Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:deciding_a_language_of_sets_and_relations [2009/05/14 12:05]
vkuncak
sav08:deciding_a_language_of_sets_and_relations [2015/04/21 17:30] (current)
Line 3: Line 3:
 Consider a simple language of sets: Consider a simple language of sets:
  
-\[+\begin{equation*}
 \begin{array}{l} \begin{array}{l}
    S ::= V \mid S \cup S \mid S \cap S \mid S \setminus S \mid \mathbf{U} \mid \emptyset \\    S ::= V \mid S \cup S \mid S \cap S \mid S \setminus S \mid \mathbf{U} \mid \emptyset \\
    A ::= (S = S) \mid (S \subseteq S) \mid card(S){=}c \mid card(S) \leq c \mid card(S) \geq c \\    A ::= (S = S) \mid (S \subseteq S) \mid card(S){=}c \mid card(S) \leq c \mid card(S) \geq c \\
-   F ::= F \lor F \mid F \land F \mid \lnot F \\+   F ::= F \lor F \mid F \land F \mid \lnot F \mid A \\
    c ::= 0 \mid 1 \mid 2 \mid ...    c ::= 0 \mid 1 \mid 2 \mid ...
 \end{array} \end{array}
-\]+\end{equation*}
  
 We show that this language is decidable by reduction to universal class. We show that this language is decidable by reduction to universal class.
 
sav08/deciding_a_language_of_sets_and_relations.txt · Last modified: 2015/04/21 17:30 (external edit)
 
© EPFL 2018 - Legal notice