LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:deriving_propositional_resolution [2008/03/19 17:18]
tatjana
sav08:deriving_propositional_resolution [2015/04/21 17:30]
Line 1: Line 1:
-====== Deriving Propositional Resolution ====== 
  
-We next consider proof rules for checking [[Satisfiability of Sets of Formulas]]. 
- 
-We are extending the notion of [[Substitution Theorems for Propositional Logic|substitution on formulas]] to sets of formulas by 
-\[ 
-    subst(\sigma,​S) = \{ subst(\sigma,​F) \mid F \in S \} 
-\] 
-To make intuition clearer, we will next use quantification over potentially infinitely many variables and conjunctions over infinitely many formulas. 
- 
-===== Proof System Based on Projecting Variables ===== 
- 
-We first derive a more abstract proof system and that show that resolution is a special case of it. 
- 
- 
-==== Key Idea ==== 
- 
-The condition that $S$ is satisfiable is equivalent to the truth of  
-\[ 
-  \exists p_1,​p_2,​p_3,​\ldots.\ \bigwedge_{F \in S} F 
-\] 
-which, by changing the order of quantifiers,​ is: 
-\[ 
-  \exists p_2,​p_3,​\ldots.\ \exists p_1. \bigwedge_{F \in S} F 
-\] 
-By expanding existential quantifier, $\exists p_1. \bigwedge_{F \in S} F$ is eqivalent to 
-\[ 
-    ((\bigwedge_{F \in S} subst(p_1 \mapsto {\it false},F)) \lor 
-    (\bigwedge_{F \in S} subst(p_1 \mapsto {\it true},F)) 
-\] 
-which, by distributivity of $\lor$ through $\land$ is: 
-\[ 
-    \bigwedge_{F_1,​F_2 \in S}  
-     ​(subst(p_1 \mapsto {\it false},F_1) \lor 
-      subst(p_1 \mapsto {\it true},F_2)) 
-\] 
-Let 
-\[ 
-   ​ProjectForm(F_1,​F_2,​p) = (subst(p \mapsto {\it false},F_1) \lor 
-                        (subst(p \mapsto {\it true},F_2)) 
-\] 
-Then we conclude that $\exists p. S$ is equivalent to $ProjectSet(S,​p)$ defined by 
-\[ 
-   ​ProjectSet(S,​p) = \{ ProjectForm(F_1,​F_2,​p) \mid F_1,F_2 \in S \} 
-\] 
- 
- 
-==== Projection Proof Rules ==== 
- 
-Th justified the use of $ProjectForm(F_1,​F_2,​p)$ as an inference rule.  We write such rule: 
-\[ 
-\frac{F_1 \; \ F_2} 
-     ​{(subst(p \mapsto {\it false},F_1) \lor 
-      (subst(p \mapsto {\it true},​F_2))} 
-\] 
-The soundness of projection rule follows from the fact that  
-for every interpretation $I$, if $I \models S$, then also $I \models ProjectSet(S,​p)$. 
- 
-Applying the projection rule we obtain formulas with fewer and fewer variables. ​ We therefore also add the "​ground contradiction rule" 
-\[ 
-\frac{F} 
-{{\it false}} 
-\] 
-where $F$ is formula that has no variables and that evaluates to //false// (ground contradictory formula). ​ This rule is trivially sound. 
- 
- 
-==== Iterating Rule Application ==== 
- 
-Given some enumeration $p_1,​p_2,​\ldots$ of propositional variables in $S$, we define the notion of applying projection along all propositional variables, denoted $P^*$: 
-\[\begin{array}{l} 
-   ​P_0(S) = S \\ 
-   ​P_{n+1}(S) = ProjectSet(P_n(S),​p_{n+1}) \\ 
-   ​P^*(S) = \bigcup_{n \geq 0} P_n(S) 
-\end{array}\] 
- 
- 
- 
-==== Completeness of Projection Rules ==== 
- 
-We wish to show that projection rules are a sound and complete approach for checking satisfiability of finite and infinite sets formulas. ​ More precisely: 
-  * if we can derive //false// from $S$ using projection rules, then $S$ is unsatisfiable 
-  * if $S$ is unsatisfiable,​ then we can derive //false// using projection rules 
-Because we can derive //false// precisely when we have a ground false formula, these statements become: 
-  * if ${\it false} \in P^*(S)$ then $S$ is not satisfiable 
-  * if $S$ is not satisfiable then ${\it false} \in P^*(S)$ 
- 
-The first statement follows from soundness of projection rules. ​ We next prove the second statement. 
- 
-Suppose that it ${\it false} \notin P^*(S)$. ​ We claim that $S$ is satisfiable. ​ We show that every finite set is satisfiable,​ so the property will follow from the [[Compactness Theorem]]. 
- 
-Consider any finite $T \subseteq S$.  We show that $T$ it is satisfiable. ​ Let $T = \{F_1,​\ldots,​F_n\}$ and let $FV(F_1) \cup \ldots \cup FV(F_n) \subseteq \{p_1,​\ldots,​p_M\}$. ​ Consider the set 
-\[ 
-    A = \bigcup_{i=1}^M P_i(S) 
-\] 
-By definition of $P_i$, we can show that the set $A$ contains the conjunctive normal form of the expansion of 
-\[ 
-    \exists p_1,​\ldots,​p_M. (F_1 \land \ldots \land F_n) 
-\] 
-Each of these conjuncts is a ground formula (all variables $p_1,​\ldots,​p_M$ have been instantiated),​ so the formula evaluates to either //true// or //​false//​. ​ By assumption, $P^*(S)$ and therefore $A$ do not contain a ground contradiction. ​ Therefore, each conjunct of $\exists p_1,​\ldots,​p_M. (F_1 \land \ldots \land F_n)$ is true and $T$ is satisfiable. 
- 
-==== Improvement:​ Subsumption Rules ==== 
- 
-Note also that if $\models (F \rightarrow G)$, where $F$ has been derived before, and $FV(G) \subseteq FV(F)$, then deriving $G$ does not help derive a ground contradiction,​ because the contradiction would also be derived using $F$.  If we derive such formula, we can immediately delete it so that it does not slow us down.  ​ 
- 
-In particular, a ground true formula can be deleted. 
- 
-===== Resolution as Projection ===== 
- 
-Recall [[Definition of Propositional Resolution]]. 
- 
-Instead of arbitrary formulas, use clauses as sets of literals. ​ The projection rule becomes 
-\[ 
-\frac{C_1 \; \ C_2} 
-     ​{(subst(p \mapsto {\it false},C_1) \cup 
-      (subst(p \mapsto {\it true},​C_2))} 
-\] 
-If $C$ is a clause, then 
- 
-\[ 
-   ​subst(\{p \mapsto {\it false}\},C) 
-\] 
-++++ 
-is equivalent to 
-| 
-\[ 
-\left\{\begin{array}{l} 
-  C \setminus \{p\}, \ \ p \in C \\ 
-  true, \ \ \lnot p \in C \\ 
-  C, \mbox{ otherwise} 
-\end{array}\right. 
-\] 
-++++ 
- 
-There are several cases: 
-  * if $p \notin C_1$ ++then| the result is subsumed by $C_1$, so it can be deleted++ 
-  * if $\lnot p \notin C_2$ ++then| the result is subsumed by $C_2$, so it can be deleted++ 
-  * if $p \in C_1$ and $(\lnot p) \in C_2$, ++then | the result is equivalent to$(C_1 \setminus \{p\}) \cup (C_2 \setminus \{\lnot p\})$, as given by the resolution rule++ 
- 
-Therefore, for clauses, projection (with some elimination of redundant conclusions) is exactly the resolution proof rule.