Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:finite_model_and_infinite_herbrand_model_example [2009/05/14 12:40]
vkuncak
sav08:finite_model_and_infinite_herbrand_model_example [2015/04/21 17:30] (current)
Line 2: Line 2:
  
 Example: Example:
-\[+\begin{equation*}
     P(a) \land (\forall x.\ P(x) \rightarrow \lnot P(f(x))) \land (\forall x. x=a \lor x=b)     P(a) \land (\forall x.\ P(x) \rightarrow \lnot P(f(x))) \land (\forall x. x=a \lor x=b)
-\]+\end{equation*}
  
 Is this formula satisfiable?​ ++| yes++ Is this formula satisfiable?​ ++| yes++
Line 11: Line 11:
  
 What are ground terms for this formula? ++++| What are ground terms for this formula? ++++|
-\[+\begin{equation*}
     GT = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}     GT = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}
-\]+\end{equation*}
 ++++ ++++
  
-Cardinality ​of Herbrand model is ++|infinite!+++Cardinality is ++|infinite!++
  
 By Herbrand theorem, does every satisfiable first-order logic formula have Herbrand model? ++| Only if formula has no equality! ​ We made this assumption when proving Herbrand theorem. ++ By Herbrand theorem, does every satisfiable first-order logic formula have Herbrand model? ++| Only if formula has no equality! ​ We made this assumption when proving Herbrand theorem. ++
  
  
 
sav08/finite_model_and_infinite_herbrand_model_example.txt · Last modified: 2015/04/21 17:30 (external edit)
 
© EPFL 2018 - Legal notice