Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:abstract_interpretation_recipe [2008/05/08 12:41]
vkuncak
sav08:abstract_interpretation_recipe [2015/04/21 17:30] (current)
Line 17: Line 17:
     (for example, by defining function $\alpha$ so that $(\alpha,​\gamma)$ becomes a [[Galois Connection on Lattices]])     (for example, by defining function $\alpha$ so that $(\alpha,​\gamma)$ becomes a [[Galois Connection on Lattices]])
   * extend $sp^{\#}$ to work on control-flow graphs, by defining $F^\# : (V \to A) \to (V \to A)$ as follows (below, $g^{\#} : V \to A$)   * extend $sp^{\#}$ to work on control-flow graphs, by defining $F^\# : (V \to A) \to (V \to A)$ as follows (below, $g^{\#} : V \to A$)
-\[ +\begin{equation*} 
-   ​F^{\#​}(g^{\#​})(p_2) = g^{\#}(p_2) \sqcup \bigsqcup_{(p_1,p_2) \in E} sp^{\#​}(g^{\#​}(p_1),r(p_1,p_2)) +   ​F^{\#​}(g^{\#​})(p') = g^{\#}(p') \sqcup \bigsqcup_{(p,p') \in E} sp^{\#​}(g^{\#​}(p),r(p,p')) 
-\]+\end{equation*}
 which is analogous to [[Collecting Semantics]] which is analogous to [[Collecting Semantics]]
   * compute $g^{\#}_* = lfp(F^\#)$ (this is easier than computing collecting semantics because lattice $A^n$ is simpler than $C^n$):   * compute $g^{\#}_* = lfp(F^\#)$ (this is easier than computing collecting semantics because lattice $A^n$ is simpler than $C^n$):
-\[+\begin{equation*}
    ​g^{\#​}_* = \bigsqcup_{n \ge 0} (F^{\#​})^{n}(\bot^{\#​})    ​g^{\#​}_* = \bigsqcup_{n \ge 0} (F^{\#​})^{n}(\bot^{\#​})
-\]+\end{equation*}
  
 where $\bot^{\#​}(p) = \bot_A$ for all $p \in V$ where $\bot^{\#​}(p) = \bot_A$ for all $p \in V$
  
 
sav08/abstract_interpretation_recipe.txt · Last modified: 2015/04/21 17:30 (external edit)
 
© EPFL 2018 - Legal notice