herbrand_s_expansion_theorem [2009/05/26 10:26]
vkuncak
sav08:herbrand_s_expansion_theorem [2015/04/21 17:30]
Line 1: Line 1:
-====== Herbrand'​s Expansion Theorem ====== 
- 
-===== Expansion of a Clause ===== 
- 
-Recall that we do not write quantifiers in the clause, but when we say that a clause is true in a model we mean that its universal closure is true. 
- 
-We obtain an instance of a clause $C$ by replacing all variables with some ground terms from $GT$. 
- 
-Define ​ 
-\[ 
-   ​expand(C) = \{ subst(\{x_1 \mapsto t_1,​\ldots,​x_n \mapsto t_n\})(C) \mid FV(C) = \{x_1,​\ldots,​x_n\}\ \land\ t_1,​\ldots,​t_n \in GT \} 
-\] 
- 
-Note that if $C$ is true in $I$, then $expand(C)$ is also true in $I$ ($expand(C)$ is a consequence of $C$). 
- 
-We expand entire set: 
-\[ 
-   ​expand(S) = \bigcup_{C \in S} expand(C) 
-\] 
- 
-Clauses in the expansion have no variables, they are //ground clauses//. 
- 
-===== Constructing a Propositional Model ===== 
- 
-We can view the set $expand(S)$ as a set of propositional formulas whose propositional variables have "long names"​.  ​ 
- 
-For an expansion of clause $C_G$ we can construct the corresponding propositional formula $p(C_G)$. 
- 
-**Example** 
-Let's consider the expanded formula $F=P(f(a)) \wedge R(a, f(a))$, then $p(F)=p_1 \wedge p_4$  
- 
-Define propositional model $I_P : V \to \{\it true},{\it false\}$ by  
-\[ 
-    I_P(p(C_G)) = e_F(C_G)(I) 
-\] 
- 
-Let 
-\[ 
-   ​propExpand(S) = \{ p(C_G) \mid C_G \in expand(S) \} 
-\] 
- 
-**Lemma:** If $I$ is a model of $S$, then $I_P$ is a model of $propExpand(S)$. 
- 
-Instead of searching for a model, we can search for a propositional model. 
- 
-If we prove there is no propositional model for $propExpand(S)$,​ then there is no model for $I$.  ​ 
- 
-What if there is a model $propExpand(S)$? ​ Could it still be the case that $S$ is unsatisfiable?​ 
- 
-===== Constructing Herbrand Model ===== 
- 
-For $I = (GT,​\alpha_H)$ we define $\alpha_H(R)$ so that $I_H$ evaluates ground formulas $expand(S)$ same as in $I_P$ (and thus same as in $I$). 
- 
-We ensure that atomic formulas evaluate the same: 
- 
-$   ​\alpha_H(R) = \{ (t_1,​\ldots,​t_n)\ \mid $ ++| $I_P(p(R(t_1,​\ldots,​t_n))) \}$++ 
- 
-How does it evaluate non-ground formulas? 
- 
-**Lemma:** If $I_P$ is a model for $propExpand(S)$,​ then $(GT,​\alpha_H)$ is a model for $S$. 
- 
-===== Herbrand'​s Theorem ===== 
- 
-**Theorem:​** The following statements are equivalent: 
-  * set $S$ has a model 
-  * set $propExpand(S)$ has a propositional model 
-  * set $S$ has a model with domain $GT$ 
- 
-**Example:​** Take the first three clauses our example (from [[Normal Forms for First-Order Logic]]): 
-  * $R(x,g(x))$ 
-  * $\neg R(x,y) \lor R(x,​f(y,​z)))$ 
-  * $P(x) \lor P(f(x,a))$ 
-Taking as domain $D$ the set of natural numbers, the structure $(D,​\alpha)$ is a model of the conjunction of these three clauses, where $\alpha$ is given by: 
-  * $\alpha(a) = 1$ 
-  * $\alpha(c) = 2$ 
-  * $\alpha(g)(x) = (x + 1)$ 
-  * $\alpha(f)(y,​z) = y+z$ 
-  * $\alpha(R) = \{(x,y).\ x < y\}$ 
-  * $\alpha(P) = \{x.\ x \mbox{ is even} \}$ 
-This model induces an Herbrand model $(GT,​\alpha_H)$,​ in which $\alpha_H(P)$ is a set of ground terms and $\alpha_H(R)$ is a relation on ground terms, $\alpha_H(R) \subseteq GT^2$. ​ 
- 
-To determine, for example, whether $(f(a,​a),​g(g(a))) \in \alpha_H(R)$ we check the truth value of the formula 
-\[ 
-   ​R(f(a,​a),​g(c))) 
-\] 
-in the original interpretation $(D,​\alpha)$. In this case, the formula reduces to $1+1 < 2+1$ and is true in the interpretation. Therefore, we define $\alpha_H(R)$ to contain the pair of ground terms $(f(a,​a),​g(c)))$.