
Automated Inspection of Industrial Use Case
Models Inferred from Textual Descriptions

Palani Kumanan, Amit Paradkar, Avik Sinha, Stanley M. Sutton Jr.?

IBM T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY, USA 10598

{palanik,paradkar,aviksinha,suttons}@us.ibm.com

Abstract. Use cases are increasingly important for requirements cap-
ture. They feed into downstream activities such as requirements specifi-
cation and test generation. The quality of use cases is thus a concern, and
there are numerous guidelines for use case style and content. However,
most use cases are written in (possibly structured) natural language, and
their characteristics and quality can vary widely.
We have developed an approach for automated inspection of use cases
based on the construction and analysis of models of use cases. Use case
texts are analyzed by a Linguistic Engine that produces an abstract
model of the use case. The model records linguistic properties and is an-
alyzed to evaluate additional properties, such as integrity, completeness,
complexity, concurrency, dataflow, and others. Feedback is provided to
the user in the form of error and warning messages. We also provide
guidelines to facilitate the writing of linguistically analyzable use cases.
Authors can iteratively refine their use cases to eliminate problems. Ap-
propriately correct use cases can be used as input for flow-graph or test-
case generation.
We describe a prototype IDE that implements this approach and report
on experience in analyzing and refining sample groups of industrial use
cases.

1 Introduction

Errors in requirement are a leading cause of poor quality software [1]. Further,
requirements defects that make their way into the field could cost several times as
much to correct as defects that were corrected close to the point of creation [2, 3].
These observations have led to a renewed emphasis on requirement definition as
evinced by commercial success of vendors with products in requirements defini-
tion space such as Ravenflow (www.ravenflow.com) and iRise (www.iRise.com).

We are working on a holistic approach to requirements definition which at-
tempts to synthesize different modalities of requirements elicitation such as use
cases, business process models, sketches & storyboards, and glossaries. Our fo-
cus so far has been on analysis of textual descriptions of use cases. In [4], we
described a pipeline architecture for analyzing use case text and demonstrated
? Contact Author



its effectiveness (measured in precision and recall) in identifying key concepts
in use cases - such as Actors, action verbs, etc. In this paper, we report 1)
guidelines to make use case descriptions amenable to textual analysis, 2) an
automated inspection technique for models inferred from use case descriptions
and & an environment which implements this technique, and 3) its effectiveness
when applied to 22 industrial use cases.

Use cases are an increasingly popular way to specify software requirements [5].
A use case (or system use case) is generally considered to be a dialog-like de-
scription of interactions between a prospective system and one or more clients
(called Actors)of the system, often including a human user. The descriptions are
written in more or less natural language, possibly in a structured document. The
focus of the description is on observable actions and effects. In the context of
a software development process, use cases are typically developed at the early
stages of requirements gathering and may serve as input into the later stages of
requirements specification or test-case definition (among other possible uses). In
our previous work we have developed a system for automatically generating test
cases based on use cases written in a relatively formal style [6].

The usefulness of a use case depends on the way in which it is written,
both in terms of style and content. In practice, a putative use case may be
written in an arbitrary style and with arbitrary content. However, in order to
be of practical value, a use case should generally be clear, consistent, correct,
and complete (within its intended scope). Its style should be straightforward
and simple. It should not contain extraneous material (that is, unrelated to
the elucidation of system behavior) and it should avoid presupposing aspects of
system implementation (that is, the use case should address what the system
does, not how it does it).

To help assure that use cases are written in a useful way, various standards
or guidelines have been proposed [5], and evaluated in academic setting [7, 8]
(including one reported at ECOOP’2001 [9]). Examples of guidelines are that
sentences should conform to certain simple grammatical patterns, that verbs
should be active and have present tense, and that descriptions of the mental
states of users should be avoided.

Quality assurance is as much an issue for use cases as it is for other artifacts in
the software life cycle. Approaches that have been used to assess the quality of use
cases include human review of use case texts [9, 8] and automated analysis of use
case texts [7, 10, 11]. However, the technique reported in [7] works on a structured
subset of the language which may preclude its applicability to industrial use
cases which are typically written in unconstrained language, thus limiting its
appeal to practitioners. Fantechi et al. [10] use a sentence analyzer to look for
lexical and syntactic issues such as: ambiguities indicated by words like naturally
or subjectivity indicated by words such as similar etc. The text analysis used
in [11] seems to be the closest in spirit to ours. However, due to proprietary
nature of the technology, any comparison can be based only on the publicly
available white-papers. Based on these white-papers, we conjecture that the
use case text analysis in [11] occurs at an individual sentence level and not



across the entire use case (or across a set of use cases). Furthermore, automated
analysis of previous works may entail the construction of a model to serve as an
internal representation of the text, but these models are generally not exposed
to developers or available for processing separately from the analysis.

In this paper we demonstrate an automated inspection approach that goes
beyond previous approaches by making a model of the use case a first-class
representation. This model plays a role with respect to the use case text that is
comparable to the role that an abstract syntax tree (AST) plays with respect
to a program text. It exists and is accessible separately from the program text
and is available as input for any subsequent processing steps of interest. These
steps may include such things as generation of flow models or test cases, and
they can be decoupled from the creation of the model. In this paper we focus
primarily on the use of models of use cases as the basis for analysis in support
of development activities. The general contribution of the work is to show that
use cases, which are substantially informal documents, can be treated to a large
extent like formal artifacts (such as code), with corresponding opportunities
for automated processing and prospects for life cycle support in the form of
integrated development environments (IDEs).

Lastly, most of the reported work on defects in use cases is from academic
environments and very few, such as [10, 12], have reported experience with in-
dustrial use cases. Of the two, only Törner et al. report statistics on defects
found through manual inspection of automotive use cases. Fantechi et al. only
show examples of issues with the use case text. In this paper, we report on errors
in industrial use cases found using an automated inspection tool.

The rest of this paper is organized as follows. In the next sections we discuss
our motivation for the use of models of use cases and give an overview of the
general process in which we envision that these models will be used. In Sec-
tions 4 and 5 we describe our text analysis and guidelines for writing analyzable
use cases. Sections 6 and 7 then describe our use case meta-model and approach
to model analysis. Section 8 gives an overview of a prototype IDE that we have
built to implement the described approach. Section 9 gives an example of the
approach, showing analysis results for a population of sample use cases, illustrat-
ing the application of the guidelines to these use cases, then reporting analysis
results following application of the guidelines. Finally we discuss related work
and present a summary, conclusions, and future work.

2 Motivation

Why build models of use cases and make these a focus for their use in software
development? There are several reasons:

– They provide a structure for storing information about the use case, includ-
ing not only the results of textual analysis (e.g., grammar and content) but
also information from other sources (e.g., mark-up by users).

– They can provide a more abstract representation of the use case than is
embodied in the text. For example, actions in a use case can be represented



without regard for the voice or tense in which they were originally written.
(Not all grammatical information may be needed for all uses of a use case.)

– Models of use cases can be related to other models that may be available
in the context of software development, such as domain models, glossaries,
test plans, and so on. These relationships can be exploited for uses such as
consistency checking and change propagation (for example, [13]).

– The models can be subject to analysis. Certain information, such as rela-
tionships between use cases, may not be readily evident in use case texts.
Additionally, the availability of a persistent model separately from the texts
can allow analysis of the use cases separately from the creation of the model
and without requiring reanalysis of the texts.

– Models of use cases are better suited than text as input to many tools, such
as for test-case generation [6].

– In ways that are analogous to the uses of ASTs, models of use cases can serve
as the focal point of an IDE in which tools and services can be integrated to
support use case development and other use case related tasks.

Analysis of models of use cases can address “non-linguistic” information such
as structure, control flow, dataflow, and so on. As noted, it can relate use cases
to external sources of information (such as domain models), and it can evaluate
conditions that span multiple use cases (e.g., the mutual consistency of a set of
use cases). There are a number of ways in which such analyses can be useful.
These include the identification of concerns or problems in the use case (such as
consistency or style errors), the collection of metrics (e.g., on use case size and
complexity), the provision of feedback for use case refinement, the integration
of use cases from different sources, and the verification of the suitability of use
cases for use in downstream activities, both automated and manual.

3 Process Overview

In the approach we are proposing, models of use cases are built by automated
analysis of use case texts, possibly supplemented with additional information.
New use case texts are written from scratch or existing texts are obtained from
appropriate sources. These texts are sometimes written or revised according
to guidelines that promote their analyzability for purposes of constructing the
models. These guidelines (discussed in detail in section 5) are comparable to
“readability” guidelines for human consumers of use cases. Use case texts are it-
eratively refined until they can yield an acceptably correct and complete model.
The models are then analyzed to report on issues of concern (such as stylistic
properties for human consumers or integrity properties for flow-graph genera-
tors). The use cases may be further refined to address issues identified by model
analysis (e.g., overly complex sentences, or dangling references to included use
cases). Once a use case satisfies the relevant conditions, it can be made avail-
able to downstream activities (such as requirements specification or test-case
generation). Details and examples of this process are discussed in the following
sections.



4 Text Analysis

Primary to our approach to text analysis is a linguistic analysis engine (LE)
that extracts information from natural language use case text to create an
analysis-ready computer model (described further in section 6). The linguis-
tic analysis engine consists of multiple configurable components (see [4] for
details) integrated using the Unstructured Information Management Architec-
ture (UIMA) [14]. UIMA is an open, industrial-strength, scalable and extensible
platform for building analytic applications or search solutions that process text
or other unstructured information. UIMA provides a simple but rich represen-
tation for unstructured information. It enables different analysis components to
share and extend their results, independently of the nature of their analysis al-
gorithms. Additionally, UIMA enables developers to compose and configure such
components and to combine them with existing or third-party components.

The syntactic analysis for our LE is achieved by means of a shallow parser [15].
Unlike deep parsers, shallow parsers do not attempt to parse the entire text and,
instead, they scan the text, on the surface, for known phrasal patterns. Such
parsers yield very high accuracies in parsing text where the sentence structures
do not vary widely. The text in natural language use case descriptions does not,
ideally, vary widely with regards to structure [4] and therefore, the LE has a very
high accuracy. We report in [4], that when measured on 57 in–field use cases,
the average precision of our LE is 86.1% and the average recall is 91.3%. Since
the shallow parsers do not attempt to parse the entire text, they are incredibly
robust to noise (extra-grammatical information e.g., currency signs, program-
ming language constructs, colloquial terms) in text [16]. The LE leverages noise
tolerance of shallow parsers and deploys it effectively to filter noise from text.
The noise filtering mechanism is more of a requirement than luxury for a LE
designed to analyze use case text. Our analysis [4] show that on an average
62.5% of use cases had presence of noisy text. As reported in [4], LE’s average
effectiveness in filtering noise is 90.9%.

Additionally, the LE deploys a lexical processor (the component that tok-
enizes the text, assigns base form to the words and associates part of speech
information to tokens) which embodies lexical knowledge not only of “uncon-
strained” English but also for over a hundred other languages (including Ger-
man, French, Spanish, Italian, Russian and Chinese). This greatly facilitates
adaptation of the LE to different languages and its applicability to multiple ap-
plication domains. Applicability to multiple domains, again, is more a necessity
than a feature. Use cases can be used to describe applications from a variety
of domains including and not limited to health care, aviation, finance,
networking and services.

The configurability and composability aspects of the UIMA pipeline lends
our LE a unique advantage over other existing LEs that use traditional problem
specific architectures [17, 7]. Since the current LE is developed with domain
independence as primary design focus, it yields almost uniformly accurate text
processing across various domains. However, certain domain specific analysis
activities may require greater accuracy. The composability aspect is a great help



in retargeting the currently domain independent LE to a domain specific text.
For instance, retargeting the lexical analysis to a health-care-domain use case
can be easily accomplished by configuring the LE by swapping in a medical
text-aware lexical processor.

5 Analyzability Guidelines and Directives

The choice of a particular implementation of the shallow parser and a domain
independent lexical processor makes our LE yield a better analysis if the input
text is written in accordance to some norms. These norms essentially ensure that
the input text does not violate the key rules of “unconstrained” language that
the POS tagger of the lexical processor and the shallow parser assume to hold.

The set of norms can be classified into two categories: the directives and
the guidelines. The directives are those that the input text must always follow
and the guidelines are the ones that may enhance the quality of analysis. In
other words, if the text does not conform to the directives, the LE will fail in
its analysis; however, if the text does not conform to the guidelines the LE will
produce partial models and occasionally, even correct models.

5.1 Directives

1. Ensure end of sentence markers: One key functionality of the lexical pro-
cessor component of the LE is to identify sentence boundaries. However,
since the components is domain agnostic, its algorithm to recognize sentence
boundaries is based on punctuation marks such as periods, commas and
semi-colons. Without proper sentence identification, the shallow parser and
the other components would not function. Thus, it is mandatory to ensure
that punctuation marks, especially end of sentence markers are not missing1.

2. Ensure absence of slashes: Use of forward and backward slashes in the text
confuses the tokenizer component yielding wrong analysis from LE. Thus it
is mandatory to avoid slashes. Cleaning up of slashes can be accomplished
by replacing slashes with representative words e.g. “or” or by putting the
containing phrase with quotes e.g. “C:/root folder”.

3. Ensure absence of non-ASCII characters: Either due to different character
encodings by the differing text editors or copying and pasting activities,
the input text gets corrupted with non–ASCII characters. Such characters
are not understood by the current input stream reader leading to failure
of the LE. Hence it is mandatory to clean up the text before inputting
to the LE. This involves re-typing quotations, hyphens and parentheses in
text; removing extra spaces; and removing un-identifiable characters from
the text.

4. Ensure absence of unwarranted capitalizations: Since the lexical processor of
the LE is domain agnostic, it has a separate component for disambiguating

1 If there are extra punctuation marks, the LE is usually able to filter them out



Parts–of–Speech information for words. The component uses an algorithm
called Robust Risk Minimization (RRM) [18], which has some disambigua-
tion rules based on orthographic information of the words (e.g. Capital/
Small starting letter). It is therefore, important to ensure that there are no
un-warranted capitalizations that may confuse POS disambiguation process.

5.2 Guidelines

1. Avoid grammatical mistakes: The shallow parser is quite robust in handling
extra-grammatical phrases and grammatically in-correct information. How-
ever, grammatical mistakes can sometimes mislead the RRM based POS
disambiguation process. Of special importance, is to ensure a correct form
of the action verbs to reflect correct tense and number agreement with the
subject.

2. Enclose noun phrases in quotes: It is rare but not extremely rare to find
occasional failures of the RRM algorithm. Thus a word “use” in a phrase
like “use case”, may get tagged as a verb and this may confuse the shallow
parser. Thus for safety, it is advised to enclose such noun phrases within
quotation marks.

3. Use determiners when describing subjects and objects of action: Once in a
while the RRM confuses a 3rd person singular verb with a plural of a noun.
For instance, the word “checks” in the sentence “Customer checks account
for balance.” may get classified as a plural of the noun “check” and the word
“account” will be classified as a verb. Consequently, the word “account” will
be picked up as an action by the LE and not the word “check” (as may
have been the original intention of the author). Since both interpretations of
the sentence viz., “customer” checks “account balance” and the “customer
checks” account “balance” are syntactically valid, there is a natural ambi-
guity. In the absence of any domain specific guidance, the RRM chooses
between such interpretations based on some heuristics that may occasion-
ally falter. This leaves the LE with a risk of mis-identifying the primary
action. Adding a determiner in front of the object of the action and modify-
ing the sentence to customer checks the account balance disambiguates such
sentences and hence, use of determiners is advisable.

4. Avoid hyphenated comments: Some use case authors use hyphens in the text
to qualify sentences. For instance, consider the sentence “System returns
cash– this will be a multiple of 20.”. Such a construct may confuse the LE’s
ability to identify actors from the text. Thus, for safety, hyphens may be
replaced with modification clauses, e.g.,“System returns cash, which will be
a multiple of 20.”

5. Punctuate to denote end of clauses: Occasionally boundaries of a clause may
not be evident to a shallow parser and hence it is advisable to put commas
to indicate them. For instance, in a sentence, “The customer who has the
card (credit or debit card) is allowed to enter the bank.”, the boundary of
the modification clause viz.,“who has the card” may not be evident to the
shallow parser (in this case due to existence of the parenthesized modification



of “card”). Such confusions may be avoided by introducing a comma and
modifying the sentence to “The customer who has the card (credit card), is
allowed . . . ”.

6. Avoid parallelizing noun phrases: To a human reader, a phrase like “steps
1 and 2 ” may imply “step 1” and “step 2”. However, the shallow parser
may occasionally mis-interpret such phrases; especially when there is a POS
ambiguity in the leading word (as in the case of “step”). Therefore, such
phrases should be re-written and parallelism is generally discouraged.

7. Avoid usage of pronouns: The LE has the ability to resolve pronouns by
automatic identification of the co-referring nouns, but with 95.3% accuracy
(see [4]). Therefore, occasionally (approximately in 1 in every 20 instances)
a pronoun may get replaced with a wrong noun2, leading to a mis-analyzed
text. Hence, the usage of pronouns is not encouraged.

6 Model Overview

The text analysis described in Section 4 extracts a model from input use case
texts. As the extracted model forms the basis for subsequent analysis and other
development activities, the feasibility and results of those activities are closely
affected by the expressivity and correctness of the model. From the point of view
of analytics for text processing, correctness and expressiveness are inversely re-
lated. The more expressive the meta-model, the more difficult it is to develop
analytics that consistently produce a correct and complete model. This is espe-
cially true when the domain of discourse varies, as it dose for use cases. On the
other hand, it is counter-intuitive, and possibly counter-productive, to restrict
the expressiveness of the model when applications may require an information-
rich representation. Thus we are prepared to sacrifice some correctness for ex-
pressiveness. To compensate, the text analysis may ignore problematic parts of
the text, the texts can be iteratively refined to eliminate errors, authors can
manually update parts of the model, the models can accommodate inconsistent
elements, and we enable users or applications to ignore irrelevant errors.

Figure 1 depicts our meta-model at a high level. It represents the informa-
tion contained in typical use case descriptions (UCDs) along with contextual
information. For deriving the meta-model, we collected 27 UCDs from practi-
tioners in the industry and from examples in the published literature [7, 5]. The
primary criteria for selection was that the UCD sentences were approximately
in accordance to the recommended practices [5].

At the most abstract level, an application model contains a model of the
context and a model of use cases. The context is described through actors and
business items. Each use case in the use case model is related to a use case
description (UCD). The sentences in a UCD express one or more actions initiated
by some actor or agent such as a system or its user. Each action may have a set
of parameters that are defined – assigned a value or used. Our implementation
2 To mitigate this issue, the IDE can offer the use case author a choice while resolving

the pronouns



Use Case Description 1..* Sentence

Action

1..*

Initiating Actor

Receiving Actor

Defined Parameter

Used Parameter

*

*

*

0..1

Exceptions

1..*

Condition

1..*

1

Application Model

Context Model Use Case Model Use Case

Actor Business Item

1

1..*

1..*1..*

11

Fig. 1. Use Case Description Metamodel

of the model contains additional information that is not shown in the diagram,
such as attributes of elements and additional relationships, roles, and subtypes.

Using the current metamodel we can capture information detailed enough
for certain validation checks (described in following sections). We recognize that
some applications may require additional information. The current meta-model
is implemented using the Eclipse Modeling Framework (EMF) and is amenable
to extension.

7 Model Analysis

Model analysis is performed to obtain information about a model of a use case
and the underlying use case text that it represents. In turn that information
may be used to guide, constrain, or contribute to subsequent development activ-
ities of various sorts. Abstractly, analyses take two different forms: reports and
predicates.

Reports produce arbitrary output (typically text in some form). They may
embody an arbitrary computation; these are presumed to be focused on a model
of a use case but are not restricted to that. Reports are intended for information
that may summarize a model or describe many collective elements in detail.
Examples would be the collection of metrics or the gathering of data on the
occurrence of errors (as used in this paper).

Predicates must produce a boolean result. Like reports, predicates may em-
body arbitrary calculations that are presumed to be focused on a model of a use
case but are not restricted to that. Additionally, a predicate applies to a particu-
lar model element, which is its principal argument, and its result is conventionally
associated with that element. Additionally, predicates can be assigned a severity
level and interpreted as indicators of errors or other notable conditions. So, for
example, a predicate may test whether as sentence has more than one action,
violation of which may yield a warning, or it may test whether a reference to a
use case is defined, violation of which may yield an error.

Not every condition of interest for a use case can be evaluated automati-
cally, but the set of interesting conditions that can be evaluated automatically
is quite large (if not open-ended). We have implemented a range of predicates,



some of which exemplify commonly accepted standards for use case style and
content, and some of which are of particular interest to us in relation to test-case
generation. Some examples of these conditions are as follows:

– Stylistic checks for English sentences e.g., voice, use of actions of recog-
nized kinds, use of anaphora.

– Complexity checks for the number of actors or actions in a statement, the
number of updates to an item in a use case, and so on.

– Completeness checks of use case statements e.g., missing actors and ac-
tions, missing parameters.

– Structural checks for the model e.g., consistent use of aliases, dangling
use case references.

– Flow checks for data and the control flow e.g., analysis for consistencies
such as attempts to use items before they are created.

– Ownership checks that validate accessibility of data or appropriateness of
actions relative to actors.

– Concurrency-related checks, e.g., for the occurrence of possibly concur-
rent actions or possibly non-serializable behaviors

– Inter-model checks to compare the actors and items referenced in a use
case to element in an associated domain model

Some of the information evaluated by predicates is actually determined by
text analysis when the model is constructed and represented as annotations on
model elements (for example, the voice of actions). Other information is com-
puted only when the predicate is evaluated, such as the complexity of sentences,
data-flow properties, or aspects of model integrity.

Our analysis paradigm makes no assumptions about the conditions of in-
terest, when those conditions should be evaluated, or what significance should
be assigned to the results of evaluation. We believe these should be determined
according to the opportunities and constraints arising from the environment,
processes, products, and overall context of development.

To explore and validate the ideas discussed above, we have developed a pro-
totype IDE that supports text analysis, model construction, model analysis, and
other functions. Below we give an overview of that IDE and then present exam-
ples that illustrate the application of the concepts using the IDE.

8 Prototype IDE

We have developed a prototype integrated development environment (IDE) as
an enabler for the use case description process described in the Section 3. Figure
2 shows a screenshot of the IDE. The IDE facilitates development of relatively
error-free use cases by assisting the author in elicitation, providing multiple views
of the underlying model and providing feedback based on a set of validity checks
defined on the model. The IDE also enables the invocation of additional tools on
a use case model, including the generation of flow graphs and test cases based
on use cases.



Hyper-linked model elements
Hyper-linked model elements

Problem markers
Problem markers

Predicate Argument View
Predicate Argument View

Error categorization
Error categorization

Bolded main actions
Bolded main actions

Resolved Anaphor
Resolved Anaphor

Action Classification
Action Classification

Italicized actors
Italicized actors

Underlined business items
Underlined business items

Fig. 2. The Online Analysis Environment

The IDE provides the author with the ability to create multiple use cases
for a given application. The author starts the use case development process by
creating a project and then adds use cases to the project. Each use case can
be described using a text file. For elicitation of the textual use case description,
the author is provided with a spell check backed text editor. On saving the
textual description, the IDE invokes the linguistic engine and subsequently, the
model analysis components. The model produced is analyzed for correctness
and feedbacks are generated. Additionally, actors and business items identified
in analyzed use cases are added to an associated domain model.

To assist the authors of a UCD in understanding the inferred conceptual
model, the IDE provides multiple views of the model to the use case author.
Notice the “Explorer” view on the left of the screenshot in Figure 2. The Explorer
presents the model in a tree-view and helps the author to navigate or edit the



model. The use case is depicted as a series of sentence and each sentence as a
collection of actions. Each action is displayed in the predicate argument structure
where the arguments are its parameters and actors. The actions are classified
into input, output, create, read, update, delete, direct and include.

The text editor itself acts as a view for the model by re-rendering the input
text to display model elements. Actors in the text are italicized and main actions
are bolded. The model elements are hyper-linked. On selecting a model element
on the Explorer, the corresponding text gets highlighted in the text editor. Notice
that the pronoun “it” is hyper-linked to the actor “system” (thus showing a
successful resolution of the pronoun).

Not shown in the screenshot are three additional views of the model that the
IDE produces: the graphical view, the outlined view and the scenario view. In the
graphical view, the IDE provides visualizations of the flow using the Business
Process Modeling Notation (BPMN) [19]. In the outline view, each use case
statement is listed in a enumerated list. The exceptions are listed as sub-bullets
of the exception throwing statement and are marked by the exception condition.
In the scenario view, the multiple scenarios of executing a use case are displayed
under different tabs.

The “Problems” pane is shown in the screenshot; it lists the feedbacks based
on the analysis of the model. A feedback includes a diagnostic of the problem and
its severity. Notice the problems, their categories and their markers in the screen-
shot. The markers inform the users of the location in the input text that cause
the failing tests. Clicking a problem, highlights fragments of text contributing
to the error.

Not shown in the screenshot is a preferences page that allows for customiza-
tion of predicate evaluation. Predicates are grouped into suites. Suites can be ac-
tivated or deactivated individually, enabling or disabling their evaluation. Within
a suite, the severity level of a each predicate can also be set individually.

The IDE is built as a rich-client application on Eclipse (http://www.eclipse.org).
The Eclipse Modeling Framework (EMF, http://www.eclipse.org/emf/) is used
to represent the use case model. Predicates and predicate suites are introduced
into the IDE through Eclipse extension points that are defined as part of the IDE.
The implementation of the text analysis component is described in Section 4.

9 Example

In this section we discuss an example of the use of the IDE to demonstrate con-
cepts related to our approach to analysis of use-case models. The first subsection
describes the population of use cases analyzed. The second reports on the initial
results of model analysis, before the guidelines have been applied. The third sub-
section describes the application of the guidelines. The final subsection reports
on the results of model analysis following application of the guidelines.



9.1 Example Use Cases

To illustrate the concepts advanced in this paper, we draw on two sets of example
use cases obtained from industrial developers. The first set, “Set O”, contains six
use cases relating to an invoice management application. These were according to
commonly recommended guidelines [5] such as using simple sentence structures,
active voice, and generally describing the interactions between a user and a
system. The use cases were written in plain text format and thus they ensured
no special characters.

The second set of use cases, “Set N”, contains sixteen use cases relating to
a single E-commerce application. These use cases were written with relatively
little guidance beyond a general overview of the use case concept. These use
cases were originally written in a tabular format, e.g., with actors separated from
actions. For text analysis we transcribed the text into a plain-text document.
The transcription process may have introduced a set of non-ASCII characters.

9.2 Analysis of Given Use Cases

We analyzed the use cases in our example populations using a varied set of pred-
icates. Table 1 lists representative predicates of particular interest. The predi-
cates were chosen to reflect a variety of semantic concerns. Some of these are
basic issues of correctness (e.g., statements with missing actions), some reflect
commonly recommended stylistic constraints (e.g., use of active voice), and some
reflect natural issues of model integrity (e.g., mutual consistency of actor aliases).
The two dataflow predicates represent issues of computational correctness (these
are examples from a larger group). A few are of particular interest to us as issues
that affect the generation of test cases, such as the number of updates for an item
in a use case and the possibility of concurrent behaviors. The setting of severity
levels likewise reflects a particular set of priorities that we have–these can be
adjusted as appropriate to circumstances and objectives. These predicates and
their severity levels are the primary basis for the statistics reported on use case
analysis below.

Table 2 shows some summary data about the size of the example use case
populations and the overall occurrences of errors and warnings as found by
analysis of their models. The use cases in Set O average about eight statements
each and have a moderate number of errors and warnings (about two and five
per use case, respectively). Slightly more than half of the statements in these
use cases have neither an error nor a warning. This may be expected since the
authors were instructed to write in a use case appropriate style. The use cases in
Set N average about eight statements each and have relatively many errors and
warnings, on average more than one error per statement and about one warning
per two statements. Nearly three quarters of the statements have at least one
error or warning. This is consistent with a less directed style of use case writing.



Table 1. Representative Predicates for Use Case Analysis

Predicate Name Applicability Severity Semantic Category

HasRecognizedActions Statement Error Completeness
HasRecognizedActors Statement Error Completeness
IsClassifiableAction Action Error Correctness
IsUsedOnlyWhenDefined Action Error Dataflow
AliasesMutuallyConsistent Actor Error Integrity
NoDanglingUseCaseReference Parameter Error Integrity
NoActorAliasing Use Case Warning Style
HasOnlyActiveVoice Statement Warning Style
NoDeleteWithoutUse Action Warning Dataflow
NoConditionalStatements Use Case Warning Style
NoObjectDefinedMoreThanOnce Use Case Warning Complexity
HasActionsThatMayInterfere Statement Warning Concurrency
DoesNotHaveMultipleActions Statement Warning Complexity

Table 2. Summary of Size and Problem Occurrence in Given Use Cases

Group # Use # Stmts # Errs # Warns # Stmts # Stmts w/
Cases w/Errs Errs+Warns

Set O Total 6 47 13 31 8 (17%) 22 (47%)
Mean 7.8 2.2 5.2 1.3 3.7

Set N Total 16 125 161 65 86 (66%) 95 (73%)
Mean 7.8 10.1 4.1 5.4 5.9



Table 3 shows data on the kinds of errors that were found in the example use
case populations. The relatively few errors in Set O are of various kinds. The
occurrence of five dataflow errors reflects one statement in one use case where an
item is used before being created, where that action affects five execution paths.
The four dangling-use case references reflect an inconsistency in naming between
the references and the intended use case file names. The “other warnings” reflect
conditional statements, which we flag as possible use case exceptions.

The most striking thing about the kinds of errors for the use cases in Set
N are the large numbers of unrecognized actors and actions. These go hand-
in-hand, as often the identification of an actor depends on the identification of
an action. The most common problem in identifying actions in these use cases
is that the verbs in statements are often capitalized inappropriately (stemming
from the original representation of these use cases in a tabular format). Some
other factors that affect these problems are use of modal forms (not always a
problem), sometimes complicated construction with passive forms, and other
grammatical or punctuation issues. Compared to the Set O use cases, these use
cases also contain a higher proportion of verbs that are not yet classifiable by our
text analysis. As with the Set O use cases, a few occurrences of inappropriate
data accesses create data flow problems on a larger number of execution paths.
Likewise, most of the “other warnings” indicate conditional statements.

Table 3. Counts of Errors by Predicate Kind for Given Use Cases

Group Missing Unclass. Dataflow Dangling Multiple Multiple Passive Other
Actor/ Action Errs/ Reference Actions Updates Voice Errs/
Action Warns Warns

Set O Total 2/0 2 5/13 4 5 0 1 0/12
Mean 0.3/0.0 0.3 0.6/1.6 0.5 0.6 0.0 0.1 0.0/2.0

Set N Total 62/50 32 14/2 3 14 0 6 0/43
Mean 3.9/3.1 2.0 0.9/0.1 0.2 0.9 0.0 0.4 0.0/2.7

9.3 Application of Guidelines

Following is a step-by-step description of the use of the guidelines presented in
Section 5 to clean up text so as to improve analysis. The example is taken from
one of the use cases in the example population for which we report analysis
results; the application name has been modified for reasons of propriety.

In figure 3 we show a screenshot of a mis-analyzed text. The as-is text is
ridden with problems and needs to be cleaned according to the guidelines de-
scribed in section 5. The analysis output (the mis-constructed model) can be



Fig. 3. Example Application of Guidelines–Screenshot 1

understood by looking at the “Explorer” pane of the screenshot. Notice that the
mis-analyzed text produces a model with just one use case statement containing
three unclassified actions (“”, ” and page”). The primary cause for the failure
is missing periods from the ends of the sentences. Additionally, the characters
denoting the quotes are not ASCII-encoded.

Following Directives 1 and 3, we add a period at the end of sentences, remove
extra spaces and re-type the quotation marks. On re-analysis, the LE produces
the model as shown in Figure 4. The Explorer pane shows that not only did
the LE understand that there are three sentences, it also parsed accurately the
second and the third sentences by identifying the correct actions, their voice,
their initiators and their parameters. Notice, however, that the first sentence is
still mis-analyzed. This is because the word “click is not understood as an action.
This is because the grammatical error (number disagreement of the verb “click”
with the subject “iApp User”) confuses the domain agnostic LE.

Following the Guideline 1 we correct the word “click” to its 3rd person sin-
gular form “clicks”. This would correct the parse for the first sentence. Figure 5
displays the final outcome of the LE. By aiding in creating a text that is correctly
analyzed, the guidelines also help in identifying a data flow problem. (As with
program code, fixing some errors often exposes others.) Notice in the “Problems”
pane of the figure the model analysis finds two data flow problems with the data
elements “search operator” and “search value”– used before creation. Notice the
source of the problems is the verb “updates”, which is classified as an update
action. The model analysis checks that an object is created before it is updated.
In an application where the use case “basicSearch” is the only use case, this



Fig. 4. Example Application of Guidelines–Screenshot 2

Fig. 5. Example Application of Guidelines–Screenshot 3

may be a source of problem. For designers, it might mean lack of specification
of default value for “search operator” and “search value”. The problem can be
corrected by either choosing a different verb such as “enters” or adding an ini-
tialization statement before the update statement such as “System initializes the
search operator and the search value.”.



At this time we have no specific recommendations on the order in which the
directives and guidelines should be applied–this is a subject for future research.

9.4 Analysis of Revised Use Cases

In this section we consider the change in numbers and kinds of errors that have
resulted from the application of the guidelines for text analyzability. Table 4
parallels Table 2 but with values obtained after the application of the guide-
lines. For Set O, which was relatively error-free to begin with, the numbers have
remained virtually unchanged. For Set N, which had relatively many errors, the
numbers of errors and statements with errors have declined significantly, and the
numbers for warnings have also declined slightly.

Table 4. Summary of Size and Problem Occurrence in Revised Use Cases

Group # Use # Stmts # Errs # Warns # Stmts # Stmts w/
Cases w/Errs Errs+Warns

Set O Total 6 47 13 33 8 (17%) 22 (47%)
Mean 7.8 2.2 5.5 1.3 3.7

Set N Total 16 114 48 61 39 (34%) 55 (46%)
Mean 7.1 3.0 3.8 2.4 3.5

Table 5 shows numbers of specific kinds of problems following revision. Com-
paring to Table 3, the numbers for Set O are very similar. In contrast, the
numbers for Set N are greatly improved, with the total number of errors and
warnings reduced by more than half. The numbers of missing actors and actions
are drastically reduced, and the number of unclassified actions is also substan-
tially lower. The numbers of other errors are more or less the same before and
after revision. The better information regarding actions has lead to a shift in
dataflow errors and allowed the recognition of some additional occurrence of
passive voice.

While the application of the guidelines yielded a significant reduction in prob-
lems in the sample use case populations, it is important to appreciate that the
process is not rigorous and does not necessarily lead monotonically to improve-
ment in the use cases. The process of revising a use case text is manual, iterative
and incremental, subjective, and naturally variable. Moreover, the results of re-
vising a use case, like the initial writing of the use case, may be subject to further
review and validation.



Table 5. Counts of Errors by Predicate Kind for Revised Use Cases

Group Missing Unclass. Dataflow Dangling Multiple Multiple Passive Other
Actor/ Action Errs/ Reference Actions Updates Voice Errs/
Action Warns Warns

Set O Total 2/0 2 8/12 4 6 0 1 0/12
Mean 0.3/0.0 0.3 1.0/1.5 0.5 0.8 0.0 0.1 0.0/2.0

Set N Total 10/3 19 13/4 3 14 0 10 0/33
Mean 0.6/0.2 1.2 0.8/0.3 0.2 0.9 0.0 0.6 0.0/2.1

Our subjective analysis of the residual issues indicates that most of them
(with the exception of few unclassified action verbs) are issues that violate one
or more of the guidelines suggested for use case authoring [7, 9, 8] and would
need intervention of the author to resolve. Of the kinds of problems that remain
in our example, for instance,

– Sentences that still lack a recognized actor or action should be subject to
further revision or (possibly) elimination. For example, the following sentence
This input amount is applied to all offer items to be created. has
missing actor

– Verbs that represent actions that cannot be categorized may need to be re-
placed by other verbs–or, if they should stand, then the action should be
subject to particular review regarding issues of concern (e.g., dataflow, ac-
cess, or concurrency issues). For example, in the sentence "The shopper may
refine the search to be performed", the verb may refine is not clas-
sified since it generally does not fit into any of the conversation categories
for use case descriptions. However, in this particular example, it may indi-
cate that the shopper is providing more details on some INPUT supplied
previously. We are investigating the mechanism to incorporate the necessary
analysis in our IDE.

– Statements in passive voice may be accepted or revised to active voice, de-
pending on applicable style standards

– Similarly, statements that contain multiple actions may be split into multiple
statements, depending on applicable style standards

– Dangling use case references can be repaired or eliminated
– Data flow errors can be resolved by the addition or removal of appropriate

actions (e.g., adding an explicit create operation or removing an unnecessary
delete operation)

Depending on the predicates of concern, the standards to which the use cases
are initially written, and the priorities for the development activity, the process
of revising use cases may vary significantly. In general, we do not expect that ap-
plication of our guidelines will necessarily result in an error-free use case; rather,
our goal is to obtain a use case is increasingly clean and usefully analyzable for
non-textual problems and semantic concerns of the application and domain.



10 Related Work

In this section we compare our approach to related work along several dimensions
of concern.

10.1 Structure of Use Cases

Many recommended or practiced approaches to the specification of use cases
adopt the use of some sort of structured representation, often a template, table,
or structured document [7, 5]. The different parts of the structured representa-
tion address different kinds of information, such as preconditions, normal flow,
exception, and so on, although the usual representation is text. The text analysis
in our Use Case IDE operates on unstructured text documents (effectively on
text files). Information from structured formats can be accommodated by our
text analysis if it is first transcribed into an unstructured document. (We have
had to do this for some of the sets of use cases that we have analyzed.) Work
is underway to enable our use case IDE to address structured representations of
use cases.

10.2 Structure of Statements

It is commonly recommended that use-case statements have a straightforward
structure. Some work in this area recommends the use of templates for use-
case statements. For instance, the CREWS project [7] led to eight “content
guidelines” that are templates sentence templates such as

– <agent> <action> <agent>
– ’If’ <alternative assumption> ’then’ <action>
– <agent> <’move’ action><object> from <source> to <destination>

10.3 Kinds of Conditions

There are many conditions of potential concern for use cases and these can
be classified in several different ways: semantic domain, level of significance
(or severity), and means of analysis (e.g., automated versus manual). Differ-
ent workers have focused on different sets of conditions and categorized these
in different ways. For example, [7] contains proposals for style guidelines and
content guidelines. The content guidelines are actually templates for acceptable
sentence structures. In our use case IDE, we have not required or recommended
specific sentence structures, as these are immaterial for our purposes so long as
a sentence is analyzable. However, the recommended structures should facilitate
analysis by our use case IDE, which could in principle verify conformance to such
sentence structures (although we have not addressed that). The style guidelines
are mainly grammatical, linguistic, and structural, for example, use present tense
and active voice, use consistent names, avoid anaphora, begin every statement



on a new line, number each statement consecutively, express alternate flows sep-
arately, and so on. Our use case IDE has the ability to automatically evaluate
many of the linguistic concerns. It does not yet address structuring within a use
case, although many of those concerns should also be amenable to automated
verification. Certain issues, such as whether names are use consistently, cannot
be verified automatically, although these may receive some automated assistance
(such as presentation of names used for human review).

The authors in [12] have selected a set of conditions based on a review of
prior literature (cited there). The broadly classify their conditions under com-
pleteness, correctness, consistency, readability, and unambiguity (with some ad-
ditional concerns that might be put under a heading of appropriateness). We
use a somewhat comparable set of categories for our conditions in Table 1: com-
pleteness, correctness, complexity, integrity, dataflow, concurrency, and style.
Actually, neither they nor we define what we mean by our respective categories.
Even so, there seems to be some overlap (e.g., completeness and consistency)
with some significant differences (e.g., readability in their case, concurrency and
dataflow in ours). This may reflect a difference in the expected mode of evalua-
tion and intended application of the use cases. In [12] the conditions are evaluated
manually and the use cases are intended for human consumption, whereas in our
case the conditions are evaluated automatically and the intended use (or one of
them) is the automated generation of test cases. Perhaps related to this, there is
a significant difference in the specificity of the conditions in [12] and here. The
scope of their conditions are suggested by representative questions, may be open
ended, and may not be amenable to automatic verification. Example questions
include “Does the main flow fail to achieve the goal/purpose?” and “Will the
use case be understandable in 20 years?”3 In contrast, the conditions we evalu-
ate are generally more specific and all have a precise operational semantics. It
should be noted that some of the conditions in [12] are simpler, such as whether
a statement is missing an element. Also, automated analyses may contribute
to some of the more complex evaluations, for example, complexity metrics may
contribute to the assessment of whether a use case should be split up.

The conditions supported by [11] are of interest because those are also eval-
uated automatically. The approach used is to analyze a use-case text to build a
flow model of the use case and then to reflect possible errors in terms of the flow
model. The authors don’t suggest a general classification of conditions, but the
conditions they address are compatible with the classification we have adopted
here. Specific conditions they consider include flow breaks, inconsistent names,
missing actors for conditions, incomplete conditionals, unspecified means of com-
munication, language errors (e.g., passive voice), and missing steps or process
errors. Some of these are identified explicitly (e.g., passive voice), others depend
on recognition by a human based on representation of the use-case flow (e.g.,
process errors). This is generally true of our work, as well, as our use case IDE
enables some conditions to be evaluated directly while others must be assessed
by the user based on inspection of the use case or inference from other analysis

3 Strictly speaking, we don’t know that use cases will be in use in 20 years.



results. The specific conditions addressed in [11] are generally similar to ones
that we can evaluate in our IDE, although, as noted in Section 1 our analysis
works across the sentences in both single and multiple use cases, whereas that in
[11] seems to be limited to analyzing single sentences within a use case. Further,
our IDE seems to address a greater number of conditions, to be more extensi-
ble in terms of the introduction of conditions, and more flexible in terms of the
evaluation of conditions.

An interesting aspect of the style guidelines in some work (e.g., [7, 12]) is
that they are often really composites of several simpler conditions, for example

SG1 : write the UC normal course as a list of discrete actions in the
form:

<action #> <action
description>.

Each action description should start on a new line. Since each action is
atomic, avoid sentences with more than two clauses [7].

We have tried to express our own guidelines (Section 5 in terms of focused rules
(e.g., “Ensure no non-ASCII characters”). Also, we typically write predicates
on relatively specific conditions, for example, testing for at least one action per
statement or at most one action per statement. These can then be assessed
individually or combined in various ways to serve various purposes. In our IDE,
simple predicates can be referenced by composite predicates, the evaluation and
severity level of predicates can be controlled individually, and predicates can be
gathered into suites that represent different constellations of concerns.

11 Summary, Conclusions, and Future Work

We have developed an approach for the writing of quality use case descriptions.
The approach has four main elements:

– Guidance in the writing of textual use-case descriptions
– Automated linguistic analysis of use-case texts
– Construction of abstract models of use cases based on linguistic analysis and

other information
– Automated analysis of models of use cases for a customizable and extensible

variety of quality properties

The approach is embodied in a prototype IDE (integrated development environ-
ment) built on Eclipse. This IDE supports the editing of use case texts, manages
the invocation of analyses, provides feedback to authors based on analysis results,
and generally facilitates the iterative refinement of use case texts. Analyses are
represented as predicates and reports. Predicates are grouped into suites that
can be activated and deactivated, and the severity level associated with each
predicate can be set individually. In this way the IDE allows the quality criteria



to be customized and to evolve over time. The IDE also enables acceptable use
cases to be provided as input to other activities, such as automated flow-graph
construction or test-case generation.

The guidelines we offer are largely consistent with other guidelines in the
literature but are also tailored to facilitate the writing of use cases that are
amenable to automated analysis. We have applied our analysis to several dozen
use cases obtained from several industrial sources. The style and quality of these
use cases varies widely. As described in this paper, some of these use cases are
more readily analyzed than others. As shown, application of the guidelines can
greatly reduce the apparent errors in a use case and greatly facilitate its analysis.
Repeated application with attentive human review can remove spurious errors
and enable a focus on fundamental problems.

The literature contains many examples of guidelines that are not amenable to
automated analysis, such as issues of readability, relevance, and certain aspects
of correctness. While not able to resolve these in general, automated analysis
may still be able to provide supporting information in some cases. Moreover,
automated analysis of use cases, as for programs, can identify concerns that may
be difficult or tedious for a human reader to catch, such as problems related to
dangling references, dataflow, and concurrency. Thus we believe that the most
general approach to assuring use-case quality will involve human review and
automated analysis applied in concert.

Future work will involve enhancement of the linguistic analysis, addition to
the set of predicates and reports, enrichment of the use-case model and analyses
to better support downstream applications, and experimentation with use-case
development processes. In particular, we are interested in experiments which
evaluate the effectiveness of our use case inspection technique on software pro-
ductivity and quality. Also, given our initial focus on creating test cases from use
case descriptions, we would like to conduct experiments with test cases generated
from the inspected use cases.

Acknowledgments

We thank Branimir Boguraev of IBM T. J. Watson Research Center for his help
in the area of text analysis. We thank many colleagues at IBM and its client
organizations for their contribution of example use cases.

References

1. Lutz, R.: Analyzing software requirements errors in safety-critical, embedded sys-
tems. In: RE’93. (1993)

2. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE
Transactions on Software Engineering 14(10) (1988) 1462–1477

3. Willis, R.R., et al.: Hughes aircrafts widespread deployment of a continuously
improving software process. Technical Report Document CMU/SEI-98-TR-006,
Software Engineering Institute, Pittaburgh, PA (1998)



4. Sinha, A., Paradkar, A., Kumanan, P., Boguraev, B.: A linguistic analysis en-
gine for natural language use case description and its application to dependability
analysis in industrial use cases. In: DSN ’09. (2009) submitted

5. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston, MA, USA
(2000)

6. Kaplan, M., Klinger, T., Paradkar, A., Sinha, A., Williams, C., Yilmaz, C.: Less is
more: A minimalistic approach to uml model-based conformance test generation.
In: ICST ’08. (2008) 82–91

7. Rolland, C., Achour, C.B.: Guiding the construction of textual use case specifica-
tions. Data Knowl. Eng. 25(1-2) (1998) 125–160

8. Karl, C., Aurum, A., Jeffrey, R.: An experiment in inspecting the quality of use
case descriptions. Journal of Research and Practice in Information Technology
36(4) (2004)

9. Anda, B.C.D., Sjøberg, D.I.K., Jørgensen, M.: Quality and understandability of
use case models. In: ECOOP 2001 - Object-Oriented Programming, 15th European
Conference. (2001) 402–428

10. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of linguistic techniques
for use case analysis. Requirements Engineering Journal 8(3) (2003) 161–170

11. ”RavenFlow Inc.”: ”www.ravenflow.com” (2008)
12. Törner, F., Ivarsson, M., Pettersson, F., Öhman, P.: Defects in automotive use

cases. In: Int. Symposium on Empirical Soft. Eng. ’06. (2006) 115–123
13. Sinha, A., Kaplan, M., Paradkar, A., Williams, C.: Requirements modeling and

validation using bi-layer use case descriptions. In: MoDELS ’08, Berlin, Heidelberg,
Springer-Verlag (2008) 97–112

14. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured infor-
mation processing in the corporate research environment. Natural Language En-
gineering 10(4) (2004)

15. Boguraev, B.: Towards finite-state analysis of lexical cohesion. In: 3rd International
Conference on Finite-State Methods for NLP, Liege, Belgium (2000)

16. Hammerton, J., Osborne, M., Armstrong, S., Daelemans, W.: Introduction to
special issue on machine learning approaches to shallow parsing. J. Mach. Learn.
Res. 2 (2002) 551–558

17. Fliedl, G., Kop, C., Mayr, H.C., Salbrechter, A., Vöhringer, J., Weber, G., Win-
kler, C.: Deriving static and dynamic concepts from software requirements using
sophisticated tagging. Data Knowl. Eng. 61(3) (2007) 433–448

18. Zhang, T., Damerau, F., Johnson, D.E.: Text chunking based on a generalization
of Winnow. Jnl. of Machine Learning Research 2 (2002) 615–637

19. Group, O.M.: Business process modeling notation version 1.1.
http://www.bpmn.org/Documents/BPMN1-1Specification.pdf


