
Software Verification Tools Overview

Clément Beffa
Vincent Pazeller
Olivier Gobet



Thursday, June 21, 2007 Software Analysis and Verification 2

Overview of tools

Many available tools
37 non-commercial & downloadable
Huge disparty between them

Alpha version from a publication concept 
(ARMC)
Stable version used by ten of thousand
people and sponsored by corporation 
(FindBugs)

Tools list available on the project page



Thursday, June 21, 2007 Software Analysis and Verification 3

Languages repartition

Popular languages (C, Java)
Homemade for the purpose of proving
(armc, abst/impl/spec, pale)



Java tools overview



Thursday, June 21, 2007 Software Analysis and Verification 5

Jahob

Only a subset of Java
Prove dynamically allocated data 
structures and arrays
require annotation (pre-condition, 
invariant and post-condition)

Not automated

no GUI and require different packages 
like CVC and OCaml



Thursday, June 21, 2007 Software Analysis and Verification 6

F-Rex

composed of: Jreg and Jfree
verify that program are memory safe

analyzing lifetime of objects
analyzing deallocation

New object
allocation in region
;o3062:[]:r2b



Thursday, June 21, 2007 Software Analysis and Verification 7

Daikon

Dynamic detector of likely invariants
Automatically annotate program

For example for ESC/Java2

Also supports C, C++ and Perl



Thursday, June 21, 2007 Software Analysis and Verification 8

Purity Analysis Kit

Check for purity of Java methods
method that does not mutate any object
that existed before the method was
invoked
do not interfere with other computations



Thursday, June 21, 2007 Software Analysis and Verification 9

ESC/Java2

static analyzer of Java source code 
with formal annotations

parsing, type and static checking

support only java 1.4 
reasons about each methods
individually



Thursday, June 21, 2007 Software Analysis and Verification 10

ESC/Java2 GUI



Thursday, June 21, 2007 Software Analysis and Verification 11

FindBugs

static analysis of Java bytecode
But adding source code helps reviewing
warnings

3 categories of bugs
Correctness bug (probable bug)
Bad Practice (violate recommended
coding practice)
Dodgy (confusing and prone to errors)



Thursday, June 21, 2007 Software Analysis and Verification 12

FindBugs GUI



Thursday, June 21, 2007 Software Analysis and Verification 13

JLint
Automated Java verification tool

With data flow analysis
Intra-procedural only
Many bugs and bad practices

nullpointer exception
arithmetic exception
array out of bounds
deadlocks
variable shadowing
zero operands

No GUI



Thursday, June 21, 2007 Software Analysis and Verification 14

PMD
bug depending on programming style

empty try/catch/finally
dead code unused local variables
overcomplicated expression

unnecessary "if", "for" that could be a "while"
based on rulesets (Java or XPath expression)

Possibility to choose which one to use
Some warning examples

method names should not contain underscores
System.out.print is used
Avoid instantiating String, Integer objects



Thursday, June 21, 2007 Software Analysis and Verification 15

PMD Eclipse plugin



Thursday, June 21, 2007 Software Analysis and Verification 16

jCUTE (Concolic Unit Testing Engine)

Explore all distinct execution paths of a 
program
Automatic testing by running path
Catch dataraces and deadlocks
How it found errors

detects with java runtime exception
detects infinite recursion by StackOverFlow
detects infinite loop by OutOfMemory
"while(true){}" problem



Thursday, June 21, 2007 Software Analysis and Verification 17

jCUTE GUI



Thursday, June 21, 2007 Software Analysis and Verification 18

Experiment results



Thursday, June 21, 2007 Software Analysis and Verification 19

Meta tools

Main challenges
Avoid duplicated error messages
Use underlying tools efficiently



Thursday, June 21, 2007 Software Analysis and Verification 20

Dulicated errors

Standardize error system
Giving pairs (err_no, line_range)
By modifing tools (if opensource)
By writing wrappers otherwise

This enable some new features
Duplicated message detection
Ordering bugs by severity



Thursday, June 21, 2007 Software Analysis and Verification 21

Bottom-up approach

Developers debug in a bottom-up 
fashion
=> Use same layered aproach for 
meta-tools

First check for syntax
Check intra-procedural problems
Check inter-procedural problems
Finally global bugs

Mask inappropriate messages



Thursday, June 21, 2007 Software Analysis and Verification 22

Thoughts about the miniproject

Many bugs are not found
However many warning around could
help to find them

Writing bug cases is tedious
Bug finding tools are not bug free

Not so easy to get them working



Thursday, June 21, 2007 Software Analysis and Verification 23

Future work directions

Build the theoretical meta-tool
Testing it on real project

Analyzing new java bug tools
Chord, ..

Analyzing C/C++ bug tools 



Questions?


