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Génération aléatoire uniforme de structures
décomposables en arithmétique flottante

Résumé : La méthode récursive mise au point par Nijenhuis et Wilf [15] et systématisée
par Flajolet, Van Cutsem et Zimmermann [8], est ici étendue & 'utilisation de nombres
flottants. La méthode qui en découle, appelée ADZ, permet de générer aléatoirement et
uniformément des structures décomposables — étiquetées ou non — en temps et espace
moyens O(n'T¢), aprés un précalcul de complexité en temps O(n?T¢), se réduisant & O(n'*¢)
pour des grammaires algébriques.

Mots-clé: génération aléatoire uniforme, structure décomposable, arithmétique d’intervalle
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1 Introduction.

In 1978, Nijenhuis and Wilf presented efficient algorithms to generate various data-structures
like sets, multisets, and trees [15]. This method was systematized by Flajolet, Van Cutsem
and Zimmermann in [8] to decomposable data-structures, and is now known as the recursive
method. Tt is implemented in the MAPLE computer algebra system [4], in the COMBSTRUCT
package, previously known as Gaia [17].

The recursive method as presented in [8] has two major drawbacks: firstly the pre-
processing phase requires ©(n?) arithmetic operations, and secondly the coefficient growth
makes the bit complexity for one generation much higher than the O(nlogn) arithmetic
complexity. A workaround to the first problem is well-known for context-free grammars:
the coefficients satisfy P-recurrences which enable one to compute them in O(n) arithmetic
complexity. But the second problem remains: with naive multiprecision multiplication, each
generation costs! O(n®t¢) with the boustrophedonic method as already mentioned in [8].
Even if the experiments suggest that the average bit complexity is less than O(n3*¢), this
method is limited to structures of size about one thousand, and does not allow to generate
data structures of size one million.

Trying to use floating-point numbers instead of arbitrary precision integers is a natural
idea: at each point of the algorithm where a choice has to be made, only O(n) different
branches are possible. Therefore it is enough to know O(logn) bits of the corresponding
probabilities to be able to decide in most cases. This idea was already expressed in [14] by
Mairson, and also in [8]: “The computation times could be further decreased (at the expense
of a minuscule loss of uniformity) by using floating point arithmetics. ..” This method would
give only a quasi-uniform generator, but it is possible to get a really uniform generator using
certified floating-point arithmetics, for example interval arithmetics following the IEEE 754
standard [11]. With that idea, Alain Denise got in [6] an efficient uniform generator using
floating-point approximations, for some classes of rational languages. In the following paper,
we show this holds for all classes of decomposable structures.

Our contribution is to present a new algorithm for the uniform random generation of
decomposable structures using floating-point numbers, to analyze precisely the precision of
floating-point computations and the average bit complexity of our algorithm. This algorithm
1s close to optimal for that class, as it exhibits a quasi-linear complexity both in expected time
and space. Previously known algorithms were either limited to small classes of structures:
balanced parenthesis strings in [3], regular languages in [12], some kinds of trees in [2]; or
they did not have a quasi-linear time or space complexity: the algorithms proposed by Hickey
and Cohen [10] (resp. Mairson [14]) for context-free languages with r nonterminals either
have O(n"*') (resp. O(n?)) space complexity, or O(n”log® n) (resp. O(n?)) time complexity.
Goldwurm’s algorithm [9] works in linear space, but does not improve the time complexity
of the recursive method.

The paper is organized as follows. Section 2 recalls briefly the standard algorithm and
its complexity. Section 3 recalls some basic statements about floating-point arithmetic and

1We write O(n3t¢) for O(n3+o(1) ), which is also sometimes written O(n®) (“soft-O” notation).
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4 Alain Denise , Paul Zimmermann

one operation preprocessing one generation
general context-free
O(M(nlogn)) | O(n?M(nlogn)) O(n?*9) O(nlognM (nlogn))
naive O(n?*¢) O(n**e) O(n?*¢) O(n3+¢)
Schonhage O(n'*e) O(n%9) O(n?*9) O(n?*9)

Table 1: Bit complexity of the standard algorithm with large integer arithmetic.

rounding modes, and analyzes the error propagation during the preprocessing phase. Then
Section 4 states and analyzes two random generation algorithms using floating-point arith-
metics, a quasi-uniform one and a really uniform one. These results are confirmed by the
experimental data from Section 5. Finally, Section 6 concludes and states some open ques-
tions.

2 Standard algorithm.

The standard algorithm — also mentioned hereafter as recursive algorithm — described
in [8] takes as input a combinatorial specification, i.e. a grammar with productions made
from basic objects (1 and Z of size 0 and 1 respectively) and from constructions (4 for
disjoint union, - for products, sequence for sequences, set for multisets and cycle for
directed cycles). The algorithm works as follows: First translate the specification into a
standard one, where all products are binary, and the sequence, set, cycle constructions
have been replaced with the marking and unmarking constructions © and ©71 (see [8]).
Then the standard specification translates directly into procedures for counting the number
of objects of a given size generated from a given non-terminal, or for generating one such
object uniformly at random. The computation of all tables up to size n requires O(n?)
operations on coefficients, then one random generation needs O(nlogn) operations in the
worst case using the boustrophedonic method.

Bit complexity. The integer coefficients used in the algorithm usually have an exponen-
tial growth with respect to the size n, so that an arbitrary precision arithmetic has to be
used. More precisely, it is shown in [8] that the coefficients have size O(nlogn).? Hence,
with usual quadratic algorithms for integer arithmetic, each operation costs 0(71210g2 n),
whence the preprocessing has bit-complexity O(n* log? n) and one generation has complexity
Oo(n? log® n), as summarized in the table below, where O(M (n)) stands for the cost of mul-
tiplying two n bit numbers. In the context-free case, where the set and cycle construc-
tions are not used, the counting sequences satisfy linear recurrences with polynomials coef-
ficients (P-recurrences or holonomic sequences), therefore the coefficients can be computed

2Tn the unlabelled case, they even have size O(n): since the generating functions have a nonzero radius
of convergence p as noticed in [8], the coefficients satisfy logy, = nlog lp(l + o(1)).

INRIA
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in O(n) operations between numbers of O(n) and O(logn) bits, i.e. with a bit complexity
of O(n?logn).

Another paper extends this to unlabelled objects [7]. From now on, we suppose we are
given an unlabelled standard specification, with union, product, marking and unmarking
constructions. The labelled case is very similar, with additional binomial coefficients.

3 Floating point arithmetic.

3.1 Basic definitions.

First, we recall some properties of floating-point arithmetic, as stated for example in [5, 13].
In computers, a floating-point number is generally represented by three values: a sign s, €
{—1,1}, a mantissa m,, and an exponent e, so that

T =5, -my 2.

Due to the limited size of the mantissa, arithmetic operations on floating-point numbers do
not give exact results in general. Let us denote, as in [13], the basic operations +, —, x, / by
B, 8, ®, © respectively, when applied to floating-point numbers. The IEEE 754 standard
[11] fixes their precise behaviour as follows. For any arbitrary floating-point numbers a and

b

bl

a®b = ola+b),
acb = ola—1"b),
a®b = olaxb),
a2b = ofa/b),

where the function ¢ is the active “rounding mode”, which can be chosen by the user among

the following ones: rounding towards the nearest number (o), towards 0 (Z), towards —oo

(A), or towards +oo (V). This means that any basic operation on floating-point numbers is

performed as if it was done with an infinite precision, and then the result rounded in order
to agree with the floating-point representation.

In this paper, we will only deal with two rounding modes: towards —oo and towards 4o00.

(In fact, since we will be handling only positive numbers, the towards —oo mode will be

equivalent to the towards 0 mode.) These modes satisfy, for any real number 3
r(l—e) <Ax) <z
and
< V(x)<z(l+e).
3Supposing the computer representation of z is not denormalized — see [11] — which holds for all numbers

considered here, since they are integers.
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6 Alain Denise , Paul Zimmermann

The value ¢ is called the computer precision and is equal to 2'? where b is the length of
the mantissa in the floating-point representation.*

For the sake of convenience, we will write a®b (resp. aSb, a®b, a@b) for A(a + b)
(resp. A(a—b), A(axb), A(a/b)); and aBb (resp. aSb, a®b, ab) for V(a+b) (resp. V(a—b),
Via x b), V(a/b)).

The following easy lemma will be useful in the rest of the paper:

Lemma 3.1 Let a and b be two nonnegative numbers and @ and b two nonnegative approzi-
mations of a and b such that a(1 —d,) < a < a and b(1 — &) < b < b, with 84,8, > 0.
Then

(a+b)(1 —max(dg, dp) — €)

< a+b,
(axb)(1—=6,—0p—¢) <

a xb.

SR as R

agh <
aob <

If n is any positive number exactly representable, i.e. n < 2°, then

(axn)(l=404—¢) < a@n < axn,
(a/n)(1 =0, —2¢) < aon < a/n.

3.2 Error propagation.

The aim of this subsection is to estimate the error we get when computing the coefficients
during the preprocessing stage. The main result 1s the following:

Proposition 3.2 Let (Ty, T1, ... Ty) be the combinatorial structure classes from a standard
specification, and denote by t; the number of structures of 1), of size . Suppose that the
T} are ordered in such a way that, in the counting algorithm, the computation of a given ty
depends only on the tir; with 0 < k' < k and on the ty;p with 0 <k <m and 0 <U' < L.
If we use floating-point arithmetics with precision € and the rounding towards —oo mode to
compute the ty; for 0 < k < m and 0 <1 < n according to the counting templates in [8],
and provided that no overflow occurs during the computation, then we get an approrimation
{k,l of t 1, such that
te (L —egry) <trg <tpy,

with

ep 1 = 2ml%e — 2(m — k)le,
assumang in addition that all the coefficients of size zero ), o can be represented eractly,
i.e. are not larger than 2° = 2/e.

Proof. We prove it by induction on & and /. The formula is true for [ = 0 since we supposed
that all ¢ o can be represented exactly, i.e. {k,o =10 and €0 = 0.

Now suppose that the formula is true for any pair (k’,1’) such that either 0 < &’ < k and
I"=1lorl" <l and let us prove that it is true too for (k,{) with { > 1.

4In base two, the first bit of the mantissa being always one for a non-zero normalized number, it is usually
not represented. For instance, the C double numbers have b = 53, but only 52 bits are effectively stored,
and ¢ = 2752,
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o If T =1 or T}, = Z, the formula is obvious since €5 ; = 0 for all {.

o If T = Tkl —|—Tk2 then tNkJ = {kl,l@{kg,l and by Lemma 3.1, €kl < max(Eklyl, 6;;271) +e.
As necessarily ki, k2 < k — 1, then using the induction hypothesis, we get e;; <

2mi%e 4+ 2(k — 1 — m)le + & < 2mi%c + 2(k — m)le since [ > 1.

o If Tjy = Ty, - Th, then fr; = (fhy,a®@hs1—a)B(Thy,at1 Dlhsima1)B - - - B(Try 5Dlry1-0),
where a1s 0 or 1 and b is [—1 or [ according to the relative position of k1, ks with respect
to k. By Lemma 3.1 we deduce that ¢ ; < maxo<;<p(€x,,i + €rai—i) + (0 — a + 1)e.
Using the induction hypothesis gives e ; < 2 maxg<i<b f(@e+(b—a+1)e with f(i) =
mi? + (k1 — m)i + m(l — )2 + (k2 — m)(l — 9). The function f(%) being convex, the
maximum is reached either in ¢ = a or in ¢ = b, and we have three cases to study:

~ ki,ks <k,ie a=0and b =1 Then f(a) and f(b) are bounded by mi? + (k —
1—m)l, and e ; < 2ml%e + 2(k — 1 —m)le + (I + 1) < 2ml*c + 2(k — m)le since
again { > 1.

— k1 < k and k2 > k (the case k; > k and ko < k is similar), i.e. @ = 1 and
b =1 (i = 0 is not possible since t;; would depend from tx,;). Then f(a) =
m(l? — 204 2) + (ky — m) + (k2 — m)(I — 1) and f(b) = mi* + (k; — m)l. Using
k1 <k—1and ks <mgives f(a) <ml*>+ (k—1—m)l +(m+k—1)(1—1) and
F(b) <mi? 4+ (k=1 —m)l, thus max(f(a), f(b)) < ml*+ (k—1—m)l since 1 <.
Therefore e5; < 2ml%e +2(k — 1 — m)le +le < 2mi*c + 2(k — m)le.

— k1, k2 > k,ie.a=1and b =1—1. Since ky, k2 < m, then max(f(a), f(b)) <
m(l? —20+2) and g5 ; < 2m(I* — 2+ 2)e + (I — 1)e. This case cannot happen for
[ = 1 because we need a < b so that the sum is not zero; in addition we cannot
have k = 0 here since the first production is either 75 = 1 or Ty = Z. Hence
epg < 2mi%e—2mle+2(2—)me+(I-1)e < 2mi*e—2mle+2le < 2mi*e+2(k—m)le
since [ > 2 and k > 1.

o If T, = OT), or OT, = T}, then, respectively, {k,l = {kl,l@l or tNkJ = {kl,l@l, and
Erl < €k 0+ e orep; < epy 1+ 2¢ from Lemma 3.1 since we suppose that [ is exactly
represented. Using the induction hypothesis, k; < &k and [ > 1 gives again ¢;; <
2ml%e + 2(k — m)le.

O

Note that the value of 5 ; in Proposition 3.2 is a very general bound. The relative error
will generally be lower in real cases. For any particular standard specification, it will be
possible to compute a better value for € ; by using formulas of Lemma 3.1.

In the above proof, for the case T, = T}, - Tk,, we did not explicit the order in which the
associative product ({kl,a@{kg,l—a)@' . ~@(fklyb@ﬁ271_b) was computed. Therefore the bound
obtained for € ; holds for any order of computation, in particular either the sequential one
or the boustrophedonic one.
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8 Alain Denise , Paul Zimmermann

4 Random generation.

In this section, we describe two variations of the classical recursive method of uniform
random generation. The first one — quasi-uniform generation — is not really new: it
consists in applying exactly the algorithms of [8], with floating-point arithmetic (here we
consider for example rounding towards —oo) in place of exact arithmetic. Its precision
— 1.e. the maximal relative difference between the probability of a given structure to be
generated and the uniform probability — strongly depends on the precision of the floating-
point representation, say the number of bits in the mantissa of the floating-point numbers.
This is detailed in the following theorem.

Theorem 4.1 (Precision and complexity of quasi-uniform generation) Let C be
a class of combinatorial structures whose standard specification admits m + 1 classes. If we
are given a perfect uniform generator of random real numbers between 0 and 1, and provided
that no overflow occurs during the computation, the recursive algorithm using floating-point
arithmetic will generate a structure of size n with a probability py, » such that

pn(l - am,n) S ]N)m,n S pn(l - am,n)_la

with
O = O(mzn?’?_b)

where p, = 1/¢, is the uniform probability over the elements of C of size n, and b is the
length of the mantissa of floating-point numbers.

The complerity of the preprocessing stage is O(n?M (b)); the worst-case complexity of
one generation is O(nlognM (b)), where M (b) is the worst-case complexity of any standard
arithmetic operation on floating-point numbers having a mantissa of size b.

Proof. In order to generate a structure from class C' with size n, we make at most (n +
1)(m+1) choices, each of them with a probability equal to &, @¢é, (sum), or to (ék@lgn_k)@&l
(product).’ No choice has to be made for the pointing/unpointing constructions. The a’s,
b’s and ¢’s having been computed as in Proposition 3.2, each choice introduces a relative
error of at most O(mn?¢) with ¢ = 217%. This implies the first part of the theorem. The
second part follows directly from the complexity given in [8]. a

The above result gives the possibility to generate quasi-uniform random structures of
reasonable size with “standard” programs in usual languages. For example, given a standard
specification with two classes, and using floating-point numbers with a mantissa of length
53 (standard “double” floating-point numbers), one can generate random objects up to a
size of 10000 with a relative error of order 1073, if the coefficients are small enough (less
than 1.8 - 103°®) so that no overflow occurs.

5The exact probability depend on how we accumulate the products 7, = (dk@@l_k)@&“ but this affects
lower-order terms only.
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Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 9

We stated this Theorem for the rounding towards —oo mode, but it holds for the other
rounding modes too. We do not give any precise value for the constant behind the O(-),
since a precise analysis will be given below.

The second variation, which we call the ADZ method — from its inventors Alonso,
Denise, Zimmermann —, 1s devoted to exact uniform generation using floating-point num-
bers. The main idea consists in computing approximate coefficients and probabilities, and
to control their relative error in relation to the corresponding exact values. For example,
suppose that we have to make a choice with a certain (exact) probability p (depending
on the coefficients computed using the standard specification recurrences). Floating-point
arithmetic does not allow us to compute p, but we can compute two floating-point numbers
p~ and pt such that p~ < p < pT. Now, in order to make a choice, we draw a random
number 0 < r < 1 and we compare it to pt and p=. If » < p~ or pT < r then we can make
the choice; otherwise, r is located in the “error interval”.

In this case, there are two possibilities: either we compute (again) the coefficients with
exact integer arithmetic and run the standard algorithm to continue the generation, or we
continue with floating-point arithmetic using a twice longer mantissa, and so on until we
can make the choice. The worst-case complexity of the latter method is not bounded, but
it 1s better on average, by a constant factor only; we won’t analyze it further.

According to these principles, we present below the main generation schemes, for the
sum C' = A + B and the product C' = A - B, based on the corresponding ones in [8]. The
other ones (initial structures, pointing and unpointing) are straightforward to write, as no
choice has to be made.

Case: C'= A+ B.
gC := procedure(n: integer);

U:=Uniform([0, 1]);
F o= 15((2me)BnEn); )
pt = (a,0¢,)0F;
if U < p~ then Return(gA(n))
else if U > pT then Return(gB(n))
else Special(U,gA(n),gB(n))

end.

Case: ('=A-B.
gC := procedure(n: integer);
U:=Uniform([0, 1]);

F :=10((2me)Tnon) (*)
k:=0;

5= (ao@bn),

P~ = (5Q6)QF;

pt = (S0e)0T;

RR n 0123456789



10 Alain Denise , Paul Zimmermann

?

while U > p* do
k=k+1;,
S = S@(dk@bn_k),
p~ = (5Q6,)QF;
pt = (508)0F;
if U < p-
then Return([gA(k),gB(n — k)])
else Special(U,[gA(k),gB(n — k)],[gA(k + 1),gB(n — k — 1)]);

end.

The procedure call ‘Special(U ,choicel choice2)’ does the following: Compute exactly the
probability p, evaluate and return ‘choicel’ if U < p, evaluate and return ‘choice2’ otherwise;
then use the exact algorithm [8] for the rest of the computation.

Here are some remarks on these generation schemes. First, they involve only standard
floating-point operations. In other words, they can be quite directly programmed in any
language with rounding modes, provided that the given language supports arithmetic ope-
rations with arbitrary precision integers. In the calculation of F', we suppose that 2m and
n are small enough to be represented exactly.® We suppose U to be a uniformly chosen
number between 0 and 1; this is of course not possible strictly speaking, since it would need
an infinite memory. But, if we are given a perfect generator of 0 — 1 bits, then U can be
generated using a “lazy” process, bit by bit, and the needed comparisons done after each
step. It can be proved easily that the average number of bits to be generated in order to
compare U with a random number uniformly distributed in [0, 1] equals 2.

In the rest of this section, we focus on the complexities of the ADZ method. The following
proposition gives bounds for the “error interval” of the computed probabilities.

Proposition 4.2 In both cases C = A+ B and C = A - B, the probability of each Return
call 1s less than or equal to the exact probability of the corresponding choice leading to an
uniform distribution. Furthermore, if (2mn?+3)e < 1/2, then the probability of each Special
call is bounded by 3(2mn? + 3)e.

Proof. Case C'= A+ B. The probability of Return(gA(n)) being called is p~, whereas the
probability of Return(gB(n)) is 1 — p*, therefore we have to prove that p~ < p < p*, where
P = an/cy is the exact probability of chosing A. The probability of Special(U,gA(n),gB(n))
is clearly p* — p~.

Let N = 2mn2 and N = (2me)@n®n > N . By Proposition 3.2, we know that
an(1—=N) < @, <apand c,(1—=N) < é, < ey ;80 (1=N)an/én < anfen < (1=N)"ta,/c,.
It follows that p~ < ay /e, < pt.

By the properties of floating-point operations, we have N < N < N(1+¢)% Thus, since
(1+¢)?<(1—¢)"2 wehave | — N(1—¢)"2<1—N < 1— N. Therefore,

l—e—-N(1-¢)"?<F<I1-N

6As e is a power of two, it can always be exactly represented, and so 2me if m does.

INRIA



Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic 11

where F' = IQN as stated in the above algorithms.
Now let us look at p~. We have (&, /¢,)F(1 —¢)? < (@,0¢n)QF < (@,/én)F; thus
(1= =) <p” < (1= N)

Cn Cn

since p~ = (an @&, )@ F. Similarly, we find that

Therefore we get

o <2 (g - (0= )

n

and thus, since 1 — 3¢ < (1 —£)3, we have

G 1
o< —(1- N
P p_5n<1_N, ( )

where N’ = N + 3¢ = (2mn? + 3)e. If we suppose, as stated in the Proposition, that
N'"<1/2, then 1/(1 = N') <14 2N’ and it follows that

pt—p < 2R3N
<3

and the proof is complete since @, < ¢,.

Case C = A - B. Let p;,p: denote the values of p~,pT at step k, with pfl =0 by
convention. The statement Return([gA(k),gB(n — k)]) is executed when p,j_l <U <p.,
and the Special statement when p, < U < p,;".

If we substitute a, by sp = agb, + a1b,_1+ -+ axb,_; and a, by S in the above proof
for C' = A+ B, we obtain that p;, < s /c, < pf and pf —p;, < 3(2mn?+ 3)e. Whence the
probability of Return([gA(k),gB(n — k)]) being called is p;, — pf_, < si/cn — sk—1/cn, the
latter probability corresponding to the uniform distribution. The probability of a Special
call at step k is p,;" —pp < 3(2mn? 4 3)e. a

Now we are able to compute the average-case complexity of the ADZ method, according
to n and to the computer precision e. (Recall that ¢ = 2!=% where b is the length of the
mantissa of floating point numbers.) In these results, we consider m as a constant, since
this number only depends on the class of structures to be generated.

Theorem 4.3 (Average and worst-case complexities of the ADZ method.) The ave-
rage bit-complexity of the ADZ method preprocessing, according to n and to the computer
precision €, 1

Pi(n,€) = O(n”M{(log 1)):

RR n 0123456789



12 Alain Denise , Paul Zimmermann

the average bit-complexity for the generation of one structure is
1
Ci(n,e) = O(nlognM (log =) + n°c M (nlogn)),
€

where M (z) stands for the cost of multiplying two x-bit numbers. The average space com-
plezity is O(nlog %—i—n%log n). The corresponding worst-case complexities, both in time and
space, are the same that the ones for generation with exact arithmetic, as stated in Table 1.

Proof. The results concerning P (n, ) and the worst-case complexities are straightforward.
So let us focus on Cy(n,¢), and let us bound first the total probability to be forced to run
the algorithm which uses exact coefficients. Its follows from Proposition 4.2 that, at each
step, the probability to run the procedure Special() is O(n3¢), since there are at most n
“error intervals” in the case C' = A - B. And we know that there are O(n) choices to be
done during the whole generation. Thus the total probability to run Special() during the
generation is O(ne).

The integer coefficients occurring in the recursive method having size O(nlogn) [8], the
worst-case complexity of Special() is O(n? M (nlogn)) ; this is the complexity of generating a
structure with the exact algorithm (including the preprocessing stage). On the other hand,
the complexity of generating a structure if there is no call to Special() (once the preprocessing
is done and using the boustrophedonic algorithm) is O(nlognM (log 1)), since the value
logé represents the number of bits of the mantissa of floating-point numbers. Hence the
average-case complexity of the algorithm is O(nlognM (log 1)) + O(n*c) -O(n? M (nlogn)).

In the preprocessing, O(n) approximate coefficients of size O(log %) are computed, while
in the case where Special() is called — which occurs with probability O(n*c) — O(n) exact
coefficients of size O(nlogn) are computed. Therefore the average space complexity is
O(nlog L + nSzlogn). 0

The above result is particularly interesting if there is a possibility to adjust the computer
precision (i.e. the length of the mantissa) according to n. In this case, the following easy
corollary holds.

Corollary 4.4 Ife = O(1/n"), then
Ci(n,e) = O(nlog?n).

This corollary holds even with naive arithmetics M (n) = O(n?).

5 Experimental results.

In this section, we demonstrate the efficiency of the original method presented in this paper.
We will show first the accordance of floating-point approximations obtained with Proposi-
tion 3.2, then study the failure probability of the exact uniform random generation algorithm
of Section 4, i.e. the probability one has to restart the whole computation using an arbitrary
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precision arithmetic, and the efficiency of the quasi-random generation algorithm compared
to existing packages such as COMBSTRUCT.

We take as example Motzkin trees, whose random generation was already considered in
the literature [1]. Motzkin (or unary-binary) trees are defined by the specification

M=Z+Z M+7 -M-M,

or in standard form with M = T4Z TO = Z, T1 = T()'Tg, T2 = T4'T4, T3 = T2—|—T4, T4 = T0—|—T1.

Accuracy. Let M, denote the number of Motzkin trees of size n. Due to the exponential
growth of M, (Mg is too large to fit in a double which is limited to 103%8 or 80), we
had to write a special interval arithmetic library using a double as mantissa (53 significant
bits) and an int as exponent (32 bits). Instead of using the result of Prop. 3.2, which
enables one to compute only a lower bound of the coefficients, we have computed both lower
and upper floating-point bounds using the rounding functions provided by the TEEE 754
standard. The approximations obtained are much better, since they depend on the actual
specification. We proceeded in three different ways: (i) first by the usual quadratic method,
accumulating convolutions ¢, = > aib, i from the left to the right; (ii) secondly using the
same quadratic method, but accumulating convolutions from the middle terms to the left
and right; (iii) using the linear recurrence

_2n—1 3n—6

n — 1 ‘n— —Mn—
n+1 1—i—n—l—l .

satisfied by the numbers M,. Such a recurrence exists for any context-free grammar
(i.e. when only the union and product constructions are used), and it can be computed
from the grammar using the GFUN package [16]. Thanks to the IEEE 754 standard, the
computed lower and upper bounds are guaranteed to be exact, but differ according to the
way of computation.

The following table indicates for different sizes the accuracy’ —lgean with €4, as in
Proposition 3.2 for the nonterminal 74 = M | i.e. the number of common correct bits between
the lower and upper bounds, obtained with each of the three ways of computing M,,.

n Mn —lg[;‘}l n _1g6421 n _lg‘?z n
1000 | 2-10%72 38.5 40.7 40.1
2000 | 1-1094° 37.0 39.5 39.0
5000 | 6-10%37° 35.0 38.0 37.5
10000 | 8 - 104764 33.5 36.8 36.5

Fit 53.5 — 1.5lgn | 52.3 — 1.2lgn | 51.0 — 1.11gn

We can conclude from this table that method (ii) is slightly better than method (i). This

—-3/2

can be explained by the fact that the coefficients M, grow like a”n , which holds for

"We denote by lg the binary logarithm.
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most data structures having an algebraic generating function like various kinds of trees,
and therefore the middle terms in the convolutions are smaller than the outer terms by a
factor of about n3/2. Another conclusion is that in all three cases the accuracy is better
than the worst-case of ¢ — 2lgn given by Proposition 3.2. The linear recurrence even gives a
quasi-linear behaviour.

Special Calls. The following table indicates the proportion of random generations which
required calls to Special() for several experiments with the algorithm using floating-point
intervals, still for Motzkin trees. For size 10° for instance, only 7 random generations over
103 called the Special() function.

n Special() calls
10 | 1/10000 ~ 0.0001
103 7/1000 ~ 0.007

2105 | 17/500 ~ 0.034
5-10% | 64/200~ 0.32
108 95/100 ~ 0.95

It appears from this table that the bound of 6mn*e which follows from Prop. 4.2 is very
pessimistic. The actual failure probability seems to behave quadratically with n.

Efficiency. The following table compares the ADZ method with the Maple implementation
of the standard algorithm in the Combstruct package [17], for the generation of Motzkin
trees. The column “count” gives the time (in seconds on an Ultra Sparc machine) required
for the preprocessing, while the column “draw” the average time for one random generation
(over 100 generations). The entry NA stands for a computing time greater than two hours.

n Maple/Combstruct |  ADZ method

count draw count draw
100 | 0.9/0.04 0.08 0.03/0.00 | 0.002
200 3.7/0.1 0.18 0.08/0.01 | 0.005
500 61/0.45 0.65 0.55/0.01 | 0.012
1000 | 613/2.0 2.66 2.3/0.02 | 0.028
2000 | 4468/5.7 9.7 9.8/0.04 | 0.056

5000 | NA/35. 82 66/0.08 | 0.163
10000 | NA /162 586 282/0.18 | 0.411
Fit |35/ [ 02 WI0 T | T

In the “count” column, the times on the left were obtained with the default O(n?) method,
and those on the right with the linear recurrence computed by the Gfun package [16], after
typing ‘combstruct/usegfun‘:=true in Maple.
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6 Conclusion and open questions

In this paper, we have extended to certified floating-point computations the recursive me-
thod for the random generation of decomposable structures. This extension enables one to
generate an object of size n in quasi-linear expected time and space, after a preprocessing
of time O(n?*¢), and O(n'**) in the context-free case. This method only improves the
average-complexity. The worst-case complexity remains the same as the standard algorithm
with integer arithmetic, both in time and space, as the standard algorithm is called when
the one with floating-point arithmetic fails.

In addition to the nice theoretical bounds, the new method also behaves very well in
practice, as shown by the experimental figures from Section 5.

Nevertheless, some open questions and places for improvements remain. It would be
interesting to analyze exactly the bit-complexity of the standard algorithm. (It will depend
on the specification.) Another problem is that the standard floating-point numbers on 64
bits cannot be used for large sizes, because the coefficients become too big. A possible
solution that would be interesting to study is the following. Instead of computing floating-
point approximations for the coefficients ¢y, ,,, store the values ty ,/p] where py is the radius
of convergence from the generating function associated to the kth nonterminal. In such a
way, only the polynomial part — which is much smaller — would be stored.

Now the important points (at least for us): How to design an on-line version of the
algorithm using floating-point arithmetics 7 In the context-free case, how to compute the
(simplest) recurrences for the coefficients efficiently from the grammar 7 In the general case,
does a recurrence like that found by Euler for partition numbers exist for all decomposable
structures 7 How to guess and prove such a recurrence 7
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during the redaction of this paper.
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