
Modularity in the Design of Robust Distributed
Algorithms

THIS IS A TEMPORARY TITLE PAGE
It will be replaced for the final print by a version

provided by the service academique.
Saturday 7th December, 2013, 18:04

Abstract
A distributed system consists of several computers, connected by a network, that need to

cooperate to accomplish a task. Distributed computer systems are now part of our everyday

lives. From our means of transportation (cars contain dozen of computers) to our means of

communication (the internet contains millions of computers), we must rely on distributed

systems every day. Yet building trustworthy distributed systems is a challenge.

Distributed systems are especially hard to program because they need to constantly adapt

their strategy to handle a changing environment: mobile components change location, com-

munication links fail, servers crash and restart, users come and go, and attackers may try to

break the system.

Experience has shown that it is not practical to combine several strategies ad-hoc, without

strong guiding principles. The need to change strategy on the fly results in distributed algo-

rithms that are so difficult to understand that they cannot be guaranteed to operate safely, let

alone efficiently. Changing back and forth between only two different strategies is already a

research challenge, but it is not sufficient given the wide variety of possible behavior of the

environment. Adding more strategies quickly becomes intractable because every strategy

must be able to pass the baton to every other, leading to a quadratic number of challenging

cases.

This thesis proposes the Speculative Linearizability framework for building and reasoning

about adaptive distributed algorithms in a practical way. The Speculative Linearizability

framework soundly abstracts over the interaction between strategies, allowing each strategy

to be designed, tested, and verified independently of the others. The abstraction guarantees

that independently designed strategies are nevertheless compatible by construction: there is

no need to check whether every strategy can pass the baton correctly to every other. By clearly

separating each strategy, the Speculative Linearizability framework eliminates the complexity

blowup that makes ad-hoc approaches impractical.

To make our results trustworthy, we have used state of the art formal methods technology.

Our results have been been formalized in the TLA+ language and thoroughly tested with

the TLC model checker. Moreover, we have proved and mechanically checked with the

Isabelle/HOL interactive theorem prover that the core of our main result, the composition

theorem, is correct.

Keywords: Distributed Computing, Adaptive Systems, Modularity, Speculation, Fault-

Tolerance.

3

Résumé
Un système informatique distribué est constitué des plusieurs calculateurs, communicant

à travers un réseau, qui coopèrent pour mener à bien une tâche. Peut-être sans le savoir,

nous dépendons tous les jours de systèmes informatiques distribués. Nos moyens de trans-

ports, voitures, avions ou trains, sont composés de dizaines voir de centaines de processeurs

interconnectés. L’Internet est composé de milliers d’entités autonomes aussi bien physique-

ment que administrativement qui coopèrent pour nous offrir accès au web. Les “calculateurs”

d’Internet, serveurs et autres routeurs, se comptent par millions.

Les systèmes distribués sont pourtant très difficiles à programmer car leur environnement

est imprévisible : le système doit faire face à des pannes en tous genres, à des délais de

communications, et au comportement imprévu des ses utilisateurs. Pour accomplir sa tâche

efficacement dans un tel environnement, un algorithme distribué doit adapter sa stratégie

aux changements de son environnement.

Les expériences passées ont montré qu’il n’est pas envisageable en pratique, sans fondations

théoriques adéquates, de changer de stratégie dynamiquement lors du fonctionnement du

système. Chaque stratégie doit être capable de passer le témoin à chaque autre stratégie.

L’enchevêtrement qui résulte d’une telle combinaison de stratégies s’est avéré trop difficile à

analyser pour en garantir le bon fonctionnement.

Cette thèse propose les fondations théoriques et une méthode, efficace en pratique, qui

simplifient le développement des algorithmes distribués adaptatifs. La méthode présentée

permet de développer, tester, et d’analyser chaque stratégie indépendamment des autres

stratégies, tout en garantissant que les stratégies soient compatibles par construction. Il n’y a

alors plus besoin considéré l’enchaînement des stratégies. La séparation entre les stratégies

élimine la complexité du problème à sa source et permet, comme il est montré dans plusieurs

exemples, d’obtenir des algorithmes adaptatifs très performants et sûrs.

Les résultats de cette thèse ont tous étés rigoureusement testés par Model Checking avec

le logiciel TLC. De plus, la démonstration du principe central à la base de nos résultats à été

vérifiée mécaniquement par le logiciel Isabelle/HOL.

Mots clés : Systèmes répartis, systèmes adaptatifs, modularité, systèmes spéculatifs, tolé-

rance aux pannes.

5

Contents
Abstract 3

Résumé 5

1 Introduction 1

1.1 Robust Distributed Systems and Adaptation . 1

1.2 The Problem of Dynamically Changing Strategy 2

1.3 Contributions . 4

1.4 Sepeculative Linearizability . 4

1.5 Model Checking and Mechanically-Checked Proofs 6

1.6 Publications . 6

2 Specifying Distributed Systems 9

2.1 Introduction . 9

2.2 Notation . 10

2.3 I/O Automata . 10

2.3.1 Definition of I/O Automata and their Traces 12

2.3.2 Composition . 14

2.3.3 Hiding and Projection . 16

2.3.4 Simulation Proofs . 16

2.4 TLA+ . 18

2.4.1 A Basic Example . 18

2.4.2 The Implementation Relation . 19

2.4.3 Refinement Mappings . 20

2.4.4 Hiding Internal State . 21

2.4.5 Composing Specifications . 21

2.4.6 Expressing I/O Automata Specifications in TLA+ 21

2.5 Conclusion . 24

3 Linearizability: I/O-Automata Specification and Properties 25

3.1 Introduction . 25

3.2 Data Types and Data-Type Representations . 26

3.2.1 Data Types . 26

3.2.2 Data-Type Representations . 26

7

Contents

3.2.3 Examples of Data-Type Representations 29

3.2.4 Space of Possible Representations . 32

3.3 I/O automata Specification of Linearizability . 33

3.3.1 Well-Formed Data-Type Implementations 33

3.3.2 The Linearizability I/O Automaton . 35

3.3.3 Examples: consensus and test-and-set . 37

3.4 Refining the Linearizability I/O Automaton . 37

3.4.1 The Lin ′ I/O Automaton . 37

3.4.2 The NDLin I/O Automaton . 41

3.5 The Abstraction Theorem . 42

3.6 The Inter-Object Composition Theorem . 43

3.7 The Original Definition of Linearizability . 43

3.7.1 Happens-before relation . 44

3.7.2 Safe reordering . 44

3.7.3 Closure of a trace . 45

3.7.4 Linearizability . 45

3.8 Conclusion . 45

4 Adaptive Algorithms and Modular Reasoning 47

4.1 Introduction . 47

4.2 Related Work . 48

4.3 Modeling Adaptive Algorithms with I/O Automata 49

4.4 A Model for Adaptive Algorithms . 50

4.4.1 Well-Formed Mode Instances . 50

4.4.2 Composing Modes Instances . 53

4.4.3 A Correctness Condition for Adaptive Algorithms 55

4.5 Modular Properties . 56

4.5.1 The Modularity Theorem . 57

4.6 Conclusion . 60

5 Speculative Linearizability 61

5.1 Introduction . 61

5.2 Related Work . 62

5.3 Recoverable Data-Type Representations (RDRs) 63

5.3.1 The History Data-Type Representation . 64

5.4 Speculative Linearizability . 65

5.4.1 The I/O Automaton SLin [1, i] . 66

5.4.2 Linearizability of SLin . 68

5.4.3 The I/O Automaton SLin
[
i , j

]
. 69

5.4.4 Idempotence of SLin . 72

5.4.5 SLin is a modular property . 74

5.4.6 Proving Idempotence Mechanically . 74

5.5 Conclusion . 76

8

Contents

6 Applying Speculative Linearizability to Fault-Tolerant Message-Passing Systems 77

6.1 Introduction . 77

6.2 Related Work . 80

6.3 Fast and Safe Modes . 80

6.3.1 Behavior of The Safe (i) I/O automaton . 81

6.3.2 Behavior of The Fast (i) I/O automaton . 83

6.4 The QZ Algorithm . 87

6.4.1 Quorum . 87

6.4.2 ZLight . 89

6.4.3 Progress Guarantees of QZ . 91

6.5 Speculatively Linearizable Generalized Paxos . 91

6.6 Conclusion . 93

7 Applying Speculative Linearizability to Shared-Memory Consensus 95

8 Conclusion 99

8.1 Future Work . 100

8.1.1 Byzantine Faults in the Speculative Linearizability Framework 100

8.1.2 Debugging Byzantine Fault-Tolerant Algorithms 101

8.1.3 Debugging Proofs at an Intermediate Level of Granularity 101

8.1.4 Practical Applications of Speculative Linearizability in Shared-Memory . 102

Bibliography 105

A TLA+ Specifications 113

A.1 Speculative Linearizability . 114

A.2 Message-Passing Adaptive Algorithms . 129

A.3 Shared-Memory Consensus . 146

B Isabelle/HOL Theories 153

Curriculum Vitae 172

9

1 Introduction

1.1 Robust Distributed Systems and Adaptation

Complex systems on which we depend on almost every day, like cars, airplanes, the electric

grid, or the internet, contain dozens, hundreds, thousands, or even millions of computers. To

deliver their services, these computers need to cooperate, forming what is called a distributed

system: a system composed of multiple computers, spatially separated, that cooperate in order

to achieve a collective goal.

The components of a distributed system behave according to a distributed algorithm, which

assigns to each component an algorithm to execute. However, some aspects of a distributed

system are not controllable and cannot be specified by an algorithm. For example, smart-

phones change location, initiate communication, are turned on and off, etc. independently of

the will of the network operator. Yet the cellular network must provide reliable service at all

times. In the internet, routers and link may fail unexpectedly, users may start downloading

files at any time, etc. Yet packets should be routed reliably at all times.

A distributed algorithm is usually said correct when it is safe and live [47], i.e., it never does

anything wrong and it eventually delivers its service despite the unpredictable behavior of its

components. For example, a cellular network may be said correct when users are eventually

able to make a call when they request it (the system is live) and when a call never reaches the

wrong number (the system is safe). The wide range of possible and uncontrollable behaviors

makes the design of correct distributed algorithm especially challenging. However, correctness

is not the only desirable property of a distributed algorithm. In practice, we often want a

distributed system to have good performance, i.e., to deliver its service fast and not only

eventually.

We say that a distributed algorithm is robust when the system consistently delivers good

performance in all the varied conditions that it may encounter. Take the example of a road-

traffic monitoring system that would use the GPS capability of smart-phones to build a

real-time map of the traffic density. This system should provide timely information about

1

Chapter 1. Introduction

the traffic on any road, regardless of it being rush hour, during which there is a high density

of slow-moving users on the roads, or it begin a Sunday, when there are fewer users which

move faster. Both situations are quite different. Let us think about how the algorithm running

the system may gather traffic data. During rush-hour, the system must handle a lot of data.

However, since cars move slowly and are densely concentrated, the algorithm could leverage

the wifi capability of smart-phones to gather the data using a gossip protocol, in which the

information is propagated and aggregated from phone to phone before being sent, at a low

frequency, to a server. Thanks to the gossip protocol, the algorithm would avoid overloading

a central server. On Sunday there is less data to gather but the traffic is more fluid, causing

unreliability in the wifi communication between smart-phones: two cars will often get too far

apart too quickly for the communication between phones to complete. Relying on the gossip

protocol in this situation would bring the system to a halt. Instead, the algorithm could adapt

to the situation and have the phones directly contact a central server through the cellular

network.

The example of traffic monitoring shows that a robust distributed algorithm must adapt its

strategy to the conditions that it faces. However, in many cases, there are dozens or more of

possible conditions, instead of just two as in our example, and one can often not even forecast

their existence, let alone provide for them, before the system is built. Therefore, one must

be able to quickly add a new strategy to the algorithm, even though the system is already

deployed and serving users. In other words, it must be possible to develop a robust distributed

algorithm incrementally.

To sum up, we say that a distributed algorithm is robust when the following two conditions

hold:

1. The distributed algorithm is able to adapt its strategy in response to change.

2. The distributed algorithm can easily be extended with new strategies, allowing incre-

mental development.

However, achieving these two goals is challenging, intermingling performance and correctness

issues.

1.2 The Problem of Dynamically Changing Strategy

There are two orthogonal aspects to adaptation: the scheduling policy and the switching

mechanism. A scheduling policy determines when to change strategy and which new strategy

to employ. A good switching policy would rely on accurate measurements of the execution

and performance of the system and could apply control theory methods so as to maximize

performance while maintaining stability, avoiding runaway oscillation of the system.

In contrast, a switching mechanism is an algorithm whose task is to bring about the changes

2

1.2. The Problem of Dynamically Changing Strategy

dictated by the scheduling policy quickly and transparently to the users. The main issue

faced by a switching mechanism is that changing the strategy of the whole system requires

coordinated changes in all of its components while maintaining the functionality of the system

to make adaptation transparent to the users. In this thesis we will study switching mechanisms,

i.e. the problem of dynamically switching strategy without interrupting the functionality of

the system. This problem is well-known [83, 78, 17, 93] but, with the exception of the Abstract

framework [35], we are not aware of any systematic and general framework to address it.

In order to understand the switching mechanism problem, let us examine the case of State

Machine Replication (abbreviated SMR) [54, 87]. SMR is a general technique used to build

robust linearizable implementations of data types [57, 37]. SMR algorithms like Paxos [47] or

PBFT [14], which are not adaptive, are notoriously hard to understand. The formal correctness

proof of Disk Paxos [43], a crash-fault version of Paxos, is about 7000 lines long. Only an

informal proof, 35 pages long, of a simplified version of PBFT is known to the authors [13].

Adaptive SMR protocols are even harder. For instance, the Zyzzyva [46] protocol combines

PBFT with a fast mode implemented by a simple agreement protocol. The fast mode is more

efficient than PBFT when there are no failures. In the advent of failures, the fast mode cannot

make progress and Zyzzyva falls back to executing PBFT. The ad-hoc composition of the fast

mode with PBFT required deep changes to both algorithms and resulted in an entanglement

that is hardly understandable. Moreover, Zyzzyva, being restricted to two modes, is very

fragile [88]. If the common case is not what is expected by the fast mode one falls-back to

PBFT, making the optimization useless. An adversary can easily weaken the system by always

making it abort the fast mode and go through the slow one. Introducing a new strategy might

make the protocol more robust but would require a new ad-hoc composition, including an

alternative fast mode, at a cost comparable to the effort needed to build Zyzzyva from scratch,

namely a Dantean effort. Given the diversity of situations encountered in practice, we are

convinced that this ad-hoc approach is simply intractable.

Now consider the general case of implementing a specification with an adaptive algorithm

that can dynamically switch between n different modes. Despite changing mode, the algo-

rithm must not violate the specification. Therefore, if each mode is built ad-hoc, there are

O
(
n2

)
different switching cases in which correctness must be preserved across two different

algorithms. Moreover, suppose that a new optimization is needed after the n modes have

been designed. Integrating a new mode means checking that changing from an existing mode

to the new mode does not violate the specification, and vice versa. It may also be necessary to

modify the existing modes to accommodate for the new one. In this situation, the interactions

between any two modes may need to be reconsidered anew. When building algorithms with

only two modes is a research challenge, such an approach is intractable.

The goal of the thesis is to simplify the development of robust distributed algorithms by

proposing a theory of switching mechanisms, enabling a principled approach to the construc-

tion of adaptive algorithms.

3

Chapter 1. Introduction

1.3 Contributions

The thesis makes the following contributions:

1. We formalize the problem of devising robust adaptive algorithms:

(a) We propose a formal model of adaptive algorithms. The model abstracts over the

scheduling policy, clarifying the task of the switching mechanism.

(b) We show that the problem of devising robust adaptive algorithms can be simplified

by finding modular properties, a new notion that we define. A modular property is

a correctness property which applies to each strategy of an adaptive distributed

algorithm independently and guarantees the correctness of the entire distributed

algorithm.

2. We propose a concrete solution, the Speculative Linearizability framework, to the prob-

lem of devising robust adaptive algorithms. The Speculative Linearizability framework

soundly abstracts over the interaction between modes, allowing each mode to be de-

signed, tested, and verified independently of the others. The abstraction guarantees

that independently designed modes are nevertheless compatible by construction: there

is no need to check whether every strategy can pass the baton correctly to every other.

3. We apply Speculative Linearizability to fault-tolerant message-passing algorithms, show-

ing that state of the art algorithms, which are notoriously intricate, can be easily opti-

mized with our framework, and to shared-memory algorithms, showing that Speculative

Linearizability has a wide applicability.

4. We provide supporting material for others to use Speculative Linearizability to design

new adaptive algorithms. The supporting material, consisting of TLA+ [53] specifica-

tions and Isabelle/HOL [76] theories, allows one to readily debug new adaptive algo-

rithms with the TLC model checker and to obtain trustworthy correctness proofs of new

adaptive-algorithms using Isabelle/HOL.

1.4 Sepeculative Linearizability

Speculative Linearizability is a correctness property simplifying the analysis of speculative

algorithms. A speculative algorithm is an optimistic adaptive algorithm: A mode behaves

as if a particular assumption about the environment holds, achieving high performance

if the assumption is true, but possibly failing otherwise. Different modes make different

assumptions, thus, if a mode fails, another mode, whose assumption is speculated to hold,

can take over the execution. When a mode fails, it is required to abort and switch to the

next mode transparently to the users of the system. In a nutshell, speculative algorithms are

agile optimistic algorithms that favor failing fast and iterating rather than over-provisioning

resources.

4

1.4. Sepeculative Linearizability

Examples of speculation include the Ethernet protocol, where processes speculatively

occupy a single-user communication medium before backing off if collision is detected, or

branch prediction in microprocessors, where the processor speculates that a particular branch

in the code will be taken before discarding its computation if this is not the case. More recent

instances of speculation include optimistic replication [46] or adaptive mutual exclusion [44].

In fact, most practical concurrent systems are speculative. In general, speculative systems may

choose between a large number of modes, in order to closely match a changing environment.

In order to continue the execution after a mode failure, the two consecutive modes have

to synchronize, using a switching mechanism that both mode understand. As we have seen

in the example of SMR, designing algorithms which can abort and switch is very challenging.

This is the problem that Speculative Linearizability addresses.

Speculative Linearizability builds on the notion of Linearizability [37, 51, 52, 28], which

already simplifies the development of distributed systems, but has no provision for adaptivity

or speculation. The correctness of a system of processes communicating through linearizable

objects reduces to the correctness of the sequential executions of that system. In other words,

linearizability reduces the difficult problem of reasoning about concurrent data types to that of

reasoning about sequential ones. In this sense, the use of linearizable objects greatly simplifies

the construction of concurrent systems. At first glance, the design and implementation of

linearizable objects themselves looks also simple. One can focus on each object independently,

design the underlying linearizable algorithm, implement and test it, and then compose it

with algorithms ensuring the linearizability of the other objects of the system. In short,

linearizability is preserved by inter-object composition: a set of objects is linearizable if and

only if each object is linearizable when considered independently of the others. However, the

inter-object composition property does not help solving designing robust linearizable objects,

which can switch between several modes. The problem of the explosion of the number of

cases to reason about.

Linearizable systems offer an interface composed of invocation actions and response actions.

Speculative linearizability extends linearizability with the notion of switch actions, which

makes it significantly richer than linearizability, yet it reduces to linearizability if these actions

are ignored. Speculative linearizability augments classical linearizability with a new aspect of

composition. Not only a system of concurrent objects can be considered correct if each of them

is correct (inter-object composition), but a set of algorithms implementing different modes

of the same object is correct if each mode is correct (intra-object composition). We express

this new aspect through a new composition theorem. Intuitively, speculative linearizability

captures the idea of safe and live abortability. A mode can abort if the assumptions behind

speculation reveals wrong. When it does abort, it does so in a safe manner, by preserving the

consistency (linearizability) of the object state. Moreover, the abort is also performed in a

live manner, because a new mode can take over and make progress. Processes can switch

asynchronously from one mode to another, without the need to wait for one another, as long

as their execution, including switch actions, remains speculatively linearizable.

5

Chapter 1. Introduction

We apply Speculative Linearizability to the design of fault-tolerant data-type implemen-

tations in asynchronous message-passing systems. We present a speculatively-linearizable

adaptive algorithm, QZ , which has the same progress guarantees as Generalized Paxos [49],

a state of the art algorithm in the domain and a notoriously intricate algorithm, by com-

bining two simple modes. Being speculatively linearizable, QZ can be composed with any

other speculatively-linearizable mode to boost its performance for new conditions, whereas

Generalized Paxos is not easily extensible. Like Generalized Paxos, our algorithm can ex-

ecute commuting requests in one message round-trip, a practical and common case. We

also apply Speculative Linearizability to shared-memory consensus, obtaining a speculative

shared-memory algorithm that uses only register if no processes contend on shared data struc-

tures. Our speculative shared-memory consensus algorithm demonstrates that Speculative

Linearizability is also applicable in shared-memory.

1.5 Model Checking and Mechanically-Checked Proofs

The behavior of even modest distributed algorithm is often complex and contains many

details that are notoriously easy to overlook, leading to bugs in implementations and errors

in proof. To avoid making mistakes, we need the support of software tools that can check

whether an algorithm has its intended properties and that can check our proofs. Therefore,

we have formalized parts of our work in TLA+ and Isabelle/HOL. The TLC model-checker

allowed us to quickly explore new algorithms and debug them, while Isabelle/HOL allowed

us to write mechanically-checked proofs. Although all of the algorithms presented in the

thesis have been model checked for small system sizes, only a restricted variant of Speculative

Linearizability has been proved correct in Isabelle/HOL [32]. However, mechanical proofs of

distributed systems are still a challenge for state of the art verification technology, even in the

case of non-adaptive algorithms [47]. The TLA+ and Isabelle/HOL specifications are one of

contributions of the thesis, as they can be used by other researchers to quickly start debugging,

with the TLC model checker, and proving, with Isabelle/HOL, new speculative algorithms.

Our goal of producing mechanically checked proofs led us to use both TLA+ and I/O au-

tomata to obtain all the needed features for a formal development: fast prototyping and

debugging with TLA+ and accessible formalized meta theory of I/O automata. Our experience

with both tools is discussed in section 5.4.6.

1.6 Publications

Part of the work presented in this thesis has been published in the following three publications:

• Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Speculative linearizability”. In:

PLDI. Ed. by Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 55–66. DOI: 10.1145/

2254064.2254072.

6

http://dx.doi.org/10.1145/2254064.2254072
http://dx.doi.org/10.1145/2254064.2254072

1.6. Publications

• Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Abortable Linearizable Modules”.

In: The Archive of Formal Proofs. Ed. by Gerwin Klein, Tobias Nipkow, and Lawrence

Paulson. Formal proof development. http://afp.sf.net/entries/Abortable_Linearizable_

Modules.shtml, 2012.

• Dan Alistarh et al. “On the cost of composing shared-memory algorithms”. In: SPAA.

Ed. by Guy E. Blelloch and Maurice Herlihy. ACM, 2012, pp. 298–307. DOI: 10.1145/

2312005.2312057

7

http://afp.sf.net/entries/Abortable_Linearizable_Modules.shtml
http://afp.sf.net/entries/Abortable_Linearizable_Modules.shtml
http://dx.doi.org/10.1145/2312005.2312057
http://dx.doi.org/10.1145/2312005.2312057

2 Specifying Distributed Systems

2.1 Introduction

Distributed algorithms are often very complex and some details of their structure and behavior

are notoriously easy to overlook. To avoid mistakes, one can writing precise specifications

of an algorithm and its properties in a formal specification language. Tools such as model

checkers can then be used to test whether the algorithm satisfies its properties. In general, only

a subset of all the behaviors of the algorithm can be explored by model checking. However,

fully automatic model checkers can be easily used as debuggers of specifications. Writing a

detailed formal proof can raise our confidence in the correctness of an algorithm beyond what

is possible with a model-checker. However, only when a formal proof is mechanically checked

by a computer can we reach the assurance that a distributed algorithm is correct.

This chapter is an introduction to the basic concepts of the theory of I/O automataand of

the TLA+ language. In the rest of the thesis, we use the theory of I/O automata [61] for informal

discussions and the TLA+ [53] language for formal specifications. In section 5.4.6, which we

describe the formalization and mechanical proof of one of our results in the Isabelle/HOL [76]

interactive theorem prover.

Distributed algorithms can be concisely represented as the composition of several I/O

automata because the components of a distributed system interact by performing discrete

joint actions and otherwise evolve completely asynchronously. Composing two components

represented as I/O automata results exactly in a system in which the two components, which

are otherwise completely asynchronous, interact through specific discrete joint actions. There-

fore, I/O automata composition accurately models the interaction between components of a

distributed system.

In an effort to provide a trustworthy theory of adaptive distributed systems, we have for-

malized our work in the TLA+ language and we have checked the correctness of our results

with the TLC model checker [94]. In section 2.4.6, we describe how to translate I/O automata

specifications in TLA+ in order to use the TLC model checker.

9

Chapter 2. Specifying Distributed Systems

There are many other specification frameworks targeting the description of distributed

systems and their properties. Some frameworks are well-known as frameworks while others

are better known by the name of their main component. Let us cite the BIP framework

(Behavior, Interaction, and Priority) [6], the I/O-automata framework [42], TLA+ [53] (the

Temporal Logic of Actions), Reactive Modules [4], Promela and the SPIN model checker [40],

the NuSMV model checker [18], Bigraphical Reactive Systems [70], Abstract State Machines

[10], and process calculi like CSP [39], the π-calculus [71, 72], and Petri nets [82].

In the rest of this chapter we present the theory of I/O automata, restricted to finite traces,

TLA+, and we show how to express I/O automata specifications in TLA+, with the aim of

checking them with the TLC model-checker.

Apart from section 2.4.6, which explains how to express I/O automata specifications in TLA+

the material presented in this chapter is well-known.

2.2 Notation

We now present the basic mathematical notions and notations that we will used throughout

the thesis.

We will make use of basic mathematical expressions that should be familiar to the reader:

quantified formulas, for example ∀x ∈ S : P or ∃x ∈ S : P , set comprehensions, for exam-

ple {x :P } or {x ∈ S :P }, literal set expressions, as {e1, . . . ,en }, and sequences, for examples

〈e1, . . . ,en〉.

If es = 〈e1, . . . ,en〉 is a sequence and i ∈ 1..n , we write es [i] for ei and Last (e) for en . We use

◦ for sequence concatenation, 〈e1, . . . ,en〉 ◦ 〈f1, . . . , fm〉 = 〈e1, . . . ,en , f1, . . . , fm〉. Appending an

element e to a sequence es is noted Append (es ,e). The set of all sequences of elements of a

set E is noted Seq (E).

Arrays are multi-dimensional sequences. The elements at positoin i , j of a two-dimensional

array A is noted A
[
i , j

]
. Functions F are the more general case of sequences and arrays,

associating elements of their domain, Dom (F), set to elements of their image set, Image (F).

We will often talk about the states s of an automaton and about the components of s . We

write aComponent (s) for the component named aComponent of the state s , and we omit the

argument s entirely when it is clear from the context.

2.3 I/O Automata

In this section we present the theory of I/O automata, restricted to finite executions. We use

I/O automata as our main modeling framework throughout the entire thesis. Moreover, we

have formalized a small part of the theory of I/O automata, restricted to finite executions, in

10

2.3. I/O Automata

Isabelle/HOL and we have used it to formalize some of our results. Our Isabelle/HOL theories

can be found in appendix B.

I/O automata were first introduced by Lynch and Tuttle [61] to model asynchronous dis-

tributed systems. The theory of I/O automata is also described in details in chapter 8 of Lynch’s

book [59] , which contains many examples. In this section we give our own version of the

theory of I/O automata, with some minor differences compared to Lynch and Tuttle. For

example, the I/O automata of Lynch and Tuttle must be input-enable whereas, to simplify

specifications, ours do not.

An I/O automaton can be though of as a state-machine plus an interface. First, and I/O

automaton represent a system that has a state which is updated by taking discrete labeled

actions. In this respect an I/O automaton is similar to what is often called a state machine or a

traditional automata. Second, I/O automata have a signature which describes their interface

and determines how two I/O automata synchronize when they are composed. Crucially, by

using appropriate signatures, certain actions can be made internal to a component, in which

case they will be executed completely asynchronously from the other components, and other

actions, common to multiple components, can be matched and will be executed jointly, in a

common discrete action, by all the components involved.

I/O automata conveniently describe distributed systems. A distributed system is usually

composed of several processes, or components, which interact through discrete transactions,

or joint actions, and otherwise evolve independently. Given the characteristic of I/O automata

composition, it is convenient to described distributed systems as the composition of several

I/O automata representing the processes of the system.

I/O automata can be used to describe a distributed system but also to specify at a high level

of abstraction what a system should do. In other words, I/O automata can be used both for

describing implementations and specifications.

In the rest of our work we will often need to prove that an implementation I/O automaton

satisfies a specification I/O automaton. This means that the set of traces denoted by the

implementation is a subset of the traces of the specification. We prove implementation using

refinement mappings and history variables, which are instances of the more general class of

simulation proofs.

Informally, proving by refinement that and I/O automaton A implements and I/O automa-

ton B amounts to finding, for every step of A, a corresponding step of B which has the same

label. A refinement proof allows one to reason about the individual transitions of an I/O au-

tomaton and deduce a property of all its executions. Simulation proof techniques are reviewed

in detail by Lynch and Vaandrager in [62].

To simplify implementation proofs, one often introduces a sequence of intermediate I/O

automata between the specification and the implementation and one shows using simulation

11

Chapter 2. Specifying Distributed Systems

proofs that, starting from the implementation, each I/O automaton implements the next

in the sequence, up to the specification. For example, in section 3.4, we prove that the I/O

automaton NDLin (∆) implements the I/O automaton Lin (D) in two steps, first showing that

the I/O automaton Lin ′ (∆) implements the Lin (∆) I/O automaton, and then showing that

NDLin (∆) implements Lin ′ (∆).

Finally, it is worth noting that there are some tools that help devise and reason about

distributed algorithms described using I/O automata. First, there is the Isabelle/HOLCF

formalization of I/O automata theory developed by Müller and Nipkow [75, 74], parts of which

are still maintained in the Archive of Formal Proofs. Second, there is the IOA Toolkit [42], which

is composed of a formal specification of the IOA language, a simulator [92], a verifier based on

the LP theorem prover [30], and a tool for generating Java programs from IOA specifications

[31]. Unfortunately, many of those tools have not been maintained and there does not seem to

be an active user community at the time of writing.

Because many of the existing tools are about a decade old and have not been maintained,

we chose to implement our own theory of I/O automata in Isabelle/HOL. The advantage is that

we formalized only what we need, leading to a very simple theory, and we do not depend on

unmaintained infrastructure. Our formalization in Isabelle/HOL is presented in section 5.4.6.

We will use the theory of I/O automata throughout the whole thesis, therefore we now

formally define I/O automata and their related notions such as composition and simulations.

Note that we deviate from the presentation of Lynch [59] on some details.

2.3.1 Definition of I/O Automata and their Traces

Signatures

A signature sig is a triple consisting of three disjoint sets of actions, Inputs
(
sig

)
, the set of

input actions of Sig , Outputs
(
sig

)
, the set of output actions, and Internals

(
sig

)
, the set of

internal actions. The set of actions of a signature, noted Acts
(
sig

)
, is the union of all three

components, whereas the set of external actions, noted Ext
(
sig

)
, is the union of the inputs

and outputs.

State machines

A state machine Σ is a tuple 〈S ,C ,S0,δ〉 where

• S is the set of states of Σ;

• C is the set of actions of Σ;

• S0 ⊆ S is the set of initial states of Σ;

12

2.3. I/O Automata

• δ is the transition relation of Σ, which is a set of transitions
〈
s ,a ,s ′

〉
where s ,s ′ ∈ S and

a ∈ C .

The state machine Σ is deterministic when it has a unique initial state and for every state s

and action a, there is a unique transition
〈
s ,a ,s ′

〉 ∈ δ (Σ). When
〈
s ,a ,s ′

〉
is a transitoin, we

write s a−→Σ s ′.

I/O Automata

An I/O automaton A consists of a signature and a state machine. The set of actions of the

state machine must be equal to the set of actions of the signature. We now consider an I/O

automaton A= 〈Sig ,Σ〉.

As shorthands, we write Inputs(A) for Inputs
(
Sig

)
,Outputs(A) forOutputs

(
Sig

)
, Internals(A)

for Internals
(
Sig

)
, Ext (A) for Ext

(
Sig

)
, Acts(A) for Acts(A.sig), Start (A) for Start (Σ), δ (A)

for δ (Σ), and States (A) for States (Σ).

Note that we do not require I/O automata to be input-enabled.

Execution and schedules

We now define the notions of execution fragment, execution, and schedule of a state machine.

The execution fragments, schedules, and traces of an I/O automaton are simply the ones of its

state machine.

The execution fragments of a state machine M are the sequences

〈s0,a1,s1, . . . ,an ,sn〉 (2.1)

where, for every i ∈ 1..n , 〈si−1,ai ,si 〉 is a transition.

The executions are defined as the execution fragments whose first state is an initial state,

s0 ∈ S0.

We say that an action a is enabled in a state s if there exists a transition,
〈
s ,a ,s ′

〉
, whose first

state if s . We say that a state is reachable if there exists an execution of Σ whose last state is s .

We define the schedule obtained from an execution e as the projection of e onto the actions,

removing all states. The schedules of the state machine are the sequences s such that there

exists an execution e whose schedule is s .

13

Chapter 2. Specifying Distributed Systems

Traces

The trace obtained from a schedule s is the projection of s onto the external actions. The

traces of A are the sequences t such that there exists a schedule s of whose trace is t . We write

Traces(A) for the set of traces of A. When e is an execution fragment, we define the trace of e ,

Trace(e), as the trace of the schedule of e . Note that the trace of e depends on the signature,

whereas the schedule of e does not.

We write s
t=⇒A s ′ when there exists an execution fragment e = 〈s ,ps〉 such that last-state(e) =

s ′ and Trace (e) = t .

Implementation relation

We say that an I/O automaton B implements an I/O automaton A, noted B ≤A, when A and

B have the same input actions, the same output actions, and the set of traces of B is a subset

of the set of traces of A.

2.3.2 Composition

Signature composition

An sequence of signatures Sigs is said compatible when, for every two different indices i , j ,

the outputs of Sigs [i] and Sigs
[
j
]

are disjoint and the internal actions of Sigs [i] and Sigs
[
j
]

are disjoint. Note that, in consequence, one cannot compose two identical signatures whose

outputs are nonempty.

The composition of a sequence of signatures 〈Sig1, . . . ,Sign〉, ∏
i ∈ 1..n Sigi , is such that

• The set of inputs of
∏
Sigs is the union of the set of inputs of the members of Sigs minus

the union of their sets of outputs,

Inputs
(∏

Sigs
)= ⋃

i ∈ 1..n
Inputs

(
Sigs[i]

)
\

⋃
i ∈ 1..n

Outputs
(
Sigs[i]

)
(2.2)

• The set of outputs of
∏
Sigs is the union of the set of outputs of the members of Sig .

Outputs
(∏

Sigs
)= ⋃

i ∈ 1..n
Outputs

(
Sigs[i]

)
(2.3)

• The set of internal actions of
∏
Sigs is the union of the set of internal actions of the

members of Sig .

Internals
(∏

Sigs
)= ⋃

i ∈ 1..n
Internals

(
Sigs[i]

)
(2.4)

14

2.3. I/O Automata

I/O Automata composition

We say that a sequence of I/O automata is compatible when the corresponding sequence of

signatures is compatible.

The composition of a sequence of I/O automata 〈A1, . . . ,An〉, ∏
i ∈ 1..n Ai , is defined as

follows.

• The signature of the composition is the product of the signatures 〈Sig (A1) , . . . ,Sig (An)〉.

• The states of the composition are the sequences 〈s1, . . . ,sn〉 where si ∈ States (Ai) for

every i ∈ 1..n .

• The initial states of the composition are the sequences 〈s1, . . . ,sn〉 where si is an initial

state of Ai for every i ∈ 1..n .

• The transition relation of the composition is the set of transitions〈〈s1, . . . ,sn〉,a ,
〈
s ′1, . . . ,s ′n

〉〉
(2.5)

where if a is an action of Ai , then
〈
si ,a ,s ′i

〉
is a transition of Ai .

We see that actions which belong to several components must be taken by all those com-

ponents at once. Other actions are taken by their respective component while the other

components remain unchanged.

Note that the traces of the composition of a compatible sequence only depends on content

of the sequence and not on the ordering. If As and Bs are two sequences of compatible

I/O automata whose members are the same except for their ordering, then
∏
As and

∏
Bs

have the same set of traces. Therefore, we will often talk about the composition of a set of

I/O automata when we mean the composition of a sequences which contains exactly all the

members of the set. Moreover, we write A×B for
∏〈A,B〉.

We can also refactor nested composition of I/O automata.

Lemma 2.3.1. Consider a two-dimensional array of I/O automata Ass
[
i , j

]
where i ∈ 1..n and

j ∈ 1..m . Suppose that the members of Ass are pairwise compatible, i.e., for every i , j ∈ 1..n
and k , l ∈ 1..m where i 6= j or k 6= l , Ai ,k and Aj ,l are compatible. Then, as far as traces are

concerned, composing all the I/O automata of Ass along the rows first is the same as composing

along the columns first,

Traces

(∏
i ∈ 1..n

(∏
j ∈ 1..m

Ai ,j

))
=Traces

(∏
j ∈ 1..m

(∏
i ∈ 1..n

Ai ,j

))
(2.6)

15

Chapter 2. Specifying Distributed Systems

Monotonicity of composition

We can now state the first reduction theorem, which says that composition is monotonic with

respect to the implementation relation: if A1 ≤B1 and A2 ≤B2 then A1 ×A2 ≤B1 ×B2.

Theorem 2.3.1 (Monotonicity of Composition). If 〈A1, . . . ,An〉 and 〈B1, . . . ,Bn〉 are two com-

patible sequences of I/O automata and, for every i ∈ 1..n , Ai ≤Bi , then∏〈A1, . . . ,An〉 ≤
∏〈B1, . . . ,Bn〉. (2.7)

This reduction theorem allows to reason about each component of a sequence indepen-

dently and draw a conclusion about the composition of all the components.

2.3.3 Hiding and Projection

The Hide (A,Acts) operators modifies the signature of the I/O automaton A by removing all

the actions of Acts from the external signature of A and transferring them to the internal

actions of A. If Sig is a signature, define

Hide(Sig ,Acts) = 〈
Inputs

(
Sig

)
\Acts ,Outputs

(
Sig

)
\Acts ,Internals

(
Sig

)∪Acts
〉

(2.8)

Then we defineHide (A,Acts) as the I/O automatonA except that the signature ofHide (A,Acts)

is Hide
(
Sig (A) ,Acts

)
.

Theorem 2.3.2. If A≤B , then hide (A,S) ≤ hide (B ,S)

The projection operator proj (A,S) is defined in terms of hiding as

proj (A,S) = hide (A,Acts (A) \S) (2.9)

Theorem 2.3.3. If A≤B , then proj (A,S) ≤ proj (B ,S)

2.3.4 Simulation Proofs

In this section we show how to prove that an I/O automaton A implements and I/O automaton

B by using a refinement mapping in conjunction with history variables or by using a forward

simulation. There are other types of simulation proofs, using prophecy variables or backward

simulations. However we only use history history variables an forward simulations in this

thesis. For a thorough explanation of simulation proofs methods, we refer the reader to Lynch

and Vaandrager [62].

We say that the I/O automaton AH is obtained by adding a history variable to the I/O

automaton A= 〈Sig ,〈S ,S0,C ,δ〉〉 when there exists two nonempty sets H and H0 ⊆H such

16

2.3. I/O Automata

that

AH = 〈Sig ,〈S ×H ,S0 ×H0,C ,δH 〉〉 (2.10)

where δH is such that

1. if
〈〈s ,h〉,a ,

〈
s ′,h ′〉〉 is a transition of δH , then

〈
s ,a ,s ′

〉
is a transition of δ;

2. if
〈
s ,a ,s ′

〉
is a transition of δ, then, for every h ∈ H , there exists h ′ ∈ H such that〈〈s ,h〉,a ,

〈
s ′,h ′〉〉 is a transition of δH .

Theorem 2.3.4. If the I/O automaton AH is obtained from A by adding a history variable then

Traces (AH) =Traces (A).

A refinement mapping from A to B is a function f such that:

• if s ∈ Start (A) then f [s] ∈ Start (B);

• if s is a reachable state of A and s a−→A s ′, then

– if a ∈ Ext (B), then f [s]
〈a〉=⇒B f

[
s ′

]
;

– if a ∉ Ext (B), then f [s]
〈〉=⇒B f

[
s ′

]
.

Theorem 2.3.5. Consider two I/O automata A and B which have the same external signature.

If f is a refinement mapping from A to B , then A implements B .

Corollary 2.3.1. If the I/O automaton AH is obtained from A by adding a history variable and

there exists a refinement mapping f from AH to B , then A implements B .

A forward simulation from A to B is a relation r such that:

• if s ∈ Start (A) then r [s] ⊆ Start (B);

• if s is a reachable state of A, s a−→A s ′, and t ∈ r [s], then there exists a state t ′ ∈ r
[
s ′

]
such that

– if a ∈ Ext (B), then t
〈a〉=⇒B t ′;

– if a ∉ Ext (B), then t
〈〉=⇒B t ′.

Theorem 2.3.6. Consider two I/O automata A and B which have the same external signature.

If r is a forward simulation from A to B , then A implements B .

Forward simulations have the same power as the combination of a history variable and

refinement mapping: one can prove that A implements B using a forward simulation if and

17

Chapter 2. Specifying Distributed Systems

only if one can prove it using a refinement mapping in conjunction with a history variable.

A proof of this result appears in [62]. However, in practice, a proof may be easier with one

or the other method. We will use theorem 2.3.6 and corollary 2.3.1 throughout the thesis to

prove implementation relations between I/O automata. Backward simulations, not presented

here, are formalized in the Isabelle/HOL theory called “Simulations” which can be found in

appendix B.

2.4 TLA+

In this section we introduce TLA+ informally and we show how to translate I/O automata

specification in TLA+. Although we use the theory of I/O automata in the rest of the thesis, we

have translated most of our specifications in TLA+ and we have used the TLC model checker

to gain confidence in their correctness. Moreover, formal versions of the specifications found

in the thesis are only given in TLA+, in appendix A.

There are already very good descriptions of TLA+, see for example the book Specifying

Systems [53] or the article of Merz [69], and we would be unable to better explain TLA+.

Therefore, instead of explaining TLA+ in details, we will only highlight its main features and

give a few examples that we hope will suffice for the reader to understand our discussion. Note

that the TLA+ examples are typeset with the TLA+ typesetter and do not follow the notation

introduced earlier.

We have used TLC within the TLA Toolbox, which offers a user-friendly Integrated Develop-

ment Environment for TLA+ specifications. The TLA Toolbox provides a graphical interface

to edit, check, and prove specifications correct and the TLC model checker is integrated in

the toolbox and allows fast and visual debugging of specifications. All the parameters of TLC

can be control with the GUI and the graphical trace explorer simplifies the analysis of error

traces. All our TLA+ specification can be found in appendix A. TLA+ specifications can be also

be proved correct and mechanically checked in the TLA Toolbox with TLAPS [21]. However

TLAPS is still in development at the time of writing and we have preferred using Isabelle/HOL

for writing mechanically-checked proofs.

2.4.1 A Basic Example

TLA+ is a logic in which formulas denote sequences of states, called behaviors, in which

each state is a function mapping every possible variable name (i.e. a string) to a value. A

specification is just a formula.

Consider the following specification Spec1, where x is a variable:

Next1
∆= x ′ = x +1

Init1
∆= x = 0

18

2.4. TLA+

Spec1
∆= Init1∧2Next1

Given a state s , we say that s ["x"] is the valuation of the variable x in s . We say that s is

an initial state of Spec1 when s satisfies Init1. We say that
〈
s ,s ′

〉
is a step or transition of

Spec1 when the states s and s ′ satisfy Next1. Note that Init1 has no primed variable and that

the second conjunct of Spec1 is of the form�F , where� is the “always” operator of linear

temporal logic and F contains primed and unprimed versions of the variable x .

The formula Spec1 denotes the set of all behaviors where

• the valuation of x in the initial state is equal to 0, as described by Init1;

• for every step
〈
s ,s ′

〉
, s ′ ["x"] = s ["x"]+1 and all other variables change arbitrarily, as

described by Next1. For example we could have s ["z"] = 42 and s ′ ["z"] = "hello".

The formulaSpec1 could specify a simple counter whose count is represented by the variable

x .

2.4.2 The Implementation Relation

Consider the following specification Spec2.

Init2
∆= x = 0∧y = TRUE

Next2
∆= ∧y ′ =¬y

∧ IF y THEN x ′ = x +1 ELSE x ′ = x

Spec2
∆= Init2∧2Next2

The formula Spec2 also specifies behaviors where x is repeatedly increased by one. However,

between two increments of x , there is one step in which only y changes. Therefore, a behavior

satisfying Spec2 does not satisfy Spec1. This is a problem because Spec1 and Spec2 could be

descriptions of the same system, but at different levels of abstraction. In this case we would

like to have a way of saying that Spec2 implement Spec1. As we have observed, one cannot

define implementation as inclusion of the set of behaviours.

To define implementation in terms of trace inclusion we need to allow the specification

Spec1 to “stutter”, i.e., take steps where x does not change while the other variables are updated

arbitrarily. Therefore, in TLA+, specifications must be of the form Init ∧� [Next]vars , where

Init constrains the initial state, vars = 〈v1, . . . ,vn〉 is the list of all the variables appearing in the

Init or Next formulas, and [Next]vars is defined as Next ∨ (
v ′

1 = v1 ∧·· ·∧v ′
n = vn

)
.

Now reconsider our two examples, written in the form Init ∧� [Next]vars :

Init1
∆= x = 0

19

Chapter 2. Specifying Distributed Systems

Next1
∆= x ′ = x +1

Spec1
∆= Init1∧2[Next1]〈x 〉

Init2
∆= x = 0∧y = TRUE

Next2
∆= ∧y ′ =¬y

∧ IF y THEN x ′ = x +1 ELSE x ′ = x

Spec2
∆= Init2∧2[Next2]〈x ,y〉

In the new versions of Spec1 and Spec2, the behaviors satisfying Spec2 also satisfy Spec1.

In TLA+, we can write this fact as the implication Spec2 ⇒ Spec1. Thus we can equivalently

define the implementation relation as inclusion of behaviors, at the semantic level, or as

implication, in the logic.

2.4.3 Refinement Mappings

We can prove that the specification Spec2 implements the specification Spec1 as follows. First,

we prove that in all behaviors of Spec2, x is a natural number and y is a boolean. In TLA+, we

state those properties as follows:

Inv2
∆= x ∈ Nat ∧y ∈ Bool

THEOREM Spec2 ⇒2Inv2

The formula Inv2 is called an invariant of the specification Spec2. The proof of the theorem

is done by proving that the initial states of the specification satisfy the invariant and that if the

invariant holds and one step is taken then the invariant holds again. In TLA+, we state it as

follows, where priming a formula is like priming all its variables:

LEMMA Init2 ⇒ Inv2

LEMMA Inv2∧Next2 ⇒ Inv2′

Second, we prove that the initial states of Spec2 are initial states of Spec1 and that if the

invariant Inv2 holds of the first state of a step of Spec2, then this step is also a step of Spec1.

This is called an refinement proof. In TLA+, it is formalized as follows.

THEOREM Init2 ⇒ Init1

THEOREM Inv2∧Next2 ⇒Next1

The two theorems above imply that Spec2 ⇒ Spec1.

20

2.4. TLA+

2.4.4 Hiding Internal State

Observe that if we look only at the x variable, Spec2 and Spec1 behave the same. To make the

observation formal we can hide the y variable of Spec2, which we consider internal, using

temporal quantification.

The specification Spec2 becomes

Spec2
∆= ∃∃∃∃∃∃y : Init2∧2[Next2]〈x ,y〉

The meaning of Spec2 is the set of all behaviors b in which the valuation of y of each state

can be modified, obtaining b ′, in order for b ′ to satisfy Init2∧2[Next2]〈x ,y〉.

We now have Spec2 ⇒ Spec1, as before, but also Spec1 ⇒ Spec2, formalizing the fact that

Spec1 and Spec2 describe exactly the same behaviors when y is hidden. Without hiding y ,

Spec1 ⇒ Spec2 does not hold because y is unconstrained in Spec1.

2.4.5 Composing Specifications

Consider two specifications F1 and F2 of the form F1 = Init1∧2[Next1]vars1 and F2 =
Init2∧2[Next2]vars2, where vars1 is the set of all the variables appearing in F1 and vars2 is

the set of all the variables appearing in F2. The formula F1∧F2 describes behaviors which

satisfy both F1 and F2.

Suppose that vars1 and vars2 are disjoint. In this case the behaviors satisfying F1∧F2

are composed of four kinds of steps: steps satisfying Next1∧Next2, called joint steps, steps

satisfying Next1∧vars2′ = vars2, steps satisfying Next2∧vars1′ = vars1, and steps satisfying

vars1′ = vars1∧ vars2′ = vars2. If vars1 and vars2 intersect, then every step modifying

a variable of vars1∩ vars2 must be a joint step. The specification of two communicating

systems can therefore be obtained by conjoining two specifications that change common

variables representing the interface between the two specifications. Note that, in the resulting

specification, the two communicating components may take joint steps even when they do

not communicate (when both only update variables not in vars1∩vars2). In contrast, two

I/O automata in a composite I/O automaton take joint steps only when communicating.

This concludes our brief presentation of TLA+. We have not addressed many important

topics, like using history and prophecy variables in refinement proofs, proving temporal

properties, etc.. We refer the reader to the works of Lamport [53] and Merz [69].

2.4.6 Expressing I/O Automata Specifications in TLA+

The TLC model checker allows to quickly debug specifications written in TLA+. Since we are

primarily working with I/O automata, we needed to translate I/O automata specifications to

TLA+ if we are to use the TLC model checker.

21

Chapter 2. Specifying Distributed Systems

In this section we sketch a method for translating I/O automata specifications in TLA+.

We have not followed this method strictly when producing the TLA+ counterparts to the I/O

automata specification described in later sections, however the method exemplifies the basic

ideas.

We have mainly used TLC to check that an I/O automaton A implements a I/O automaton B.

To do so, we must specify both A and B in TLA+, as formulas noted �A� and �B�, making sure

that the transformation is sound, i.e., that �A�⇒ �B�, in TLA+, implies that the I/O automaton

A implements the I/O automatonB . We assume that A and B have the same external signature;

otherwise we already know that A≤B does not hold.

For simplicity, we assume that the components of the I/O automata that we consider, i.e.,

actions, states, initial states, and transition relation are expressed using the constant operators

of TLA+, i.e., in a subset of TLA+ that excludes all temporal operators. Hence we assume

�Sig (A)� = Sig (A),�Ext (
Sig (A)

)� = Ext
(
Sig (A)

)
, �Internals (

Sig (A)
)� = Internals

(
Sig (A)

)
,

�States (A)� = States (A), �Start (A)� = Start (A), and �δ (A)� = δ (A) are given.

The TLA+ specification �A� uses three variables sA, ext , and intA. The variable sA represents

the state of A, the variable

ext ∈ [flag : BOOLEAN,act :
�
Ext

(
Sig (A)

)�
] (2.11)

is used to represent emitting an external action, and the variable

intA ∈ [flag : BOOLEAN,act :
�
Internals

(
Sig (A)

)�
] (2.12)

is used to represent emitting an internal action. Similarly, the specification �B� uses the

variables sB , ext , and intB , where ext is shared with �A�.

We use the operator

Emit(A,a),

IF a ∈ �
Ext

(
Sig (A)

)�
THEN ext ′ = [flag 7→ ¬ext .flag ,act 7→ a]∧ int ′A = intA
ELSE int ′A = [flag 7→ ¬intA.flag ,act 7→ a]∧ext ′ = ext

(2.13)

to update the variables ext and intA, representing the I/O automaton A emitting the action a.

We use the flag to distinguish between stuttering and emitting the same action twice.

Finally, we define

�A�,∧ sa ∈ �Start (A)�
∧2

[∃a ∈ Acts (A) :Emit (A,a)∧〈
sA,a ,s ′A

〉 ∈ �δ (A)�]〈sA,ext ,intA〉
(2.14)

22

2.4. TLA+

and, similarly, we define

�B�,∧ sa ∈ �Start (B)�
∧2

[∃a ∈ Acts (B) :Emit (B ,a)∧〈
sB ,a ,s ′B

〉 ∈ �δ (B)�]〈sB ,ext ,intB 〉
(2.15)

The statement A≤B , in the theory of I/O automata, is equivalent to the following statement

in TLA+:

(∃∃∃∃∃∃sA, intA : �A�) ⇒ (∃∃∃∃∃∃sB , intB : �B�) (2.16)

Note how the state and internal actions of A and B are hidden, leaving only the variable ext ,

whose updates represent emitting external actions.

The transformation is simple but it is does not work well for I/O automata obtained as the

composition of other I/O automata: we would like to define �A×B� in terms of �A� and �B�,

for example as �A�∧�B�. This does not work because I/O automata take joint steps only when

emitting an action that is common to both I/O automatonand otherwise evolve independently,

whereas in �A�∧�B� joint steps can occur even when no common action is emitted.

We can prevent unwanted joint actions by conjoining to the specification formulas stating

that joint steps must represent a common action. Therefore in �A� we separate the ext variable

in two variables common and extA and in �B� we separate the ext variable in two variables

common and extB .

The three new variables allow A or B to take a step unilaterally, which represents emitting

an internal action or an external action that is not common to both A and B, or to take a joint

step, which represent emitting an action common to A and B.

When translating A, separating the variable ext in the two variables common and extA
requires knowing that A will be composed with B. Therefore, we define the translation of the

transition relation of A in the context B, noted Next(A)B , as follows.

The formula Next(A)B uses the variables extA, common , intA, and sA. Define

Emit(A,a),

IF a ∈ �Ext (A)�
THEN ∧ int ′A = intA

∧ IF a ∈ Ext (A)∩Ext (B)

THEN common ′ = [flag 7→ ¬common .flag ,act 7→ a]∧ext ′A = extA
ELSE ext ′A = [flag 7→ ¬extA.flag ,act 7→ a]∧common ′ = common

ELSE int ′A = [flag 7→ ¬intA.flag ,act 7→ a]∧UNCHANGED〈common ,extA〉.

(2.17)

The operator Emit (A,a) is used to update the variables extA, whose updates represent emit-

23

Chapter 2. Specifying Distributed Systems

ting an external action that is not common to A and B, and the variable common , whose

updates represent emitting an external action common to A and B, and int , whose updates

represent emitting internal actions of A.

Finally, define

Next(A)B , ∃a ∈ Acts (A) :

∧Emit(A,a)

∧a ∉ Ext (B) ⇒ UNCHANGED〈sB , intB ,extB 〉
∧〈

sA,a ,s ′A
〉 ∈ �δ (A)�

(2.18)

Next(B)A, ∃a ∈ Acts (B) :

∧Emit(B ,a)

∧a ∉ Ext (A) ⇒ UNCHANGED〈sA, intA,extA〉
∧〈

sB ,a ,s ′B
〉 ∈ �δ (B)�

(2.19)

vars , 〈sA, intA,extA,sB , intB ,extB ,common〉 (2.20)

�A×B�,
∧ sA ∈ �Start (A)�∧ sB ∈ �Start (B)�
∧2

[
Next (A)B ∧Next (B)A

]
vars

(2.21)

Note that we made sure that A and B cannot take a joint step except when they emit a common

action.

If one want to check that A×B ≤C , then the external variables of C needs to be split so as

to match extA, extB , and common .

Our method for translating composite I/O automata could be generalized to an arbitrary

sequence of I/O automata but, as for the case of A×B , the translation of each member of the

sequence would depend on the signature of the other members of the sequence.

2.5 Conclusion

In this chapter we have presented the theory of I/O automata and the TLA+ language.

We have seen that I/O automata can describe distributed systems concisely thanks to a

notion of composition which closely matches the behavior of distributed systems. Therefore

we use I/O automaton in our informal discussion throughout the thesis.

In appendix A, we also precisely specify our results in the TLA+ language. The TLA+ spec-

ifications have been thoroughly model checked with the TLC model checker. The TLA+

specifications were obtained by translating our I/O automata specifications as described in

section 2.4.6.

24

3 Linearizability: I/O-Automata Specifi-
cation and Properties

3.1 Introduction

In this chapter we define the Lin I/O automaton, which specifies linearizability to a data

type. To ease later refinement proofs, we refine the Lin I/O automaton to obtain the NDLin
I/O automaton. We also present the two well-known reduction theorems that simplify the

development of linearizable distributed systems, and, finally, we relate our definition of

linearizability to the original definition of Herlihy and Wing [37].

We define a model in which a set of clients, each a separate asynchronous process, access

a data type D by calling a local interface: the interface of the data type is available locally

at each client. Linearizability specifies the allowed behaviors of the implementation of the

client’s interfaces. Our I/O automaton specification can be seen as a reference implementation.

However, how the interface is actually implemented is of no concern in this chapter.

Central to our I/O automaton definition of linearizability is the concept of data-type rep-

resentation. A data-type representation is a state machine whose executions specify the

sequential behavior of the data-type. Crucially, the transition relation of a data-type rep-

resentation can be minimized by grouping states that are in a certain equivalence relation.

This property will be usefull in chapter 6 to optimize the execution of commuting requests in

message-passing algorithms.

To ease future refinement proofs, we also present a more nondeterministic version of the

I/O automaton specification of linearizability. The refinement will also showcase the use of

the idempotence property of data-type representations.

The first reduction theorem is the abstraction theorem (theorem 3.5.1). It allows one to

soundly abstract key parts of a distributed system from their inherent concurrent behavior,

instead considering them sequential. This idea is formalized in the work of Filipolic et al. [28],

which explains how and why a linearizable system is observationally equivalent to a simpler,

sequential counterpart. We propose another version of the theorem, adapted to our setting, in

25

Chapter 3. Linearizability: I/O-Automata Specification and Properties

section 3.5.

The second reduction theorem is the inter-object composition theorem (theorem 3.6.1). In

contrast to the abstraction theorem, it concerns not the developers of a system who wish to

use a linearizable component, but it concerns the designers of linearizable components. The

inter-object composition theorem states that if a component C1 is linearizable to a data type

D1 and a component C2 is linearizable to a data type D2, then the parallel composition of C1

and C2 is linearizable with respect to the parallel composition of D1 and D2. Therefore, one

can reduce devising a linearizable implementation of a complex data type to devising several

linearizable implementations of simpler data types.

We refer the readers to the works of Lamport [52], Herlihy and Wing [37], and Filipovic et al.

[28] for more detailed discussions about linearizability and its properties. However, note that

these works all rely on the traditional, trace-based, definition of linearizability, whereas our

specification is an I/O automaton.

3.2 Data Types and Data-Type Representations

3.2.1 Data Types

A data type describes the behavior of a system in which a set Π of clients invoke commands

sequentially, i.e., a client invokes a command and receives a response before any other client

can invoke a new command.

A data type D consists of a triple
〈
C ,O ,β

〉
, where C is the set of commands of the data type,

where O is the set of outputs, and where β is the set of behaviors of the data type.

Let Req = Π×C be the set of requests. A behavior is a sequence of operations, where an

operation is a pair 〈r ,o〉 consisting of a request r and of an output o. Note that our definition

of a data type is slightly unusual because the requests contain a client identifier upon which

the behavior of the data type may depend.

In the next subsection we define data-type representations. In the rest of the thesis we

consider only data types which have a deterministic, input-enabled, and idempotent data-type

representation. Unless otherwise noted, we consider such a data type D = 〈
C ,O ,β

〉
.

3.2.2 Data-Type Representations

A data-type may be represented by means of a state machine whose schedules specify the

behaviors of the data type (see section 2.3.1 for the definition of state machines). Based on

this observation, we now define the notion of data-type representation.

A data-type representation ∆ of D is a triple ∆ = 〈
Σ,O ,γ

〉
consisting of a state machine

Σ= 〈S ,C ,S0,δ〉, of the set of outputs O , and of an output function γ, which maps a state and

26

3.2. Data Types and Data-Type Representations

a request to an output. The members of S are called ∆-states.

We say that a data-type representation is deterministic when the state machine Σ is deter-

ministic.

We say that a data-type representation is input-enabled when for every state s ∈ S and for

every request r , there exists a state s ′ satisfying
〈
s ,r ,s ′

〉 ∈ δ.

We now consider only deterministic and input-enable data-type representations. Therefore,

we can define the following shorthands: we write ⊥ for the unique state satisfying S0 =
{⊥}

;

we write s •r for the unique state s ′ such that
〈
s ,r ,s ′

〉 ∈ δ.

If rs is a sequence of requests and s is a state, we define s ?rs as the final state obtained by

executing all the requests of rs in the order in which they appear, one by one:

s ? 〈〉 = s ; s ? 〈r1, . . . ,rn〉 = s •r1 • · · · •rn . (3.1)

If r is a request and s is a state then Contains (r ,s) is true if and only if there exists a

sequence of requests rs containing r such that executing rs from the initial state results in s
(⊥?rs = s).

Idempotence

We say that the data-type representation ∆ is idempotent when the two following properties

hold.

Property 3.2.1. A duplicate request leaves a ∆-state unchanged: if Contains (r ,s) holds then

s •r equals s .

Property 3.2.2. For every client p, if the last two requests of p in a sequence rs are the same,

then they both produce the same output.

Property 3.2.2 implies that the output of the last request of each client needs to be stored

in the state to make later retrieval possible. As we will see in section 3.4 and chapter 5,

property 3.2.1 will be useful in systems that might forget whether a request was executed or

not. In this case one can just re-execute the request, obtaining the same output as before

without impacting the execution of future requests. In practice, properties 3.2.1 and 3.2.2

can be implemented using timestamps to distinguish two otherwise equal requests, as in

the example of a “set” data type in section 3.2.3. In the case of “one shot” data types like

test-and-set and consensus, also presented in section 3.2.3, timestamps are not necessary.

Property 3.2.2 can be restated as follows: if one executes 〈p,c〉 before executing any number

of requests not belonging to p, then re-executing 〈p,c〉 will result in the same output as the

27

Chapter 3. Linearizability: I/O-Automata Specification and Properties

first time: if rs is a sequence of requests such that for every request
〈
q ,c′

〉 ∈ rs , q 6= p, then

γ
(
s ?

(
rs ◦〈p,c〉))= γ

(
s ,〈p,c〉) . (3.2)

Using the first idempotence property, property 3.2.1, Property 3.2.2 can be simplified as follows.

If p and q are two different clients, then the output obtained by executing 〈p,c〉 on s is the

same as the output obtained by executing 〈p,c〉 on s •〈p,c〉•〈
q ,c′

〉
,

γ
(
s •〈p,c〉•〈

q ,c′
〉

,〈p,c〉)= γ
(
s ,〈p,c〉) . (3.3)

Let us take two short examples to illustrate idempotence. The transition relation represented

in fig. 3.1 violates the first idempotence property because in state 2, after r has been executed

once, executing r a second time should not change the state.

The transition relation represented in fig. 3.2 violates the second idempotence property

supposing that rp is a request of the client p, rq is a request of the client q 6= p, and that rp does

not produce the same output in state 1 and 3, γ
(
1,rp

) 6= γ
(
3,rp

)
. There is no way to define

γ
(
4,rp

)
without violating the second idempotence property. Once in state 4, one cannot know

whether the last request of p was execute in the upper path or in the lower path. Note that, for

simplicity, both transition relations are not input enabled.

1start 2 3
r r

Figure 3.1: A transition relation that violates the first idempotence property (property 3.2.1)

1start

2

3

4

rp

rprq

rq

rp

Figure 3.2: A transition relation that violates the second idempotence property (property 3.2.2)

Behaviors

The behaviors of ∆= 〈
Σ,O ,γ

〉
, noted Beh (∆), are the sequences of the form b = 〈op1, · · · ,opn〉

such that there exists an execution e = 〈s0,r1,s1, . . . ,rn ,sn〉 of the state machine Σ where

b = 〈〈
r1,γ (s0,r1)

〉
,
〈
r2,γ (s1,r2)

〉
, . . . ,

〈
rn ,γ (sn−1,rn)

〉〉
(3.4)

28

3.2. Data Types and Data-Type Representations

The data-type representation ∆= 〈
Σ,O ,γ

〉
is a data-type representation of D = 〈

C ,O ,β
〉

when Beh (∆) =β. Note that a data-type representation uniquely determines a data type but

that a data type may have several different representation.

In the rest of the thesis, and unless otherwise noted, we consider the data-type representa-

tion ∆ of D , ∆= 〈〈S ,〈⊥〉,C ,δ〉,O ,γ
〉

.

3.2.3 Examples of Data-Type Representations

In this section we present three examples of data-type representations which are deterministic,

input-enabled, and idempotent.

The Set Data Type

The data type Set (V) represents a set data structure containing members of the nonempty

set V and exposing the operations “add”, “remove”, and “contains”.

The commands of the Set (V) data type are of the form 〈"add",v ,ts〉, 〈"remove",v ,ts〉, or

〈"contains",v ,ts〉, where v ∈ V and ts is a natural number that we call the time stamp of

the command. The outputs of Set (V) are booleans. The response to an “add” or “remove”

operation is always true and the response to a “contains” operation indicates whether the

queried element is in the set. Time stamps are used to detect duplicate requests: if the time

stamp of a request from a client p is smaller or equal to the last time stamp of p, the request

has no effect and returns the value returned by the last operation of the invoking client.

A possible representation of Set (V) is defined as follows. The set of state S consists of three

components:

1. the content of the set data structure;

2. for every client p,

(a) the highest time stamp seen, ts
[
p
]
;

(b) the output returned in response to the last request of p, last
[
p
]
.

The time-stamp and last-output components of the state are used to satisfy the two idempo-

tence properties of data types.

In the initial state, the content is the empty set and, for every client, the time stamp is

-1, which is lower than any time stamp that may appear in a request, and the last output is

arbitrary.

The transition relation δ changes the state as follows. For every request of a client p, the time

stamp ts of the request is checked and, if it is lower than or equal to ts
[
p
]
, then the state is left

29

Chapter 3. Linearizability: I/O-Automata Specification and Properties

unchanged. If ts is strictly greater than ts
[
p
]
, then ts

[
p
]

is set to ts . Moreover, a command

〈"add",v ,ts〉 adds v to the members of the set, a command 〈"remove",v ,ts〉 removes v from

the set, and a command 〈"contains",v ,ts〉 leaves the state unchanged.

Given a request of the client p with time stamp ts ≤ ts
[
p
]
, the output function γ always

returns the value of last
[
p
]

. Otherwise, if the addition or removal of an element is requested,

then true is returned, and if the request is of the form 〈"contains",v ,ts〉, γ returns true if v is a

member of the set and false otherwise.

The Consensus Data Type

We now specify a consensus data type that will allow us to later define the consensus problem

as the problem of linearizability to the consensus data type.

The commands of Cons (V) are of the form
〈

"propose",v
〉

and the outputs are of the form

〈"decide",v 〉, where v ∈ V . In every behavior of the consensus data type, the argument v1 to

the first request is the value which is decided upon: all requests return 〈"decide",v1〉.

The consensus data type Cons (V) may be represented as follows. We assume that there are

at least two different values in V , otherwise consensus is trivial. Let the set of states be the set{
V

}∪V , where V means that no value has been chosen yet and v ∈ V means that the value

v has been chosen. In the initial state, no value has been chosen (⊥=V).

The transition relation δ is such that the first value proposed is chosen,

V •〈
"propose",v

〉= v , (3.5)

and if a value is already chosen, then the same value is still chosen,{
v
}•〈

"propose",v ′〉= v . (3.6)

The transition function δ, when V = {
v1,v2

}
, is represented graphically in fig. 3.3.

The output function γ returns the chosen value, i.e., if the state is V , then γ returns the

argument of the propose request, and if the state if of the form v ∈ V , then it returns v , the

chosen value.

Note that the representation is idempotent, but it does not use time stamps. We will later

see that linearizability to this data type is equivalent to the traditional formulation of the

consensus problem.

The Test-and-Set Data Type

In the same vein as for consensus, the TestAndSet data type can be represented without the

use of time stamps.

30

3.2. Data Types and Data-Type Representations

{
v1,v2

}
startstart

v1v2

Π×〈
"propose",v1

〉
Π×〈

"propose",v2
〉

ReqReq

Figure 3.3: The transition relation of a representation of the consensus data type when V ={
v1,v2

}
The TestAndSet data type has only one command “ts” and returns either “Won” or “Lost”.

Its behaviors are such that the first client to invoke the command “ts” wins and all the others

loose.

To ensure that the winner gets the response “Won” even if it invokes the “ts” command twice

or more, the state needs to contain the identity of the winner. Therefore we let the state be

either the full set of clients Π, indicating that no client won, or a single client p, indicating that

p won. The initial state is of course Π.

The transition relation leaves the state unchanged if the state is of the form p ∈ Π and

otherwise, if the state is Π, sets the state to the identity of the client which invoked the

command. The transition relation, when Π= {
p1,p2

}
, is represented in fig. 3.4.

The output function γ returns “Won” in the state Π and “Lost” in all other states.

Note that the TestAndSet data type is idempotent.

Π

startstart

p1

〈p1,"ts"〉
Π×{

"ts"
}

p2

〈p2,"ts"〉
Π×{

"ts"
}

Figure 3.4: The transition relation of a representation of the TestAndSet data type, when
Π= {

p1,p2
}

The Generic Data Type

The Generic (C) data type takes its set of commands C as parameter and, given a request r , it

returns the complete sequence of requests that it has received so far except that duplicates

are removed, called its execution history. In case of a duplicate request, the output is the

execution history truncated at the previous occurrence of the duplicate.

A possible representation of the Generic (C) data type would maintain the current history

in its state, starting from the empty sequence, and would execute a command c by appending

31

Chapter 3. Linearizability: I/O-Automata Specification and Properties

c to the current history, which it then returns. Thus the Generic data type returns, in response

to every request, its complete execution history. For idempotence, a request is appended only

if it does not yet appear in the sequence of requests executed so far. Moreover, the output to a

duplicate request is the prefix of the execution history which ends with the duplicate request.

Formally, consider the execution history h ∈ Seq
(
Reqs

)
. If r ∈ h , then δ (h ,r) = h and γ (h ,r)

is a prefix of h ending with r , else, if r ∉ h , δ (h ,r) = γ (h ,r) =Append (h ,r).

We will mainly use the Generic data type to model check our specification with the TLC

model checker.

3.2.4 Space of Possible Representations

A given data type has several possible representations, which differ in their state space and

in the shape of their state-transition graph. Changing representation can be useful to prove

the linearizability of an algorithm by refinement. Indeed, our I/O automata specification of

linearizability (section 3.3) is parameterized by a data-type representation. Choosing a data-

type representation whose structure is similar to the algorithm being proved can ease the proof.

Notably, in chapter 6, we will use the history data-type representation (section 5.3.1), which

“folds” commutative operations, in order to analyse algorithms that optimize the execution of

commutative operations.

We have assumed that the data type D has a deterministic, input-enabled, and idempotent

representation ∆ = 〈〈
S ,C ,

{⊥}
,δ

〉
,O ,γ

〉
. To give an idea of the range of possible data-type

representations of D we define two representations based on ∆. The first, Unfold (∆), has

a state space of maximal cardinality. The second, Fold (∆), has a state space of minimal

cardinality.

The representation Unfold (∆) is similar to the Generic data type, defined in the preceding

section, in that its state contains the execution history, i.e., the full sequence of requests that

have been received so far. However, in contrast to theGeneric data type, responses are not

histories, but are outputs computed by executing the entire history.

Formally, define Unfold (∆) = 〈〈
S1,C ,

{⊥1
}
,δ1

〉
,O ,γ1

〉
where S1 is the set of all histories,

Seq
(
Req

)
, where the initial state ⊥1 is the empty history, 〈〉, where δ1(s ,r) appends r to the

history s , and where the output γ (s ,r) is obtained by executing, using the transition function

of ∆, the history s starting from the initial ∆-state, obtaining γ (⊥? s ,r).

In contrast to Unfold (∆), in which there is a one to one mapping from sequence of requests

to states, the representation Fold (∆) merges all the states that can possibly be merged. We

say that two states of ∆ are output equivalent if they cannot be distinguished by executing

requests and looking at the output produced,

s ≡ s ′ ⇔∀rs ∈ Req∗,r ∈ Req : γ (s ?rs ,r) = γ
(
s ′?rs ,r

)
. (3.7)

32

3.3. I/O automata Specification of Linearizability

Note that the output equivalence relation on states is reflexive, symmetric, and transitive,

therefore we can define its equivalence classes, which form a partition of the set of states.

Let us write Eq (s) for the equivalence class of a state s . We now define δ′ and γ′ such that

δ′
(
Eq (s) ,r

)=Eq (δ (s ,r)) and γ′
(
Eq (s) ,r

)= γ (s ,r). The functions δ′ and γ′ are well defined

because all the members of an equivalence class are output equivalent, by definition.

We now define Fold (∆) = 〈〈{
Eq (s) : s ∈ S

}
,C ,

{
Eq (⊥)

}
,δ′

〉
,O ,γ′

〉
.

Note that Fold (∆) minimizes the number of state that a representation of D may have.

3.3 I/O automata Specification of Linearizability

In this section we define the I/O automatonLin (∆), which is our specification of linearizability.

We say that an I/O automaton A is linearizable to D , or is a linearizable implementation of

D , when A implements Lin (∆). This definition of linearizability is equivalent the original

definition, which is presented in section 3.7.

We begin, in section 3.3.1, by defining the concept of well-formed data-type implemen-

tation using an I/O automaton. This definition provides a simple example of the kind of

I/O-automata specification that we use throughout the thesis.

3.3.1 Well-Formed Data-Type Implementations

In the preceding section we have defined data types. A data type specifies a set of sequences

of operations, where each operations is constituted of a request and a response.

However, a data type is not a description of a distributed system. In a distributed system,

operation may not be considered atomic: responding to a request often requires coordination

among the clients. Thus a model of a distributed system should consider the invocation of

a request and the production of an output as two separate events. Moreover a distributed

system implementing a data type will be used by other components of a bigger application.

Thus we need a notion of interface and composition.

In this section we define the Seq (D) I/O automaton, which specifies the interface that

a data-type implementation should offer and whose traces are those produced by a set of

asynchronous sequential processes. We say that the traces of Seq (D) are the well-formed traces.

An implementation of the data type D offers the interface of D locally to each member of a

set Π of sequential clients, treating invocations and responses as separate actions. Each client

may locally invoke the data type with a command and later receive a response containing an

output. We stress that invocations and response are local, meaning that no communication

across different agents is necessary to make or receive calls through the interface.

The invocation actions a consist of an invoking client, noted Proc (a), and a command,

33

Chapter 3. Linearizability: I/O-Automata Specification and Properties

noted Cmd (a). The invocation of command c by client p is noted Invp (c). The set of all

invocation actions is noted Invs and the set of all invocation actions of a client p is noted

Invsp .

The response actions consist of the client which receives the response, noted Proc (a), and

of an output, noted Output (a). The response to client p with output o is noted Respp (o). The

set of all response actions is noted Resps and the set of all response actions of a client p is

noted Respsp . Note that the sets Invs , Resps , Invsp , and Respsp depend on the data type D .

It will latter be useful to project a trace t of invocations and responses onto the actions of a

particular client, noted t |p.

As we have said earlier, we assume that the clients Π are sequential and execute asyn-

chronously from each other. A client is sequential when, after invoking a request, the client

waits for a response before invoking a new request, and when only one response may appear in

between two invocations. The clients are purely asynchronous when there is no dependency

between their respective behavior. The I/O automaton Seq formalize these requirements.

We define Seq as the composition of the I/O automata Seq
(
p
)
, for every client p ∈ Π,

Seq = ∏
p ∈ Π

Seq
(
p
)

. (3.8)

Every trace of the I/O automaton Seq
(
p
)

starts with an invocation and continues with

alternating responses and invocations, modeling a sequential client. The state machine of

Seq
(
p
)
, which realizes this behavior, simply tracks the control flow location of the client p,

namely “ready” or “pending”. In the initial state, every client is “ready”. Then, Seq
(
p
)

executes

as follows.

1. An invocation action Invp (c) is enabled when the client p is ready and changes the

control flow location to “pending”.

2. A response action Respp (o) is enabled when the client p is pending and changes the

control flow location to “ready”.

The transition relation of the I/O automaton Seq(p) is represented graphically in fig. 3.5.

To understand what the composition Πp ∈ ΠSeq
(
p
)

does, we also need to know the signa-

tures of the Seq
(
p
)

I/O automata. The inputs of Seq
(
p
)

are the invocation actions of p, Invsp ,

the outputs of signature of Seq
(
p
)

are the response actions of p, Respsp , and Seq
(
p
)

has no

internal actions. Note that if p 6= q , then Seq(p) and Seq(q) have no actions in common. Their

composition is therefore purely asynchronous.

By definition of I/O automata composition and of the signature of Seq
(
p
)
, the inputs of the

I/O automaton Seq is the union of the inputs of the Seq
(
p
)

I/O automata, namely the set of all

34

3.3. I/O automata Specification of Linearizability

invocation actions Invs , and the outputs of the I/O automaton Seq is the union of the outputs

of the Seq
(
p
)

I/O automata, namely the set of all response actions Resps .

Finally, we say that an I/O automaton A is a well-formed distributed implementation of

the data type D when A implements the I/O automaton Seq . We also say that a trace t is

well-formed when t is a trace of Seq .

readystart pending

a ∈ Invsp

a ∈ Respsp

Figure 3.5: The transition relation of the I/O automaton Seq(p).

3.3.2 The Linearizability I/O Automaton

In this section we define the I/O automaton Lin (∆), or Lin for short, and we say that an I/O

automaton A is linearizable to D when there exists a data-type representation ∆ of D such

that the projection of A onto the invocation and response actions, noted πi/r (A), implements

Lin (∆).

In fact, as stated in theorem 3.3.1, the set of traces of the I/O automaton Lin (∆) is the same

for every representation ∆ of D. However, choosing an appropriate data-type representation

can make refinement proofs easier.

Let us now describe the Lin I/O automaton. Consider a well-formed trace t . Let us say that

a request r is pending at some position i in t when the request has been invoked at a position

j < i but has not received a response before position i. For example, in an execution of the Seq
I/O automaton, when a component Seq

(
p
)

is in the state “pending”, then there is a request

〈p,c〉 of client p which is pending. We say that a request r is pending in t , with no mention of

a position, when r is pending at the last position of t .

The I/O automaton Lin is a well-formed data-type implementation of D : The external

interface of the Lin I/O automaton is the same as the one of the Seq I/O automaton and the

set of traces of the Lin I/O automaton is a subset of the set of traces of the Seq I/O automaton.

The Lin I/O automaton uses the data-type representation ∆, internally, to determine the

output to the requests that it receives. The states of the Lin I/O automaton consist of four com-

ponents: dState , tracking the current ∆-state, and, for every client p, status
[
p
]
, tracking the

control flow location of p, pending
[
p
]
, containing the pending request of p, and nxtOut

[
p
]
,

containing the next output that should be sent to p in a response. The control flow location

status
[
p
]

of the client p can be either “ready”, “pending”, or “linearized”. Initially, every client

is ready and the value of dState is ⊥.

35

Chapter 3. Linearizability: I/O-Automata Specification and Properties

An Invp (c) action updates status
[
p
]

to “pending” and additionally updates pending
[
p
]

to

〈p,c〉. In order to produce a response, the client must first reach the status “linearized”, by

executing a Linearizep action.

The Linearizep action is enabled when p is in status “pending”. Its effect is to update the

status of p to “linearized”, to update the current ∆-state by executing the pending request

of p, setting dState to dState •pending [
p
]
, and to update nxtOut

[
p
]

to the output obtained

by executing the pending request of p on the current ∆-state, γ
(
dState ,pending

[
p
])

. We say

that pending
[
p
]

has been linearized. The Linearizep actions, for p ∈ Π, are the only internal

actions of the I/O automaton Lin .

ARespp (o) action is enabled if the client p is in status “linearized” and if the output o is equal

to the output that was computed by the preceding Linearizep action, which is nxtOut
[
p
]
.

The control flow of a client p in the Lin I/O automaton is represented graphically in fig. 3.6.

We see that a Linearizep action must happen at some point in between every invocation-

response pair, and that, to the client observing its external interface, it will appear as if

its request was executed on ∆ at some point in between the invocation and the response.

Therefore, if the operations of two clients p1 and p2 overlap, their requests, noted r1 and r2,

may be executed in the order r1,r2 or in the order r2,r1. However, if the operations do not

overlap, for example when r2 is invoked after p1 received a response, then only one execution

order is possible, r1,r2 in this case.

Theorem 3.3.1. If ∆1 and ∆2 are two representations of D, then Lin (∆1) and Lin (∆2) have

exactly the same set of traces.

Proof. Because any representation of D has the same set of behaviors.

readystart

linearized

pending

a ∈ Invsp

Linearizepa ∈ Respsp

Figure 3.6: Control flow of a client p in the Lin I/O automaton.

36

3.4. Refining the Linearizability I/O Automaton

3.3.3 Examples: consensus and test-and-set

Consider the Test-and-Set and the Consensus data types that we defined in section 3.2.3.

Implementing the I/O automaton Lin (T&S) is equivalent to solving the test-and-set problem,

and implementing the Lin (Cons) is equivalent to solving consensus.

Let us look into more details to the case of consensus. The consensus problem is usually

formulated as follows. Each client proposes a value and must subsequently decide on a value,

subject to the following conditions.

1. Validity: If a value is decided on, then it must have been previously proposed by a client.

2. Agreement: All clients decide on the same value.

3. Termination: All correct clients eventually decide on a value.

It is relatively easy to see that the traces of the I/O automaton Lin (Cons) satisfy the validity

and agreement properties. Indeed, the "linearize" action executes only requests that have

been invoked previously, because those requests are the pending request of a client. Thus

validity is satisfied. Moreover, in every behavior of the consensus data type, the first executed

request determines the output that all subsequent requests will return. Therefore agreement

holds. We cannot speak of termination because we consider only finite traces, which do not

allow us to define liveness properties.

3.4 Refining the Linearizability I/O Automaton

The linearizability I/O automaton, Lin , is simple enough to have confidence that it represents

our idea of linearizability. However, the experience of the authors has shown that making Lin
less deterministic simplifies refining the Lin I/O automaton to prove concrete algorithms

correct.

In this section we present the I/O automaton NDLin , which is a (more) nondeterministic

version of Lin . Both have the same set of traces, although we will only show that NDLin
implements Lin . To obtain the I/O automaton NDLin , we will refine the Lin I/O automaton

in two steps, obtaining the Lin ′ I/O automaton in between.

The construction of the NDLin I/O automaton will also show how the idempotence proper-

ties of data-type representations are useful.

3.4.1 The Lin ′ I/O Automaton

The Lin ′ I/O automaton has exactly the same signature as the Lin I/O automaton: its inputs

are the invocation actions, its outputs are the response actions and its internal actions are the

37

Chapter 3. Linearizability: I/O-Automata Specification and Properties

Linearizep actions, where p is a client.

The states of the Lin ′ I/O automaton consists of a dState component and, for every client p,

of the components status
[
p
]

and pending
[
p
]
. In contrast to the Lin ′ I/O automaton, there is

no nxtOut
[
p
]

component. Moreover, the status of a client p is now only “ready” or “pending”,

and not “linearized”.

As in the Lin I/O automaton, every client is initially ready.

An Invp (c) action is enabled when p is ready. It updates status
[
p
]

to “pending” and updates

pending
[
p
]

to 〈p,c〉.

A Linearizep action is enabled when p is in status “pending”. Its effect is to update the

current ∆-state by executing the pending request of p, setting dState to dState •pending [
p
]
.

However, in contrast to the Linearizep transition of the Lin I/O automaton, the ouptut pro-

duced by executing the pending request of p is not recorded.

A Respp (o) action is enabled if the client p is in status “pending”, dState contains the

pending request of p, and the output o is equal to γ
(
dState ,pending

[
p
])

.

The control flow of a client p in the Lin I/O automaton is represented graphically in fig. 3.7.

readystart pending

a ∈ Invsp

a ∈ Respsp
Contains

(
dState ,pending

[
p
])

Figure 3.7: Control flow of a client p in the Lin ′ I/O automaton.

We see that in order to produce a response to the pending request of a client p it is sufficient

that the current ∆-state contains the pending request of p. This may happen as a side effect

of linearizing the pending request of another client, even if the pending request of p was

never linearized. For example, consider the consensus data-type representation presented

in section 3.2.3. Suppose that the current state is ⊥, and that the requests 〈p1,v1〉 and 〈p2,v2〉
are pending. Linearizing the request 〈p1,v1〉 updates the current state to v1. However both

〈p1,v1〉 and 〈p2,v2〉 are contained in v1 because ⊥?〈〈p1,v1〉〉 = v1 and ⊥?〈〈p1,v1〉,〈p2,v2〉〉 = v1.

Therefore, in state v1, the response action of p2 is enabled, even though the Linearizep2 action

was never executed.

We also see that the Lin ′ I/O automaton does not use any nxtOut
[
p
]

component to re-

member the output that must be returned to the client p. Instead, the Lin ′ I/O automaton

returns γ
(
dState ,pending

[
p
])

, even if some other requests were linearized after p’s request

was linearized.

38

3.4. Refining the Linearizability I/O Automaton

However, despite its more liberal behavior, the Lin ′ I/O automaton implements the Lin I/O

automaton. The proof shows how this fact relies on the idempotence property of data-type

representations.

Theorem 3.4.1. The Lin ′ I/O automaton implements the Lin I/O automaton.

Proof. We present a forward simulation f from the I/O automaton Lin ′ to the I/O automaton

Lin .

A state s of Lin ′ is related to a state t of Lin when their dState components are equal and,

for every client p, the following holds.

1. The client p has the same pending request in s and t .

2. (a) if p is ready in s , then it is also ready in t ;

(b) if p is in status “pending” in s and s .dState contains pending
[
p
]
, then p is in status

“linearized” in t and t .nxtOut
[
p
]

equals γ
(
s .dState ,pending

[
p
])

;

(c) if p is in status “pending” in s and s .dState does not contain pending
[
p
]
, then p is

in status “pending” in t .

3. if s .dState contains pending
[
p
]
, then t .nxtOut

[
p
]

is the output obtained by executing

the pending request of p on s .dState .

Note that, for every client p, unless p is in status “pending” or “aborted” and s .dState contains

the pending request of p, then nxtOut
[
p
]

is unconstrained.

Let us show that f is forward simulation from Lin ′ to Lin . Assume that s is a reachable state

of Lin ′, that
〈
s ,a ,s ′

〉
is a transition of Lin ′, and that t is a state of Lin such that s ,t are related.

Let us show that there exists an execution fragment e whose first state is t , whose last state is

related to s ′, and such that

• if a is an external action of the I/O automaton Lin , then the trace of e is equal to 〈a〉;

• if a is not an external action of Lin , then the trace of e is the empty sequence.

Remember than when we discuss to states related by f , their dState and pending components

are equal. We proceed by case analysis on the type of transition that is taken.

1. If a is an invocation action Invsp (c), we have two sub-cases:

(a) Assume that s .dState does not contain p’s request, 〈p,c〉. Let e = 〈
t ,a ,t ′

〉
where

t ′ is equal to t except that pending
[
p
]

is updated to 〈p,c〉 and the status of p
is updated to “pending”. The state t ′ is related to the state s ′ by f and e is an

invocation transition of Lin , and therefore is an execution fragment of Lin .

39

Chapter 3. Linearizability: I/O-Automata Specification and Properties

(b) Assume that s .dState contains p’s request already. In this case, the execution e
that we are looking for needs to contain an action that linearizes p’s request. Let

e = 〈
t ,a ,t ′,Linearizep ,t ′′

〉
where t ′ is as in the previous case and t ′′ is equal to

t ′ except that t .nxtOut
[
p
]

is updated to γ(s .dState ,〈p,c〉 and the status of p is

updated to “linearized”.

The transition
〈
t ,a ,t ′

〉
is an invocation transition of Lin .

The transition
〈
t ′,Linearizep ,t ′′

〉
appears not to be a “linearize” transition of Lin

because we did not update t ′.dState . However, because t ′.dState contains the re-

quest of p, executing the request 〈p,c〉 on t ′.dState will leave t ′.dState unchanged,

by the idempotence property of data-type representations (property 3.2.1). There-

fore
〈
t ′,Linearizep ,t ′′

〉
is in fact a “linearize” transition of Lin . Therefore e is an

execution fragment of Lin .

Moreover, s ′ and t ′ are related because s ′.dState contains 〈p,c〉, which is consistent

with t ′.status
[
p
]

being “linearized”.

Therefore we get e is an execution fragment satisfying our goal.

2. Assume that a is a response action Respp (o). Let e = 〈
t ,a ,t ′

〉
where t ′ is equal to t

except that the status of p is updated to “ready”.

Because of the precondition of a Respp (o) action, we know that s .dState contains

s .pending
[
p
]

and that p is in status “pending”. Therefore, by definition of f , we have

that t .nxtOut
[
p
]= γ

(
s .dState ,〈p,c〉) and the status of p in t is “linearized”. Thus from

t to t ′ the state is updated as in the Respp
(
γ

(
t .dState ,t .pending

[
p
]))

transition of Lin .

Therefore,
〈
t ,a ,t ′

〉
is a “response” transition of Lin and e is an execution fragment of

Lin .

Moreover, it is easy to see that s ′ and t ′ are related, which finishes to prove our goal.

3. Assume that a is a “linearize” action Linearizep of Lin ′. Hence, from s to s ′, the dState
is updated to s .dState •pending [

p
]
, resulting in s ′.dState containing pending

[
p
]
.

Suppose that s .dState already contains pending
[
p
]
. Then, by the idempotence property

of recoverable data-type representations, the action has no effect on the state and the

empty execution of initial state t , 〈t〉, satisfies our goal. Therefore we assume that

s .dState does not contain pending
[
p
]
.

Therefore any state t ′ which is related to s ′ must have status
[
p
] = "commited" and

nxtOut
[
p
]= γ

(
s .dState ,s .pending

[
p
])

. Thus this must be the case of the last state of

the execution e that we are looking for.

Moreover, there could be a set of clients Q , different from p, that have a pending request

which is not contained in s .dState but which is contained in s ′.dState . Therefore, for

every client q ∈ Q , any state t ′ which is related to s ′ must have status
[
q
]= "commited"

and nxtOut
[
q
]= γ

(
s .dState ,s .pending

[
q
])

. Thus this must be the case of the last state

of the execution e that we are looking for.

40

3.4. Refining the Linearizability I/O Automaton

We are therefore going to build an execution e of Lin in which the client p first linearizes

its request, followed by all the members of Q .

Let qs = 〈q1, . . . ,qn〉 be a sequence containing at least once (duplicates are allowed) every

client of Q . Let

e = 〈
t ,Linearizep ,t ′0,Linearizeq1 ,t ′1, . . . ,Linearizeqn ,t ′n

〉
(3.9)

where

(a) t ′0 is equal to t except that nxtOut
[
p
]

is updated to s .dState • s .pending
[
p
]

and

s ′.dState = s .dState • s .pending
[
p
]
;

(b) for every i ∈ 1..n , t ′i is equal to t ′i−1 except that nxtOut
[
qi

]
is updated to s .dState •

s .pending
[
qi

]
.

We see that, for every client q ∈ Q∪{
p
}

, q is in status “linearized” in t ′n and t ′n .nxtOut
[
q
]=

γ
(
s .dState ,s .pending

[
p
])

. Moreover t ′n .dState = s .dState • s .pending
[
p
]
. Therefore s ′

and t ′n are related by the forward simulation relation.

The transition
〈
t ,Linearizep ,t ′0

〉
is a Linearizep transition of Lin .

Moreover, for every i ∈ 1..n ,
〈
t ′i−1,Linearizeqi ,t ′i

〉
is a Linearizep transition of Lin , even

though we did not update dState : by definition of Q , we know that t ′0.dState contains

pending
[
qi

]
; therefore, by the idempotence property of data-type representations, exe-

cuting pending
[
qi

]
on t ′0.dState would leave it unchagned.

Finally, we have shown that e is the execution that we are looking for, and we have

proved our goal.

We have covered all the possible types of transitions, therefore the theorem holds.

Note that we have used a forward simulation and not a refinement mapping. Without

adding a history variable to simulate the evolution of the component nxtOut , a refinement

mapping would not have worked. This is because, for any client p, there is no way to reliably

determine what nxtOut
[
p
]

should be by looking only at pending
[
p
]

and dState .

3.4.2 The NDLin I/O Automaton

We now present the NDLin I/O automaton and show that it refines the Lin ′ I/O automaton.

With theorem 3.4.1

TheNDLin I/O automaton is like theLin ′ I/O automaton except that theLinearizep actions

are replace with a single Linearize action, not specific to any client. Otherwise, NDLin has

the same external signature, the same set of states, the same initial states, and the same

“invocation” and “response” transitions as the Lin ′ I/O automaton.

41

Chapter 3. Linearizability: I/O-Automata Specification and Properties

The new Linearize transition linearizes multiple requests at once. It is enabled when at least

one request is pending. Its effect is to update the current ∆-state by executing a sequence rs of

pending requests, setting dState to dState?rs . The same effect would be obtained in the Lin ′

I/O automaton by taking several Linearizep transitions in a row. Therefore the NDLin I/O

automaton trivially refines the Lin ′ I/O automaton, using the identity relation as refinement

mapping.

Theorem 3.4.2. The I/O automaton NDLin implements the I/O automaton Lin ′.

Proof. The identity relation is a refinement mapping from NDLin to Lin ′.

Corollary 3.4.1. The I/O automaton NDLin implements the I/O automaton Lin .

Proof. We have shown that NDLin ≤Lin ′, theorem 3.4.2, and that Lin ′ ≤Lin , theorem 3.4.1.

Therefore, by transitivity of the implementation relation, we have that NDLin ≤Lin

3.5 The Abstraction Theorem

The I/O automaton SeqImp is a linearizable implementation of D in which the clients take

turns for performing their operations: no two operations overlap. The abstraction theorem

(theorem 3.5.1) states that in a system containing a linearizable implementation Imp of D ,

substituting the I/O automaton SeqImp for Imp leaves the set of traces of the system un-

changed. Therefore, when reasoning about safety properties of the system, it suffices examine

the system in which SeqImp has been substituted for Imp. The substitution simplifies the

reasoning problem because, in SeqImp, the clients are synchronous instead of asynchronous.

Essentially, the abstraction theorem allows one to abstract over the concurrent nature of

data-type implementations.

The SeqImp I/O automaton is similar to the Lin I/O automaton: in order to determine the

response corresponding to an invocation, it internally queries and updates a copy of the data-

type representation ∆. However, unlike the Lin I/O automaton, the SeqImp I/O automaton

does not accept any invocation if one invocation is already pending. Therefore its traces are

composed of invocation-response pairs which do not overlap.

The I/O automaton SeqImp has signature, the same set of states, and the same initial state as

the Lin I/O automaton. The Invp (c) and Respp (o) transitions of SeqImp are also the same as

the ones of Lin . The only difference between Lin and SeqImp lies in the Linearizep transition,

which has the same effect as in Lin but is enabled only of every client is in status “ready”.

Therefore, in every execution of SeqImp, there is at most one client which has a pending

request.

Let an application be an I/O automaton which is compatible with any well-formed imple-

mentation of D (see section 3.3.1). Note that such an application takes response actions as

42

3.6. The Inter-Object Composition Theorem

input and may output invocation actions.

Theorem 3.5.1 (Abstraction Theorem). If App is an application and Imp is a linearizable

implementation of the data type D , then the I/O automaton App× Imp with invocation and

responses hidden has exactly the same set of traces as the I/O automaton App×SeqImp with

invocation and responses hidden,

Traces
(
Hide

(
Invs ∪Resps ,App× Imp

))=Traces
(
Hide

(
Invs ∪Resps ,App×SeqImp

))
Theorem 3.5.1 casts the result of Filipovic et al. [28] in our framework.

3.6 The Inter-Object Composition Theorem

Consider two data-type representations ∆1 and ∆2 of two data types D1 and D2,

∆1 =
〈〈
S1,C1,

{⊥1
}
,δ1

〉
,O1,γ1

〉
∆2 =

〈〈
S2,C2,

{⊥2
}
,δ2

〉
,O2,γ2

〉
,

such that C1 ∩C2 =O1 ∩O2 =;.

We define the product of the two data types D1 and D2 as the data type of representation

∆= 〈〈
S1 ×S2,C1 ∪C2,

{〈⊥1,⊥2〉
}
,δ

〉
,O1 ∪O2,γ

〉
(3.10)

where, if c ∈ C1, then 〈s1,s2〉 • 〈p,c〉 = s1 • 〈p,c〉 and γ
(〈s1,s2〉,〈p,c〉) = γ

(
s1,〈p,c〉), and, if

c ∈ C2, then 〈s1,s2〉• 〈p,c〉 = s1 •〈p,c〉 and γ
(〈s1,s2〉,〈p,c〉)= γ

(
s1,〈p,c〉).

Theorem 3.6.1 (Inter-Object Composition). Consider two I/O automata A1 and A2. If A1

implements Lin(D1) and A2 implements Lin(D2), then the composition of A1 and A2, A1 ×A2,

implements Lin (D1 ×D2).

Theorem 3.6.1 allows us to build an I/O automaton A that is linearizable to a data type

D =D1 ×D2 by composing two I/O automata A1 and A2 which are linearizable to D1 and

D2 respectively. Therefore theorem 3.6.1 is a reduction theorem, in the sense that it allows

drawing a conclusion about A by reasoning about a simpler problem, i.e., the linearizability of

A1 and A2 when taken in isolation.

3.7 The Original Definition of Linearizability

In this section we give the classical, trace-based, definition of linearizability.

43

Chapter 3. Linearizability: I/O-Automata Specification and Properties

3.7.1 Happens-before relation

Consider a well-formed trace t . We define the relation ≺t on the positions of t such that, for all

positions i , j , i ≺t j holds when the operation to which t [i] belongs ends before the operation

to which t
[
j
]

belongs starts.

For example, if

t = 〈
Invp(k1),Resp(o1),Invq (k2),Resq (o2)

〉
, (3.11)

then 1 ≺t 3 because the operation to which Invp (k1) belongs ends with Resp(o1) at position

2 and the operation to which Invq (k2) belongs starts with Invq (k2) at position 3 (so we take

i ′ = 2 and j ′ = 3). Similarly, we also have 2 ≺t 3, 1 ≺t 4, and 2 ≺t 4:

≺t=
{〈1,3〉,〈2,3〉,〈1,4〉,〈2,4〉} (3.12)

However, if

t = 〈
Invp(k1),Invq (k2),Resp(o1),Resq (o2)

〉
, (3.13)

then the relation ≺t is empty.

Formally, if i , j are two positions of t , then i ≺t j holds when there are two positions i ′, j ′

such that i ≤ i ′ < j ′ ≤ j , t
[
i ′

]
is a response, t

[
j ′

]
is an invocation, Proc (t [i]) = Proc

(
t
[
i ′

])
,

and Proc
(
t
[
j ′

])=Proc
(
t
[
j
])

.

Note that ≺t is a partial order (i.e. it is reflective, transitive, and antisymmetric). The relation

≺t is sometimes called the happens-before relation on operations.

3.7.2 Safe reordering

Consider another well-formed trace t ′. We say that t and t ′ are weakly equivalent when for all

client p ∈ Π, the projection of t onto the actions of p is equal to the projection of t ′ onto the

actions of p, t |p = t ′|p. For example, the following two traces are weakly equivalent.

t1 =
〈
Invp(k1),Resp(o1),Invq (k2),Resq (o2)

〉
(3.14)

t2 =
〈
Invq (k2),Resq (o2),Invp(k1),Resp(o1)

〉
(3.15)

We say that the trace t ′ is a safe reordering of the trace t when t and t ′ are weakly equivalent

and there exists a bijectionσ from the positions of t to the positions of t ′ such that t [σ [i]] = t [i]

and σ does not change the happens-before relation, i ≺t j ⇒σ [i] ≺t σ
[
j
]
. For example, the

trace t1 is not a safe reordering of t2 but the trace t1 is a safe reordering of the trace

t3 =
〈
Invp(k1),Invq (k2),Resp(o1),Resq (o2)

〉
. (3.16)

44

3.8. Conclusion

However, the trace t3 is not a safe reordering of the trace t1 (the safe reordering relation is not

symmetric).

3.7.3 Closure of a trace

We now define the closure of a trace, which is obtained by removing or completing pending

invocations.

The trace t ′ is a closure of t when, for every client p, t ′|p ends with a response and either

t ′|p was obtained by removing the last invocation of t |p (eq. (3.17)), or t ′|p was obtained by

appending a response action to t |p (eq. (3.18)).

∃a ∈ Invs :Append
(
t ′|p,a

)= t |p (3.17)

∃a ∈ Resps : t ′|p =Append
(
t |p,a

)
(3.18)

3.7.4 Linearizability

We say that a trace t is linearizable to D when there exists a trace ts of the sequential imple-

mentation of D and a closure tc of t such that ts is a safe reordering of tc . In this case we say

that t is linearizable to ts or, equivalently, that ts is a linearization of t .

Note that our definition of linearizability differs slightly from the one usually found in

the literature because the traces of the sequential implementation of D contain incomplete

actions, i.e., the last action of a client may be an invocation.

Theorem 3.7.1 asserts that the I/O automaton definition of linearizability coincides with the

trace-based definition.

Theorem 3.7.1. For every data-type representation ∆ of D and for every trace t , t is linearizable

to D if and only if t is a trace of the I/O automaton Lin (∆).

Theorem 3.7.1 can be seen as a precise formulation of the informal statement saying that “a

trace is linearizable if and only if every operation appears to execute atomically at a lineariza-

tion point situated in between its invocation and its response”.

3.8 Conclusion

In this chapter we have defined linearizability to a data type in terms of an I/O automaton

based on the notion of data-type representation. We have seen that a data type has different

representations which vary in the size of their state space, noting that chosing an appropriate

representation may ease a refinement proof of linearizability.

To simplify future refinement proofs, we have refined the Lin I/O automaton to a more

45

Chapter 3. Linearizability: I/O-Automata Specification and Properties

nondeterministic version called NDLin . We have seen that the idempotence property of

data-type representations play a crucial role in the correctness of NDLin .

We have presented two well-known reduction theorems that simplify linearizability proofs:

the inter-object composition theorem and the observational equivalence to a sequential

specification. Finally, we have also seen the equivalent, original, trace-based specification of

linearizability.

In the next chapters, we will see that another form of reduction properties is needed to

simplify our understanding of robust linearizable algorithms.

46

4 Adaptive Algorithms and Modular
Reasoning

4.1 Introduction

In this chapter we define adaptive algorithms, which model robust distributed systems, and we

define what it means to reason modularly about an adaptive algorithm and why it is desirable.

Adaptive algorithms model distributed and linearizable data type implementations that

have several modes of execution, that dynamically change mode in response to the changes

of behavior of their environment, and whose modes are encapsulated so as to minimize the

dependencies between two modes.

An adaptive behavior is a requirement for a robust system: In practice, the environment of a

distributed system changes unpredictably, and most existing algorithms only exhibit good

performance in particular conditions. Therefore, to be robust, i.e., maintain high performance

in all scenarios, a system must dynamically adapt its strategy.

Using adaptive algorithms, as we define them in this chapter, is one way to achieve dynamic

adaptation to a changing environment. Adaptive algorithms are composed of a set of modes (or

sub-algorithms), they choose the best mode available for the current operating conditions, and

they constantly re-evaluate their choice in order to match the changes of their environment.

We have seen in the introduction that building adaptive algorithms ad-hoc is not practical.

In short, we saw that the complexity of designing an adaptive algorithm with n modes is of

the order O
(
n2

)
and that incremental design is hardly possible. When changing mode, a

linearizable adaptive algorithm must obviously preserve linearizability, thus modes need to

synchronize on a mode change. Therefore, to allow arbitrary changes of modes, one must

make sure that any mode can synchronize properly with any other. If each mode uses its own

ad-hoc conventions for synchronization, checking that all modes can synchronize properly

implies to examine O
(
n2

)
cases, where n is the number of modes. Second, incremental design

is unpractical. If one wants to incrementally design an adaptive algorithm constituted of n
modes, then on is faced in the worst case with a number of cases to consider of

∑n
i=1 i

2 =O
(
n3

)
:

47

Chapter 4. Adaptive Algorithms and Modular Reasoning

if adding a new modes causes changes to the existing modes, one has to check anew that all

the modes are compatible with each other. Clearly, such a situation is not practical.

To simplify the development of adaptive algorithms, we first require that their different

modes be encapsulated in an interface that minimizes the dependencies between modes.

This interface consists of a unique entry point and a unique exit point per client. Appart

from the calls to this interface, there is no communication between different modes. It may

seem strange to put the inter-mode interface on the clients because mode changes should

be transparent to the clients. However, localizing the inter-mode interface on some other

components of the system would require making assumptions about the internal components

of the modes. We rule out this possibility in order not to restrict unnecessarily the possible

mode implementations. Moreover, in practice, a thin interface could easily hide mode changes

from client applications and, to guarantee smooth mode changes, the role of client can be

played by some servers belonging to the service provider.

Instead of synchronizing modes through ad-hoc conventions, we propose to build adaptive

algorithms around modular properties. A modular property P is a correctness condition which

applies to a mode taken in isolation and such that if all the modes of an adaptive algorithm A
individually satisfy P , then A is linearizable to D .

Observe that if every mode of an adaptive algorithm A satisfies the modular property P ,

then any new mode satisfying P may be added to A without changing the existing modes.

Moreover, in order to prove that the new mode satisfies P , one does not need to know anything

about the other existing modes. Modular properties thus solve the scalability problem that

ad-hoc approaches suffer from.

4.2 Related Work

The idea of improving the robustness and performance of distributed systems through adap-

tation is quite old has a rich literature literature.

Pedone [81] shows how through several examples how optimistic distributed protocols can

boost the performance of distributed systems.

Hiltunen and Schlichting [38] present an informal model for adaptive fault-tolerant systems

and propose to build adaptive algorithms by composing event-driven micro-protocols, giving

a few examples. At a high level, their modeling approach is similar to ours, but they do

not discuss the practical problem of reasoning about adaptive systems. Chang et al. [15]

observe that high performance in fault tolerant algorithms requires adaptation. They propose

a method, similar to speculation, for avoiding the overhead of full-fledged fault tolerance when

it is not necessary. They propose building algorithms out of modules that are specialized for

particular fault patterns. They apply their ideas to an atomic broadcast protocol, studying in

depth the performance of the module scheduling policy. They eschew the issue of maintaining

48

4.3. Modeling Adaptive Algorithms with I/O Automata

the properties of atomic broadcast when switching mode by allowing disorderly delivery of

messages during mode changes.

Later works emphasizes the issue of coordination of adaptation. Renesse et al. [83] and

Oreizy et al. [78] study adaptive algorithms that briefly stop servicing requests in order to

change mode. Bickford et al. [7] rigorously model and analyze adaptive distributed algorithms

(called Hybrid Protocols in their work) which can change mode without synchronization.

Their work is formalized in the NUPRL [20, 3] proof assistant.

Chen et al. [17] propose a general model for adaptive systems and an implementation

Cactus system. They implement and evaluate an adaptive group communication protocol

that continues servicing requests while changing mode. Wojciechowski, Rütti, and Schiper

[85, 93, 86] covered the issue of Dynamic Protocol Update, with a focus on the problem

of synchronizing updates of group communication protocol. They also present ways of

changing group communication algorithm without stopping the system while maintaining

the properties of group communication.

McKinley et al. [68] and Oreizy et al. [77] survey the literature on adaptive software.

Devising a scheduling policy, i.e. an algorithm to choose when to trigger adaptation and

which mode to switch to, is orthogonal to our work. However it is an issue that is also covered

by the literature, for example in the works of Rosa et al. [84]

A more general problem than the one of building adaptive algorithms is to formally model

systems in which components can be created or removed dynamically. Bozga et al. [11]

propose Dy-BIP, an extension of the BIP framework [6] that supports dynamic addition and

removal of components and interactions between components. Attie and Lynch [5] propose a

similar extension to the I/O automata framework.

4.3 Modeling Adaptive Algorithms with I/O Automata

We would like to model, using I/O automata, systems that are composed of a set of modes and

which run as follows.

At a high level, the system first choses an initial mode, instantiates it, and runs it. The initial

mode may abort at any time; when it does so, a new mode is chosen, instantiated, and run

in place of the previous mode. This process can repeat any number of times. Moreover, the

system also has a scheduling policy, i.e., an algorithm used to choose when to abort and which

mode to run next.

At a lower level, a client runs only one mode at a time and can enter a mode instance

only once. This one call used to enter a mode instance, modeled by a switch action, forms

the interface that encapsulates mode instances. Moreover, we let the clients change mode

asynchronously from each other.

49

Chapter 4. Adaptive Algorithms and Modular Reasoning

Modeling adaptive algorithms with I/O automata poses two problems: first, the theory of

I/O automata does not support the dynamic creation of components, and, second, the policy

governing the dynamic selection of modes may depend on complex runtime properties that

are difficult to model (like the throughput of the algorithm, the average latency, etc.).

We avoid the two problems be abstracting over the dynamic nature of the changes of modes

and over the scheduling policy. We will see that our abstraction of the dynamic nature of

changes is sound, i.e., it is an over-approximation of the behavior of the adaptive algorithm.

However, we leave the problem of the soundness of the abstraction over the scheduling policy

to the user who wishes to use our framework. She must make sure that her model of her

adaptive algorithm soundly models reality.

4.4 A Model for Adaptive Algorithms

We define an adaptive algorithm as set of modes, each mode representing a particular algo-

rithm. A mode is a function from natural numbers to I/O automata called mode instances. IfM
is a mode, then we say that the I/O automaton M [i] is the i th mode instance of M . Moreover,

we say that an I/O automaton A is an i th mode instance when there exists a mode M of the

adaptive algorithm where A=M [i].

We now assume that all the actions a that we consider have an instance number, noted

Num (a), usually appearing as superscript in action names. For example, an invocation action

of instance number i is noted Inv i
p (c), and Num

(
Inv i

p (c)
)= i .

For a family of I/O automata to qualify as a mode, its instances need to be well-formed, a

concept that we now define.

4.4.1 Well-Formed Mode Instances

Let V be a set whose members we call switch values.

When i > 1, the i th instance of a mode is well-formed when its traces t are such that, for

every client p, the projection t |p starts with an action of the form Switch i
p (c,v), for a command

c and a switch value v , then continues by alternating response actions, of the form Respi
p (o),

and invocation actions, of the form Inv i
p (c), until a pending request of p is aborted by a

Switch i+1
p (c,v) action.

A Switch i
p (c,v) action models the client p entering the mode after its request 〈p,c〉 was

aborted in in the mode instance numbered i −1. Conversely, an action Switch i+1
p models

the client p switching to the next mode instance, numbered i +1, because the current mode

instance aborted its request. When discussing the i th instance of a mode, we say that actions

of the form Switch i
p (c,v) are init actions and that the actions of the form Switch i+1

p are abort

actions. Moreover, given a trace t of an i th instance, the switch values appearing in the init

50

4.4. A Model for Adaptive Algorithms

actions found in t are called init values, and the switch values appearing in the abort actions

found in t are called abort values.

When i = 1, the i th instance is the first mode instance. There is no previous mode instance

that can switch to the first mode instance. Therefore, a first mode instance is well-formed when

its traces t are such that, for every client p, the projection t |p starts with an invocation action,

of the form Inv1
p (c), then continues by alternating response actions, of the form Resp1

p (o),

and invocation actions, of the form Inv1
p (c), until a pending request of p is aborted by a

Switch2
p (c,v) abort action.

We define Switch i as the set of all the init actions of an i th mode instance,

Switchs i = ⋃
p ∈ Π,c ∈ C

Switch i
p (c) , (4.1)

and we define Switch i
p as the set of all the init actions of the client p in an i th instance,

Switchs i
p = ⋃

c ∈ C
Switch i

p (c) . (4.2)

We define Invs i , Invs i
p , Resps i , and Resps i

p similarly.

To compose consecutive mode instances, we require that, for every i ∈ N, a well-formed i th

mode instance M [i] and a well-formed (i +1)th mode instance N [i +1] be compatible and

that the switch actions Switchs i+1 be outputs of M [i] and inputs of N [i +1].

In section 3.3.1, we have defined the I/O automaton Seq to formalize well-formed data-type

implementations. In the following paragraphs, we define the I/O automaton ModeInst (i) to

formalize the concept of well-formed mode instances.

The I/O automaton ModeInst (i) is obtained as the composition, for every client p, of the

I/O automata ModeInst
(
i ,p

)
,

ModeInst (i) =
∏

p ∈ Π

ModeInst
(
i ,p

)
. (4.3)

The inputs of ModeInst
(
i ,p

)
are the invocation actions of process p, Invs i

p , and, if i > 1,

the init actions of process p, Switchs i
p . The outputs of ModeInst

(
i ,p

)
are the abort actions of

process p, Switchs i+1
p , and the response actions of process p, Resps i

p .

A state of the I/O automaton ModeInst
(
i ,p

)
describes the status of the client p, which can

be either “idle”, “ready”, “pending”, or “aborted”. If i > 1, then every client is initially idle.

Otherwise, when i = 1, every client is initially ready.

The transition relation of ModeInst
(
i ,p

)
implements the behavior described above.

51

Chapter 4. Adaptive Algorithms and Modular Reasoning

1. An init action Switch i
p (c) is enabled when the client p is in status “idle” (possible only if

i = 1). Its effect is to set the status of the client to “pending”.

2. A response action Respi
p (o) is enabled when p is in status “pending”. Its effect is to set

the status of p to “ready”.

3. An invocation action Inv i
p (c) is enable when p is ready. Its effect is to set the status of p

to “pending”.

4. An abort action Switch i+1
p (c,v) is enabled when p is in status “pending” and the pending

request of p is 〈p,c〉. It sets the status of p to “aborted”. Once p has aborted, the execution

of ModeInst
(
i ,p

)
stops.

The transition relation of ModeInst
(
i ,p

)
is represented graphically in fig. 4.1, when i > 1, and

in fig. 4.2, when i = 1.

sleepingstart pending

ready

aborted

Switchs i
p

Resps i
pInvs i

p

Switchs i+1
p

Figure 4.1: The transition relation of ModeInst
(
i ,p

)
, when i > 1.

pending

readystart

aborted

Resps1
pInvs1

p

Switchs2
p

Figure 4.2: The transition relation of ModeInst
(
1,p

)
.

Note that if p 6= q them ModeInst
(
i ,p

)
and ModeInst

(
i ,q

)
have no common action. Thus,

in ModeInst (i), the two components ModeInst
(
i ,p

)
and ModeInst

(
i ,q

)
execute completely

asynchronously. Notably, processes can change mode asynchronously.

52

4.4. A Model for Adaptive Algorithms

Given a trace t of ModeInst (i), we say that v ∈ V is an init value if v appears as argument

of a switch action of instance number i and we say that v is an abort value if v appears as

argument of a switch value of instance number i +1.

Finally, a well-formed mode instances is defined as an I/O automaton that implements

ModeInst (i) for some i ∈ N and whose internal actions all have the instance number i . The

requirement on the instance number of internal actions ensures that, when i 6= j , an i th mode

instance and a j th mode instance are compatible I/O automata.

4.4.2 Composing Modes Instances

By definition of the I/O automaton ModeInst (i), if M and N are two modes, then, for any two

natural numbers i and j ,

1. if i 6= j , then the mode instances M [i] and N
[
j
]

are compatible I/O automata;

2. if |j − i | > 1, then M [i] and N
[
j
]

have no common actions;

3. if j = i +1, then a process that aborts in M [i] starts its execution in N
[
j
]
, accurately

modeling switching from one mode instance to the next.

The property stated in item 1 above implies that mode instances of different index can

be composed. Moreover, the properties of items 2 and 3 imply that only consecutive mode

instances may communicate, and that information flows only from the instance of smallest

index to the instance of largest index. This communication between consecutive mode

instances models processes running the smallest mode instance aborting and changing to the

next mode instance.

Finally, note that if one composes a set of instances containing one instance of index i
for every natural number i , then, hiding the switch actions and the instance numbers, one

obtains a well-formed data-type implementation.

Example: the I/O Automaton ModeInst (1)×ModeInst (2)

The interface of a mode instance and the restriction on its traces allows one to compose two

consecutive mode instances to obtain an I/O automaton representing an adaptive algorithm

that executes the first instance and then switches to the second instance, as shown in the

following example.

Consider the I/O automaton A=ModeInst (1)×ModeInst (2). By definition of ModeInst (i)

we have that

A=
(∏
p ∈ Π

ModeInst
(
1,p

))×(∏
p ∈ Π

ModeInst
(
2,p

))
. (4.4)

53

Chapter 4. Adaptive Algorithms and Modular Reasoning

Applying lemma 2.3.1, we obtain

A= ∏
p ∈ Π

(
ModeInst

(
1,p

)×ModeInst
(
2,p)

))
. (4.5)

For every client p, a state of the I/O automaton ModeInst
(
1,p

)×ModeInst
(
2,p)

)
is a pair

whose first element is the status of p in the first mode instance and whose second element

is the status of p in the second mode instance. In the initial state, every client p is in status

“ready” in the first mode instance and in status “idle” in the second. The transition relation of

the composition of the two instance is represented graphically in fig. 4.3.

Note that a process starts by emitting an invoke action of instance number 1, followed by a

sequence of response and invoke actions alternating in lockstep, all with instance number

1, until the process emits a switch action with instance number 2, which is followed by a

sequence of response and invoke actions alternating in lockstep, all with instance number 2,

until the process emits a switch action of instance number 3. This sequence of actions models

a process starting its execution in a mode instance of index 1 and at some point switching to a

mode instance of index 2, which terminates when trying to switch to a mode instance of index

3 because there is no such instance in the system.

"pending",
"sleeping"

"ready",
"sleeping"

start

"aborted",
"pending"

"aborted",
"ready"

"aborted",
"aborted"

Resps1
p

Invs1
p

Switchs2
p

Resps2
p

Invs2
p

Switchs3
p

Figure 4.3: The transition relation of ModeInst
(
1,p

)×ModeInst
(
2,p

)
where unreachable

states have been removed.

Example: Compositing Three Mode Instances

Figure 4.4 represents graphically how the interfaces of mode instances compose. The figure

represents a system consisting of three modes instances M1 [1] ,M2 [2] ,M3 [3], two processes

p, q, and r, and a client application using the interface of the data type D.

54

4.4. A Model for Adaptive Algorithms

Figure 4.4: Interfaces in a system composed of a three mode instances (that instantiate three
different modes M1, M2, and M3), of three processes p, q, and r, and of a client application.

4.4.3 A Correctness Condition for Adaptive Algorithms

We have defined above an adaptive algorithm as a set of modes. Then we have defined modes,

mode instances, and we have seen that mode instances can be composed. However, we have

not seen exactly how these definition relate to our idea of a real adaptive algorithm. Notably,

we have avoided mentioning the problems related to the dynamic nature of an adaptive

algorithm and to the scheduling policy. We now address those concerns and, in consequence,

define what it means for an adaptive algorithm to be correct.

First note that the interface of a mode instance does not contain any actions that could

model a scheduling policy component to indicate to the clients when to change mode and

which mode to switch to. Thus the scheduling policy is not part of our model, and it is the

responsibility of our user to make sure that this does not make her model unsound. In the

algorithm that we present in later chapters, clients can change mode instance at any time,

nondeterministically.

We now define a correctness condition for adaptive algorithms and we show that it is sound.

We define the mode schedules of an adaptive algorithm A as the I/O automata Sc such

that there exists a sequence 〈M1, . . . ,Mn〉 ∈ A∗ of modes such that Sc is the product, for every

55

Chapter 4. Adaptive Algorithms and Modular Reasoning

position i in the sequence, of the i th instance of the mode Mi ,

Sc = ∏
i ∈ 1..n

Mi [i]. (4.6)

We say that the adaptive algorithm A is correct when every mode schedule of A is a lin-

earizable implementation of D. Therefore, in a correct adaptive algorithm, the asynchronous

changes of mode are transparent to the application using the data-type implementation,

which only accesses the implementation through invocation and response actions.

Now consider a real adaptive algorithm modeled by the set of modes A. An execution of a

mode schedule of A corresponds to a run of the adaptive algorithm in which mode instances

are scheduled according to their order in the sequence. Moreover, for any possible succession

of modes observed in a run of a real adaptive algorithm, there is a corresponding mode

schedule of A whose traces include the trace of the considered run. Therefore, if A is correct,

then any run of the real algorithm (where modes are scheduled dynamically) is linearizable.

Conversely, of the real algorithm is correct, the A is correct. Note that as explained above,

we leave the burden of soundly abstracting the interaction of the mode instances with the

scheduling policy to our user and we assume that her abstraction is sound.

By definition of a mode instance, two consecutive mode instances in a mode schedule must

synchronize using the init values received (one per process). This is because the init values

received is the only information a mode has about the execution of the previous modes. This

restriction simplifies reasoning about adaptive algorithms, as we will see in the next section.

4.5 Modular Properties

Our definition of the correctness of an adaptive algorithm requires that any mode schedule

be linearizable. Checking that every mode schedule is linearizable one by one is of course

not feasible because there are infinitely many mode schedules. A more realistic approach

would consist in showing that for any two modes M1 and M2 of A, switching from an instance

of M1 to an instance of M2 preserves linearizability. However this approach suffers from the

scalability problem and the incremental design problem identified in the introduction: There

a n2 mode changes to consider, n being the number of modes of A, and adding a new mode

to an existing algorithm, as would be done when designing an algorithm incrementally, may

require in the worst case to reconsider all the n2 previous cases and n+1 new cases. To solve

these problems, we propose a third approach: using modular properties.

A modular property reduces the correctness of an adaptive algorithm to the correctness of

each of its modules, when taken independently of the others. This statement is formalized in

the modularity theorem below (theorem 4.5.1). With the abstraction theorem (theorem 3.5.1)

and the inter-object composition theorem (theorem 3.6.1), the modularity theorem constitutes

a third reduction theorem that simplifies the analysis of adaptive algorithms.

56

4.5. Modular Properties

Define Invs i ,j as the set of all the invocation actions whose instance number is comprised

between i and j with i and j included,

Invs i ,j = ⋃
k ∈ i ..j

Invsk (4.7)

Define Resps i ,j and Switchs i ,j similarly,

Resps i ,j = ⋃
k ∈ i ..j

Respsk ; Switchs i ,j = ⋃
k ∈ i ..j

Switchsk . (4.8)

Define πi ,j (A) as the I/O automaton obtained by hiding in the I/O automaton A the switch

actions whose instance number lies between i +1 and j −1 with bounds included,

πi ,j (A) = hide
(
A,Switchs i+1,j−1) . (4.9)

Also remember that πi/r (A) is the project of A onto the invocation and response actions,

πi/r (A) = proj
(
A,Invs ∪Resps

)
. (4.10)

Let P be a family of I/O automata with index setN×N,

P = {
P

[
i , j

]
: i , j ∈ N}

. (4.11)

We say that P is modular when

1. P is well-formed: for every i ∈ N, P [i , i +1] is a well-formed i th mode instance and the

I/O automata P [1, i] and P [i , i +1] are compatible.

2. P is linearizable: for every i ∈ N, P [1, i] is linearizable.

3. P is idempotent: for every natural number i > 1, the composition ofP [1, i] andP [i , i +1],

with the intermediate switch actions hidden, implements P [1, i +1],

π1,i+1 (P [1, i]×P [i , i +1]) ≤P [1, i +1] . (4.12)

We say that an adaptive algorithm A satisfies a modular property P when for every module

M ∈ A and for every natural number i , the i th mode instance of M implements P [i , i +1]:

∀M ∈ A, i ∈ N :M [i] ≤P [i , i +1] . (4.13)

4.5.1 The Modularity Theorem

Theorem 4.5.1 (Modularity Theorem). If P is modular and A satisfies P , then A is correct.

57

Chapter 4. Adaptive Algorithms and Modular Reasoning

The proof of the modularity theorem is conceptually simple but requires carefully manipu-

lating the signatures of the different I/O automata. To prove the modularity theorem, we first

need a few lemmas.

Lemma 4.5.1. If P is modular and i > 1, then

Inputs (P [1, i]) = Invs1,i−1, (4.14)

Outputs (P [1, i]) =Resps1,i−1 ∪Switchs2,i , (4.15)

Inputs (P [i , i +1]) = Switchs i ∪ Invs i , (4.16)

Outputs (P [i , i +1]) =Resps i ∪Switchs i+1, (4.17)

Proof. Follows from the fact that P is well-formed and idempotent.

The following corollary of lemma 4.5.1 will be useful in proving theorem 4.5.1:

Corollary 4.5.1.

∀i , j ∈ N :
(
πi/r ◦πi ,j

)(
P

[
i , j

])=πi/r
(
P

[
i , j

])
, (4.18)

Proof. By lemma 4.5.1

Lemma 4.5.2. If Ms is a sequence of modes of an adaptive algorithm A and n = |Ms |, then

π1,n+1

(∏
i ∈ 1..n

Ms [i] [i]

)
=π1,n+1

(
π1,n

(∏
i ∈ 1..(n−1)

Ms [i] [i]

)
×Ms [n]

)
(4.19)

Let us now prove the modularity theorem.

Theorem 4.5.1 (Modularity Theorem). If P is modular and A satisfies P , then A is correct.

Proof. By the definition of the correctness of an adaptive algorithms , we must show that for

every mode schedule Sc of A, πi/r (Sc) is linearizable. Expanding the definition of a mode

schedule, we must prove that:

∀Ms ∈ A∗ :πi/r

(∏
i ∈ Dom(Ms)

Ms[i][i]

)
≤ Lin(∆) (4.20)

58

4.5. Modular Properties

We proceed by induction on the length of the sequence Ms . Note that we will often implicitly

use the monotonicity of composition and projection operators (theorems 2.3.1 and 2.3.3),

aons well as lemma 4.5.1.

Let n = |Ms |, the length of Ms. Define the inductive property, IP (Ms), as follows.

IP (Ms) =π1,n+1

(∏
i ∈ 1..n

Ms[i][i]

)
≤P [1,n+1] (4.21)

Suppose that we prove that IP (Ms) holds for every mode sequence Ms . Then we have

πi/r

(
πi ,n+1

(∏
i ∈ 1..n

Ms[i][i]

))
≤πi/r (P [1,n+1]) . (4.22)

Therefore, by corollary 4.5.1,

πi/r

(∏
i ∈ 1..n

Ms[i][i]

)
≤πi/r (P [1,n+1]) (4.23)

Moreover, because P is linearizable , we have πi/r (P [1,n+1]) ≤ Lin (∆), which proves the

theorem. Therefore, establishing that IH holds for all MS ∈ A∗ would prove our goal.

Let us now prove by induction that IP holds for all sequences of modules.

1. If Ms = 〈〉 then we are done because the empty I/O automaton implements any I/O

automaton.

2. If Ms = 〈M1〉 then

π1,2

(∏
i ∈ 1..n

Ms [i] [i]

)
=M1 [1] . (4.24)

Since A satisfies P and M1 is a mode of A, we have that the first instance of M1, M1 [1],

implements P [1,2]. Therefore, by transitivity of ≤ and monotonicity of projection, we

get IP (Ms).

3. Now let us show the inductive step. Suppose that the sequence of modes Ms is obtained

by appending a mode M of A to the sequence of modesMs ′. Suppose that IP
(
Ms ′

)
, the

induction hypothesis, holds. Let n be the length of Ms ′.

By lemma 4.5.2,

π1,n+2

(∏
i ∈ 1..(n+1)

Ms[i][i]

)
≤π1,n+2

(
π1,n+1

(∏
i ∈ 1..n

Ms ′[i][i]

)
×M [n+1]

)
. (4.25)

59

Chapter 4. Adaptive Algorithms and Modular Reasoning

Moreover, by the induction hypothesis,

π1,n+1

(∏
i ∈ 1..n

Ms ′[i][i]

)
≤P [1,n+1] . (4.26)

Therefore,

π1,n+2

(∏
i ∈ 1..(n+1)

Ms[i][i]

)
≤π1,n+2 (P [1,n+1]×M [n+1]) . (4.27)

Since M ∈ A and A satisfies P (eq. (4.13)), we get

π1,n+2

(∏
i ∈ 1..(n+1)

Ms[i][i]

)
≤π1,n+2 (P [1,n]×P [n+1,n+2]) . (4.28)

Finally, with the idempotence property of P (eq. (4.12)), we conclude that

π1,n+2

(∏
i ∈ 1..(n+1)

Ms[i][i]

)
≤P [1,n+2] . (4.29)

4.6 Conclusion

In this chapter we have motivated the need for adaptive algorithm, which allow building

efficient and robust distributed systems. However, we have seen that it is not practical to

devise adaptive algorithms in an ad-hoc manner: as the number of possible adaptations grow,

the complexity of designing an adaptive algorithm grows quadratically. Morever, incremental

design is even more complicated. Therefore, a more principled, modular approach is therefore

needed.

We have formalized adaptive algorithms and modular properties, which enable scalable,

incremental development of adaptive algorithms.

In the next chapter we present a modular property that is both general, applying to any data

type, and efficiently implementable.

60

5 Speculative Linearizability

5.1 Introduction

In the preceding chapter, we have motivated the need for modular reasoning and we have pre-

cisely defined modular properties, which enable scalable and incremental design of adaptive

algorithms. However one important question remain: are there modular properties which are

efficiently implementable in the shared-memory or message-passing models of computation?

In this chapter we propose a modular property called speculative linearizability. Speculative

linearizability takes a parameter that allows one to instantiate it for any given data type. In the

next two chapters, we show that speculative linearizability can be efficiently implemented

in the message-passing model and we present a proof of concept implementation in shared

memory.

The SLin (∆) [i , i +1] automaton models an i th mode instance which behaves speculatively,

i.e., which only works under optimistic assumptions. If the optimistic assumptions hold, this

allows the system to perform efficiently. However, if the optimistic assumptions do not hold,

the state of the system can become inconsistent. In this case, the clients must detect the

inconsistency, abort their execution of the current mode instance and switch to the next mode

instance, passing a ∆-state as switch value. When the processes abort, the task of recovering

a consistent state and continuing the execution is picked up by the next mode instance. To

recover a consistent state, the next mode instance uses the ∆-states received as switch values

from the previous instance. The family of I/O automata SLin (∆) formally specifies this process

and, notably, defines how the execution of a mode should be encoded in the switch values in

order for the next mode to continue the execution and ensure that it remains linearizable.

The parameter ∆ of the family of I/O automata SLin (∆) must be a recoverable data-type

representation, abbreviated RDR, which is a special case of data-type representation. An RDR

guarantees that a consistent state can be recovered from a set of different states of the RDR.

The notion of RDR is based on the notion of C-Struct Set proposed in [49] to generalize the

Paxos algorithm.

61

Chapter 5. Speculative Linearizability

5.2 Related Work

Several reduction theorems can simplify the analysis of adaptive distributed algorithms. In the

next three paragraphs we reference reduction theorems that apply to distributed algorithms

in general. The Abstract framework provides, to our knowledge, the only reduction theorem

specifically targeting adaptive algorithms.

The abstraction and compositional properties of Linearizability [37, 51, 52, 28], presented in

chapter 3, are useful in simplifying the development of distributed systems: to reason about

the safety of a distributed system containing linearizable objects, it suffices to consider only

the executions in which the linearizable objects are accessed sequentially, thus abstracting

over concurrent accesses of the objects; accessing two linearizable objects in parallel, without

any synchronization, results in an execution which is linearizable to a simple product of the

two base objects.

Elrad and Francez [24] define communication-closed layers and show that to reason about

the safety of algorithms composed of communication-closed layers, one can assume that the

layers are sequentially composed, without interleaving. Charron-Bost and Schiper [16] build

on this work to propose a model unifying the treatment of process faults and communication

faults in distributed algorithms that evolve in communication-closed rounds. Their work is

not directly applicable to our case because algorithms which continuously receive requests, as

opposed to one-shot algorithms like consensus, cannot be decomposed in communication-

closed layers: their clients can always interact across layers.

Cut-off theorems are another kind of reduction theorems: they reduce the correctness of a

system to the correctness of its instances that have a fixed, usually small, size. For example,

some properties of networks of processes connected in a ring have cutoff sizes below 5 [27],

meaning that verifying them on a system containing 5 processes is sufficient to conclude that

the system is correct for any number of processes. Emerson and Kahlon derives cutoff bounds

[26] for systems whose processes are instances of a generic process template. Examples

include a cache coherence protocol. A later paper [25] generalizes the method to networks of

heterogeneous processes.

The Abstract framework [35] proposes a reduction theorem that is the main inspiration

behind the Speculative Linearizability framework. In the Abstract framework, adaptive algo-

rithms do not optimize the execution of commuting requests and must maintain full execution

histories in their data-structures. Inspired by work on the Generalized Consensus problem

[49], we have in our turn generalized the Abstract framework to allow optimized execution of

commuting requests and to minimize the size of the data-structures that implementations

must use. The abstract framework is obtained by instantiating the speculative linearizability

framework for the Generic data type defined in section 3.2.3.

62

5.3. Recoverable Data-Type Representations (RDRs)

5.3 Recoverable Data-Type Representations (RDRs)

Remember that we consider a data-type representation∆= 〈
Σ,O ,γ

〉
of D, whereΣ= 〈

S ,C ,
{⊥}

,δ
〉

is state machine. The states s ∈ S of the state machine are called ∆-states. To define recover-

able data-type representations, we need the concepts of ordering of ∆-state and of greatest

lower bound.

We say that a ∆-state d is smaller than a ∆-state d ′, noted d ¹ d ′, when there exists a

sequence of requests rs such that executing rs starting from d results in d ′,

d ¹ d ′ ⇔∃rs : d ′ = d ?rs . (5.1)

Note that the “smaller than” relation on ∆-states is not necessarily a partial order, for example

when the transition relation δ has cycles.

A ∆-state d is a lower bound of a set of ∆-states ds when d is smaller than every member of

ds . We write GLB (ds) for the greatest lower bound, or glb for short, of the ∆-states ds , when it

exists. Also note that the glb of a set of ∆-states does not necessarily exist.

We say that ∆ is a recoverable data-type representation when the following three properties

hold:

Property 5.3.1 (Antisymmetry). The “smaller than” relation on ∆-states, ¹, is antisymmetric.

Property 5.3.2 (Existence of GLB). Every two ∆-states have a unique greatest lower bound.

Property 5.3.3 (Consistency). If two ∆-states both contain a request r , then their glb also

contains r .

Corollary 5.3.1. Consider three∆-states d0, d1, and d2, a set of requests R, and two sequences of

requests rs1,rs2 ∈ R∗. If d1 = d0?rs1 and d2 = d0?rs2, then there exists a sequence of requests

rs ∈ R∗ such that GLB (d1,d2) = d0?rs .

Properties 5.3.1 and 5.3.2 imply that that the set S of∆-states and the “smaller than” relation

form a join semi lattice with ⊥ as least element: by definition, ¹ is reflexive and transitive; with

property 5.3.1, we get that ¹ is a partial order; with property 5.3.2 we have that 〈S ,¹〉 is a join

semi-lattice.

We will see that properties 5.3.1 to 5.3.3 are crucial for the successful recovery of an aborted

instance of the SLin I/O automaton.

The reader who is familiar with the Generalized Consensus problem [49] will recognize the

similarity between RDRs and C-Struct Sets. Although similar, RDRs have a notion of behavior

that includes the outputs that clients receive, whereas C-Struct Sets do not.

We now show that any data type has a RDR and, in particular, we present the History RDR,

H # (D), of a data type. Like Fold (∆), which is a minimal data-type representation, H # (D) is a

minimal recoverable data-type representation.

63

Chapter 5. Speculative Linearizability

Lemma 5.3.1. Every data type has a recoverable data-type representation.

Proof. Unfold (∆) is a recoverable data-type representation of D.

The state of the representation Unfold (∆), defined in section 3.2.4, is the full sequence of

requests that have been executed so far, modulo duplicated requests. In this case, a ∆-state d
is smaller than a ∆-state d ′ if d is a prefix of d ′. Moreover, the greatest lower bound of d and d ′

is their longest common prefix.

The RDR Unfold (∆) is not a very efficient representation because it uses full execution

histories. In section 3.2.4 we have seen that Fold (∆) minimizes the number of states that a

representation can have. However, Fold (∆) is not always a RDR because it may introduce

cycles in the state transition graph representing δ.

In order to obtain RDRs with small state spaces, we now introduce the History RDR H # (D),

where # is a dependency relation of D .

5.3.1 The History Data-Type Representation

We say that two requests r and r ′ commute when, for every behavior b = 〈op1, . . . ,opn〉 of D ,

if r and r ′ appear in two adjacent operations opi and opi +1, then the behavior obtained

by swapping opi and opi+1 is also a behavior of D . Note that this means that we can swap

commuting requests without affecting subsequent requests and without changing the output

that the two swapped requests receive. The commutativity property of requests is formalized

in a dependency relation which contains every pair of requests that do not commute.

However, it is often difficult to determine whether two requests commute. Instead, we can

use an over-approximation of the dependency relation by including requests that commute in

the dependency relation. We say that a relation # over requests is a dependency relation of D
when # is symmetric and, if r and r ′ are two requests that do not commute, then

〈
r ,r ′

〉 ∈ #.

When
〈
r ,r ′

〉 ∈ # we say that r and r ′ are (mutually) dependent.

Given a dependency relation #, we say that two sequences of requests rs and rs ′ are equiva-

lent when one can be obtained from the other by applying a permutation that preserves the

relative order of dependent requests. More precisely, the sequences of requests rs and rs ′ are

equivalent when there exists a permutation σ such that, for every position i , rs [i] = rs ′ [σ [i]]

and, for every position j , if i < j and
〈
rs [i] ,rs

[
j
]〉 ∈ #, then the permutation σ preserves the

order of i and j , σ [i] <σ
[
j
]
.

The equivalence relation is symmetric, transitive, and reflexive, therefore we can define the

equivalence class Eq (rs) of a sequence of requests and we know that the equivalence classes

form a partition of the set of sequences of requests. Let H be the set of equivalence classes.

The history data-type representing H # (D) uses equivalence classes of the dependency

64

5.4. Speculative Linearizability

relation as states. The transition function δ# as mapping the equivalence class Eq (rs) of a

sequence of requests rs and a new request r to the equivalence class of the concatenation of

rs and r ,

δ#
(
Eq (rs) ,r

)=Eq
(
Append (rs ,r)

)
. (5.2)

Moreover, we define the output function γ# such that the output obtained by executing a

request r on the equivalence class Eq (rs) is equal to the output obtained by executing in ∆

the request r on the ∆-state ⊥?rs ,

γ#
(
Eq (rs) ,r

)= γ (⊥?rs ,r) . (5.3)

Now define the history data-type representation H # (D) as the data-type representation

whose states are the equivalence classes of #, whose initial state is the equivalence class of the

empty sequence of requests, whose transition function is δ#, and whose output function is γ#,

H # (D) = 〈〈
H ,

{
Eq (〈〉)},C ,δ#

〉
,O ,γ#

〉
. (5.4)

Note that because ∆ is a data-type representation of D, if rs ′ and rs are equivalent, then, for

every request r, δ(rs ′,r) and δ(rs ,r) are equivalent and γ (rs ,r) = γ
(
rs ′,r

)
. Therefore γH and

δH are well defined.

We now have the following important property.

Theorem 5.3.1. If the relation on requests # is a dependency relation of D then the data-type

representation H # (D) is a recoverable data-type representation.

Proof. See section 4.4 of Lamport’s paper [49], where the properties of interest are proved in

the context of C-Struct Sets. The proof of Lamport is based on the work of Mazurkiewicz [67]

on trace theory.

Theorem 5.3.1 is important because, in contrast to Unfold (∆), executing commutative

requests in any order always leads to the same ∆-state in H # (D). With the unfold (∆) RDR,

executing commutative requests in different orders lead to different ∆-states. We will see

in chapter 6 that this property allows algorithms to execute commutative requests without

synchronization.

5.4 Speculative Linearizability

Speculative linearizability is a modular property

SLin = {
SLin

[
i , j

]
: i , j ∈ N}

. (5.5)

65

Chapter 5. Speculative Linearizability

Therefore, for every i ∈ N, the SLin [i , i +1] I/O automaton is a well-formed i th mode instance.

This means that, when i > 1, clients start their execution with an init action, followed by a

response, then an invocation, then a response, etc. until they abort a pending request by

emitting an abort action. If i = 1, then the clients start their execution with an invocation

action instead of an init action.

We will first examine the I/O automaton SLin [1, i] where i > 1.

5.4.1 The I/O Automaton SLin [1, i]

The definition of the SLin [1, i] I/O automaton ensures that, as required of a modular property,

SLin [1, i] is linearizable when its abort actions are hidden and SLin [1,2] is a well-formed

first mode instance.

Signature

As noted above, every client starts its execution with an invocation action, therefore the

SLin [1, i] I/O automaton has no input switch actions. The input actions of SLin [1, i] are the

invocation actions whose instance number belongs to 1..(i −1),

Inputs (SLin [1, i]) = Invs1,i−1. (5.6)

The set of output actions of the I/O automaton SLin
[
1, j

]
consists of the response actions

whose instance number belongs to 1..(j −1) and of the switch actions whose instance number

is j ,

Outputs (SLin [1, i]) =Resps1,i−1 ∪Switchs i . (5.7)

The signature of SLin [1, i] contains all invocations and responses in the instance number

range 1..(i −1) in order to satisfy the idempotence property of modular properties. This will

become clear once we define, in the next section, the I/O automaton SLin [i , i] in the general

case, i , i ∈ N.

The SLin [1, i] I/O automaton is very similar to the NDLin I/O automaton of section 3.4

except that it has abort actions. Like in the NDLin I/O automaton, the internal actions of

the I/O automaton SLin [1, i], of the form Linearize1, are actions which linearize a whole

sequence of pending requests at once.

We define the operator PendingReqs as the set of requests r such that there exists a process

p in status “pending” or “aborted” such that pending
[
p
]= r .

66

5.4. Speculative Linearizability

State Space and Transition Relation

The state of SLin [1, i] consists of 4 components, dState , tracking the current state of the RDR

∆, abortVals , tracking the set of abort values that have been produced so far, and, for every

client p, status
[
p
]
, tracking the control flow location of p, and pending

[
p
]
, containing the

pending request of p.

Initially, dState is ⊥, abortVals is the empty set, and, for every client p, status
[
p
]= "ready"

and pending
[
p
]

is arbitrary. As in the ModeInst
(
1,p

)
I/O automaton, a client p can be either

in status “ready”, “pending”, or “aborted”.

Given a state of SLin [1, i], we say that d is a choosable-∆-state, d ∈ Choosable , when

1. there is a sequence of pending requests rs ∈ Seq
(
PendingReqs

)
where d = dState?rs

and

2. d is bounded above by every member of abortVals .

We will see below that the Linearize1 action updates dState to a choosable-∆-state.

We now describe the transition relation of SLin [1, i].

1. The invocation action Invm
p (c) where m ∈ i ..(i −1) is enabled when p is ready. Its effect

is to update pending
[
p
]

to 〈p,c〉 and to set status
[
p
]

to "pending". The client p now

has a pending request. Note that this action is the same as the Invp (c) action of the

NDLin I/O automaton.

2. The Linearize1 action is similar to the Linearize action of the NDLin I/O automaton,

linearizing multiple pending requests at once, but it restricts the possible new values of

dState to the ones that are bounded above by every abort value: The action Linearize1

is enabled when at least one client is in status “pending” and its effect is update dState
to a choosable ∆-state.

3. The response action Respm
p (o) where m ∈ i ..(i −1) is enabled when p is in status “pend-

ing”, dState contains the pending request of p, and the output o is equal to the output

obtained by executing the pending request of p on dState , o = γ
(
dState ,pending

[
p
])

.

4. The abort action Switch i
p (c,av) is enabled when p is in status “pending”, the pending

request of p is 〈p,c〉, and the abort value av is of the form av = dState ? rs where rs
is a sequence rs of pending requests. The abort action models the client p extracting

an “approximate” but safe estimate of dState from an implementation that has been

corrupted by overly optimistic speculative updates.

The control flow of a client p is represented graphically in fig. 5.1.

67

Chapter 5. Speculative Linearizability

pending

readystart

aborted

Resps1,i−1
p

Contains
(
dState ,pending

[
p
])Invs1,i−1

p

Switchs i
p

Figure 5.1: The control flow of a process p in the SLin [1, i] I/O automaton

An Important Invariant

Property 5.4.1. In every reachable state of SLin [1, i], every abort value av ∈ abortValues is of

the form dState?rs , where rs ∈ Seq
(
PendingReqs

)
.

As we will see in the next subsection, in the composition SLin [1, i]×SLin
[
i , j

]
, the I/O

automaton SLin
[
i , j

]
relies on the invariant to recover a consistent state of the RDR ∆ and

continue the execution where SLin [1, i] left it, preserving linearizability.

5.4.2 Linearizability of SLin

We see that, ignoring the abort actions, the actions of the SLin [1, i] I/O automaton are all

actions of the NDLin I/O automaton. Moreover, the abort action only stops a client, setting

its status to “aborted”. Therefore it is easy to show that, if one ignores the instance numbers of

actions, SLin [1, i] implements NDLin .

Theorem 5.4.1. For every i ∈ N, the projection of SLin [1, i] onto the invocation and response

actions implements the I/O automaton NDLin .

Proof. Let f be the function mapping a state of s of SLin [1, i] to a state t of NDLin such that

1. the dState and pending components of s and t are equal;

2. the status of a client p in t is the same as the status of p in s except that if s .status
[
p
]=

"aborted", then t .status
[
p
]= "pending".

It is easy to see that the function f is a refinement mapping from SLin [1, i] to NDLin .

Corollary 5.4.1 (Linearizability of SLin). For every n ∈ N, the projection of SLin [1, i] onto the

invocation and response actions is linearizable.

68

5.4. Speculative Linearizability

Proof. Using corollary 3.4.1, NDLin ≤Lin , by transitivity of the implementation relation.

5.4.3 The I/O Automaton SLin
[
i , j

]
For SLin to be a modular property, the composition SLin [1, i]×SLin

[
i , j

]
, for 1 < i < j , must

implement SLin
[
1, j

]
. Therefore, the I/O automaton SLin

[
i , j

]
must be able to continue the

execution started by SLin [1, i] while preserving linearizability. Moreover, SLin [i , i +1] must

be a well-formed mode instance. We will now define SLin
[
i , j

]
with these constraints in mind.

Signature

The input actions of SLin
[
i , j

]
are the invocation actions whose instance number belongs to

i ..(j −1) and the switch actions of instance number i (the init actions),

Inputs (SLin [1, i]) = Invs i ,j−1 ∪Switchs i . (5.8)

The set of output actions of the I/O automaton SLin
[
i , j

]
consists of the response actions

whose instance number belongs to i ..(j −1) and of the switch actions whose instance number

is j (the abort actions),

Outputs
(
SLin

[
i , j

])=Resps i ,j−1 ∪Switchs j . (5.9)

The internal actions of SLin
[
i , j

]
are the actions of the form Linearize i

p and Recover i .

We see that SLin [i , i +1] has the signature of a well-formed mode instance, that the signa-

ture of SLin [1, i] is compatible with the signature of SLin
[
i , j

]
, and that the external signature

of SLin [1, i]×SLin
[
i , j

]
is equal to the external signature of SLin

[
1, j

]
.

State Space

The state of SLin
[
i , j

]
consists of 6 components, dState , tracking the current ∆-state, intVals ,

tracking the set of init values that have been received so far, abortVals , tracking the set of abort

values that have been produced so far, initialized , a boolean, and, for every client p, status
[
p
]
,

tracking the control flow location of p, and pending
[
p
]
, containing the pending request of p.

We see that a state of SLin
[
i , j

]
has all the components of a state of SLin [1, i] plus the

boolean initialized and the set of∆-states initVals . We will see thatSLin
[
i , j

]
when initialized

is true, SLin
[
i , j

]
executes exactly like SLin [1, i].

Initially, dState is ⊥, the sets initVals and abortVals are empty, initialized is false, and, for

every client p, status
[
p
]= "idle" and pending

[
p
]

is arbitrary.

As in the ModeInst
(
i ,p

)
I/O automaton, a client p can be either in status “idle”, “ready”,

“pending”, or “aborted”. Note that, in contrast to SLin [1, i], the initial control flow of a client if

69

Chapter 5. Speculative Linearizability

not “ready” but “idle”.

Transition Relation

Given a state s of SLin
[
i , j

]
, we define four sets of ∆-states: the set of glbs of init values, G ,

the set of safe init values, SafeInits , the set of choosable values, Choosable , and the set of safe

abort values, SafeAborts . We will see that safe init values are used in the recover action to

initialize dState , choosable values are used in the Linearize i action to update dState , and

safe abort values are used in the Switch j
p actions as abort values. The intuition behind the

definitions presented below are to be found in the proof sketch of the idempotence property

of SLin .

Let G be the set of the ∆-states g where g is the glb of a nonempty subset initVals ,

G = {
GLB (ivs) : ivs ⊆ initVals

}
. (5.10)

We say that a ∆-state d is a safe init value, d ∈ SafeInits , when

1. d is of the form g ? rs where g ∈G , rs ∈ Seq
(
PendingReqs

)
is a sequence of pending

requests and

2. d is bounded above by every member of abortVals .

We say that a ∆-state d is a safe ∆-state, d ∈ SafeDStates , when

1. d is greater than or equal to dState and

2. d is bounded above by every member of abortVals and

3. there is a sequence of pending requests rs where either

(a) d = dState?rs or

(b) there exists g ∈G such that d = g ?rs .

More formally, the set of safe ∆-states is defined as follows.

SafeDStates = {
s ∈ S : dState ¹ s ∧ (∀av ∈ abortVals : s ¹ av)

∧∃rs ∈ Seq
(
PendingReqs

)
: s = dState?rs ∨∃g ∈G : s = g ?rs

}
.

(5.11)

We now define the set of safe abort values, SafeAborts .

1. If the boolean initialized is false, then the safe abort values are the ∆-states of the form

g ?rs where g ∈G and rs ∈ Seq
(
PendingReqs

)
is a sequence of pending requests.

70

5.4. Speculative Linearizability

2. If initialized is true, then the safe abort values are the ∆-states d such that

(a) d is greater than or equal to dState and

(b) there is a sequence of pending requests rs where either

i. d = dState?rs or

ii. there exists g ∈G such that d = g ?rs .

Formally, if initialized is false, then

SafeAborts = {
g ?rs : g ∈G ∧rs ∈ Seq

(
PendingReqs

)}
, (5.12)

and if initialized is true, then

SafeAborts = {
s ∈ S : dState ¹ s

∧∃rs ∈ Seq
(
PendingReqs

)
: s = dState?rs ∨∃g ∈G : s = g ?rs

} (5.13)

We now describe the transition relation of SLin
[
i , j

]
.

1. The init action Switch i
p (c, iv) is enabled when p is in status “idle”. Its effect is to update

pending
[
p
]

to 〈p,c〉, to add iv to the set initVals , and to set status
[
p
]

to "pending".

2. the Recover i action is enabled when the boolean initialized is false and the set initVals
is nonempty. Its effect is to set dState to a safe init and to set set initialized to true.

3. The invocation action Invm
p (c) where m ∈ i ..(j −1) is enabled when p is ready. Its effect

is to update pending
[
p
]

to 〈p,c〉 and to set status
[
p
]

to "pending".

4. The Linearize i action is enabled when at least one client has a pending request and

the boolean initialized is true. Its effect is to linearize an arbitrary sequence of pending

requests by updating dState to a choosable ∆-state.

5. The response action Respm
p (o) where m ∈ i ..(j −1) is enabled when p is in status “pend-

ing”, the boolean initialized is true, dState contains the pending request of p, and the

output o is equal to the output obtained by executing the pending request of p on dState ,

o = γ
(
dState ,pending

[
p
])

. The effect of the response action is to update the status of p
to “ready”.

6. The abort action Switch j
p (c,av) is enabled when p is in status “pending”, the pending

request of p is 〈p,c〉, and av is a safe abort value.

The control flow of a client p is represented graphically in fig. 5.1.

71

Chapter 5. Speculative Linearizability

sleepingstart pending

ready

aborted

Switchs i
p

Resps i ,j−1
p

Contains
(
dState

(
pending

[
p
]))Invs i ,j−1

p

Switchs j
p

Figure 5.2: The control flow of a process p in the SLin
[
i , j

]
I/O automaton when i > 1.

5.4.4 Idempotence of SLin

We have shown in section 5.4.2 that SLin is linearizable. To prove that SLin is a modular

property, we still need to show that SLin is idempotent and well-formed. We now address

idempotence. The invariants and refinement proof sketch below should help the reader

understand the definitions of the previous section.

Theorem 5.4.2 (Idempotence of SLin). The family of I/O automata
{
SLin

[
i , j

]
: i , j ∈ N}

is

idempotent.

To sketch the proof of this result we first need to establish a few invariants of the I/O

automaton SLin [1, i]×SLin [i , i +1].

Consider a state 〈s1,s2〉 of SLin [1, i]×SLin [i , i +1].

Let PendingReqs ′ be the set of requests r which are pending in s2 or such that there exists p
where status (s1)

[
p
]= "pending" and pending

[
p
]= r ,

PendingReqs ′ =PendingReqs (s2)∪{
pending

[
p
]

: status (s1)
[
p
]= "pending"

}
(5.14)

Note that if 〈s1,s2〉 and s are related by the refinement mapping f , then PendingReqs (s) =
PendingReqs ′.

Lemma 5.4.1 (Invariant 1). If initialized (s2) is false, thenPendingReqs ′ is a equal toPendingReqs (s1).

Lemma 5.4.2 (Invariant 2). If initialized (s2) is false, then for every safe init value iv ∈ SafeInits (s2),

there exists a sequence of pending requests rs ∈ PendingReqs ′ such that iv = dState (s1)?rs .

Lemma 5.4.3 (Invariant 3). If initialized (s2) is false, then for every safe abort value av ∈ SafeAborts (s2),

there exists a sequence of pending requests rs ∈ PendingReqs ′ such that av = dState (s1)?rs .

Lemma 5.4.4 (Invariant 4). If initialized (s2) is true and the ∆-state d is such that

72

5.4. Speculative Linearizability

• dState (s2) ≤ d and

• there exists g ∈G (s2) and a sequence of pending requests rs ∈ Seq
(
PendingReqs (s2)

)
such that d = g ?rs ,

then there exists a sequence of requests rs ′ ∈ Seq
(
PendingReqs ′

)
such that d = dState (s2)?rs ′.

The invariants 2, 3, and 4 follow from the conjunction of the invariant of SLin [1, i] presented

in the previous section (property 5.4.1), the consistency property of recoverable data-type

representations, and the first invariant.

Let us now sketch the proof of theorem 5.4.2

Theorem 5.4.2 (Idempotence of SLin). The family of I/O automata
{
SLin

[
i , j

]
: i , j ∈ N}

is

idempotent.

Proof. Define the function f mapping a state 〈s1,s2〉 of SLin [1, i]×SLin [i , i +1] to the state s
of SLin [1, i +1] where

1. the boolean initialized (s) is true;

2. if dState (s2) =⊥, then dState (s) is equal to dState (s2), else dState (s) is equal to dState (s1);

3. for every client p, if status (s1)
[
p
]= "aborted", then status (s)

[
p
]= status (s2)

[
p
]
, else

status (s)
[
p
]= status (s1)

[
p
]
;

4. for every client p, if status (s1)
[
p
] = "aborted", then pending (s)

[
p
] = pending (s2)

[
p
]
,

else pending (s)
[
p
]= pending (s1)

[
p
]
;

5. the set abortVals(s) is equal to abortVals (s2).

Under the refinement mapping f , the I/O automaton SLin [1, i]×SLin [i , i +1] simulates

the I/O automaton SLin [1, i +1] as follows.

1. Invoke and response actions of both SLin [1, i] and SLin [i , i +1] simulate, respectively,

invoke and response actions of SLin [1, i +1].

2. The Recovery i action of SLin [i , i +1] simulates a Linearize1 action of SLin [1, i +1].

3. The switch actions Switch i , which are the abort actions of SLin [1, i] and the init actions

of SLin [i , i +1], are stuttering steps for SLin [1, i +1].

4. The abort actions of SLin [i , i +1], Switch i+1, simulate abort actions of SLin [1, i +1].

5. Both theLinearize1 and theLinearize i actions simulate aLinearize1 action ofSLin [1, i +1].

73

Chapter 5. Speculative Linearizability

The most interesting cases are those of the Recover i action, the Switch j abort action of

SLin [i , i +1], and the Linearize i action of SLin [i , i +1].

5.4.5 SLin is a modular property

We have proved in the preceding sections that SLin is linearizable and that SLin is idempotent.

To prove that SLin is a modular property, it remains to show that SLin is well-formed.

Theorem 5.4.3 (SLin is Well-Formed). For every j ∈ N, SLin
[
j , j +1

]≤ModeInst
(
j
)

and the

I/O automata SLin
[
1, j

]
and SLin

[
j , j +1

]
are compatible.

Proof. Consider the function f which maps a state s ofSLin
[
j , j +1

]
to the state t ofModeInst

(
j
)

by projecting s onto its status component, f [s] = pending (s). The function f is a refine-

ment mapping from SLin [i , i +1] to ModeInst (i). Also note that the external signature of

SLin [i , i +1] is the same as the external signature of ModeInst (i). Therefore, SLin [i , i +1] ≤
ModeInst (i).

Moreover, it is easy to see that the I/O automata SLin [1, i] and SLin [i , i +1] are compatible

by looking at their signatures.

Finally, we can prove our main theorem.

Theorem 5.4.4. The family of I/O automaton
{
SLin

[
i , j

]
: i , j ∈ N}

is a modular property.

Proof. Theorem 5.4.3 shows that SLin [i , i +1] is a well-formed i th mode instance, corol-

lary 5.4.1 shows that SLin [i , i +1] is linearizable, and theorem 5.4.2 shows that SLin [i , i +1]

is idempotent. Therefore
{
SLin

[
i , j

]
: i , j ∈ N}

is a modular property.

5.4.6 Proving Idempotence Mechanically

In an effort to make the results of this thesis trustworthy, we have mechanically proved in

Isabelle/HOL the idempotence of a restricted version of the speculative linearizability property.

We present our proof in this chapter.

Isabelle/HOL [76] is a highly trustworthy interactive proof assistant for higher order logic

offering a sophisticated infrastructure. It is an instance of the generic interactive proof assistant

Isabelle [80]. Isabelle/HOL allows writing and interactively proving statements in higher order

logic. All proofs are checked by a small, highly trusted kernel of inference rules. A large library

of derived proof rules and theorems is available and several packages provide automated

setup for higher level concepts such as records, recursive and co-recursive data-types [89],

recursive functions, modular organisation of specifications with locales [45], etc. The Isar

74

5.4. Speculative Linearizability

proof language [91] allows writing structured and readable proofs in a style which is close to a

detailed manual proof. Several automatic proof methods are available, such has the simplifier,

the tableau prover [79], and Sledgehammer [8], which can call external automatic provers and

SMT solvers [8] and reconstruct the obtained proofs in Isabelle/HOL. Moreover, the Nitpick

tool [9] can search for counterexamples to putative theorems.

We have proved the idempotence theorem for a specification I/O automaton ALM which is

close to the SLin I/O automaton except that the data type is fixed to the Generic data type

presented in section 3.2.3 and that its behavior is restricted in a few corner cases.

Consider the representation ∆ of the Generic data-type presented in section 3.2.3. Remem-

ber that in an execution of ∆, the state of ∆ is the sequence of requests, without the duplicates,

that have been executed up to this point. Moreover, the output contained in a response is the

current state. The data-type representation ∆ is a recoverable data-type representation: the

“less than” relation on states is the prefix relation on sequences, and the glb of a set of ∆-states

is their longest common prefix.

The I/O automataALM
[
i , j

]
, for 1 ≤ i < j , is very similar to the I/O automatonSLin (∆)

[
i , j

]
both in structure and in behavior. The ALM [1, i] I/O automaton, for 1 < i , has the same set

of traces as SLin [1, i]. The set of traces of the ALM
[
i , j

]
I/O automaton, for 1 < i < j , is a

strict subset of the set of traces of SLin
[
i , j

]
because the abort actions of ALM

[
i , j

]
are more

restricted. In ALM
[
i , j

]
, when the boolean initialized is true, the safe abort values are of the

form d = dState?rs , where rs is a sequence of pending requests. However, in SLin
[
i , j

]
, the

abort values can also be of the form d = g ? rs , where g ∈ {
GLB (is) : is ⊆ initVals

}
, rs is a

sequence of pending requests, and dState ≤ d . If there is an init value which is strictly bigger

than dState and which cannot be obtained by appending pending requests to dState , then

some safe abort values of SLin are not safe abort values of ALM .

The difference between theALM I/O automata and theSLin I/O automata is not significant

and they both have the same structure and rely on the same invariants. However we have

found out by model checking our specifications that, in a corner case, the Quorum algorithm

violates the more restricted abort actions of the ALM I/O automata.

The Isabelle/HOL proof shows that ALM [1, i]×ALM
[
i , j

]
implements ALM

[
1, j

]
, for

1 < i < j . The refinement mapping is essentially the same as in the proof of theorem 5.4.2. We

prove the refinement mapping correct with the help of 15 state invariants about the composite

automaton. The proof is written in the structured proof language Isar and consists of roughly

500 proof steps (lines containing the keywork “by”). With the specification, it forms a total of

1600 lines of Isabelle/HOL code.

Our automata specification can be used as the basis for mechanically-checked refinement

proofs of distributed protocols. Our proof of the composition is a good example of such a

refinement proof and shows that mechanically-checked proof of speculatively linearizable

algorithms are possible.

75

Chapter 5. Speculative Linearizability

We conclude the chapter by a few subjective remarks on the author’s experience with

Isabelle/HOL. It is extremely time consuming for a relatively novice user to formalize and

prove in Isabelle/HOL a theory that is not well-understood beforehand. The problem is

that Nitpick and the other debugging tools available in Isabelle are not able to check high

level properties like the idempotence or linearizability of SLin . Only deeply nested proof

steps can be debugged in Isabelle/HOL. As a result, many errors where discovered late in

the development and ultimately, although ALM was proved idempotent after a lot of effort,

the ALM specification was found inadequate for proving Quorum . After this experience, the

author formalized all his results in TLA+ and the TLC model checker was able to check our

claims, end to end. Many errors were eliminated in the process, which culminated in a few

month to the theory presented in this thesis. In contrast, our first development took more than

a year and resulted in a mechanically checked proof of a property which is not exactly the right

one in practice. In conclusion, even though experienced users may be able to use Isabelle/HOL

effectively, the learning curve is still very steep for an outsider. However, debugging tools that

allow quick prototyping are extremely useful and if integrated with Isabelle/HOL could allow a

much broader audience to use it.

5.5 Conclusion

In this chapter we have presented the modular property SLin . Together with our model of

adaptive algorithm the SLin modular property forms the Speculative Linearizability frame-

work.

We have introduced recoverable data-type representations (RDRs) and we have seen that

the speculative linearizability property models systems in which the processes behave spec-

ulatively, i.e., they optimistically update a distributed implementation of the state of a RDR

in a way that leads to increased performance under some optimistic assumptions and to the

corruption of the state otherwise. If the state of the system is corrupted by an overly optimistic

update, then the processes must detect it, abort their execution, and switch to the next mode,

bringing along their estimate of the corrupted RDR state. Thanks to the properties of RDRs,

the next modes can use the set of different RDRs received from the processes to recover a

consistent RDR state and continue the execution in a linearizable fashion.

In the next chapter we will see that the speculative linearizability property is efficiently

implementable in the message-passing model of computation. To do so, we will present

speculatively linearizable adaptive algorithms that efficiently implement any data type. We

will also see in chapter 7 that speculative linearizability can be applied to the shared-memory

model.

76

6 Applying Speculative Linearizability
to Fault-Tolerant Message-Passing
Systems
6.1 Introduction

In this chapter we apply speculative linearizability to build robust, linearizable, fault-tolerant

message-passing algorithms. Thanks to speculative linearizability, we will obtain a new

algorithm which improves upon the state of the art on several dimensions. We suppose

that the clients in Π and a set of servers communicate through a fully-connected network.

The relative speed of all the agents, clients and servers, and of the network are unknown

and processes and servers can crash by stopping. An agent that does not crash executes its

assigned algorithm faithfully. Our goal is to build a robust implementation of the data type D

in this environment, using the servers as internal components of the implementation.

Traditionally, fault-tolerant implementations of a data type were built using the State-

Machine Replication technique, abbreviated SMR. In SMR, the servers, called replicas, each

maintain a copy of a representation ∆ of D. The servers use a sequence of independent

instances of a consensus algorithm, where the first instance determines the first request to

execute, the second instance determines the second request, and so on. Therefore, all the

server execute the same sequence of requests and go through the same sequence of states.

Thus, if a server crashes, then the processes can just use another one.

SMR works but has a drawback: because the requests are ordered by independent consensus

instances, a SMR algorithm cannot easily optimize the execution of requests that commute.

For example, even if the requests r1 and r2 commute, an SMR algorithm will guarantee that all

servers agree on the same order between r1 and r2. However this is not necessary, because, by

virtue of r1 and r2 commuting, any order results in the same outputs and future executions

from the point of view of the clients.

The notion of Generalized Consensus [49] allows one to solve this problem. Generalized

Consensus formalizes the task of agreeing, modulo the order of commuting requests, on a

growing sequence of requests. Therefore Generalized Consensus is a specification of the

problem that SMR is trying to solve, except that it has relaxed requirements for commuting

77

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

requests. In contrast to SMR, Generalized Consensus does not mandate a specific implemen-

tation technique. In fact, SMR can be viewed as a possible implementation of Generalized

Consensus, albeit one that does not take advantage of commutativity. In Generalized Consen-

sus, the parties agreeing on the sequence of requests are the client, and not the servers. The

servers are now part of the implementation of Generalized Consensus and need not follow

any specific protocol a priori. Therefore, in contrast to SMR, there is no artificial separation

between consecutive requests. Generalized Consensus is similar to linearizability but abstracts

over how the processes should compute outputs, instead focusing on how to learn about the

current state of the data type.

Generalized Paxos, abbreviated GP, is an adaptive algorithm in the spirit of Fast Paxos [48]

which implements Generalized Consensus. The servers of GP, called acceptors, execute a

sequence of ballots, where each ballot can be either a fast ballot or a classic ballot. We will now

call the servers “acceptors”. Both kinds of ballot may fail to make progress, leaving the task to

a later ballot. Let us say that two requests are non-conflicting when either the two requests

commute or the two requests are not invoked concurrently. The properties of Generalized

Consensus allow a fast ballot to process non-conflicting requests with a latency of twice the

communication delay between agents without relying on a leader process. In contrast, a

classic ballot has a latency of three times communication delay between agents and relies on

a correct leader process. However, under harsh conditions, classic ballots are more likely to

make progress than fast ballots. The two types of ballots of GP can be seen as two modes of an

adaptive algorithm.

Generalized Paxos only has two types of ballots. Moreover, ballots do not have a clear

interface like mode instances and adding new ballot type is not easy. Multicoordinated Paxos

[12] is an optimization GP which adds a new ballot type. The specification of Multicoordinated

Paxos in TLA+ is more than 10 pages long [12]. Moreover, Multicoordinated Paxos is the only

instance of optimization of GP that we know of, perhaps owing to the fact that, although

Paxos is already notoriously hard to understand, GP is even more intricate than Paxos. GP is

therefore not a robust algorithm.

In this chapter we present QZ, a new robust adaptive algorithm solving Generalized Consen-

sus. The QZ algorithm is obtained by combining two speculatively linearizable modes, namely

Quorum and ZLight, and has the following properties.

1. QZ is robust: is it adaptive and, being speculatively-linearizable, it can be composed

with any other speculatively linearizable mode without any changes.

2. Progress is guaranteed when a strict majority of the acceptors are correct for a long

enough time, like in Generalized Paxos.

3. QZ can process non-conflicting requests with a delay of one message round-trip (in-

cluding concurrent commuting requests), like Generalized Paxos.

78

6.1. Introduction

Compared to Generalized Paxos, the main advantage of QZ is that it can be easily extended

with new modes.

In fact, to prove Quorum and ZLight correct, we propose two more abstract specifications,

Fast (i) and Safe (i), of what we call fast modes and safe modes. Quorum refines the fast mode

specification whereas ZLight refines the safe mode specification .

Both the Fast (i) and the Safe (i) I/O automata can be seen as instances of Refined Quorum

Systems [34]. The Safe (i) I/O automaton uses quorums consisting of a strict majority of

acceptors and the acceptors must not become inconsistent. A possible implementation of

Safe (i) would use a leader to ensure consistency, like ZLight. In contrast, the Fast (i) I/O

automaton uses bigger quorums to respond to requests but does not require consistency of the

acceptors. In our abstract specifications of safe and fast modes, acceptors nondeterministically

execute new requests, abstracting over the strategy used to coordinate the acceptors. Therefore

one could use our abstract specifications to prove new safe or fast modes correct, such as a

multi-coordinated fast mode in the spirit of Multicoordinated Paxos [12].

Another advantage of QZ over Generalized Paxos is that QZ can change the relative size of

its types of quorum when changing mode instance. In Generalized Paxos, the relative size of

the two types of quorums is fixed and changing it from one ballot to the next would break the

algorithm. Changing the relative size of the different types of quorums is possible in QZ by

relying on at least one client to be correct, an assumption that Generalized Paxos does not

make. However, in practice, if no client is correct then then there is no point in running the

system. Therefore we think that it is justified to assume that at least one client is correct. If

clients cannot be trusted, then the service provider can setup special servers that play the role

of clients just to change mode instance. In this case at least one of the servers playing the role

of client should be correct in order for the system to make progress.

The Quorum and ZLight modes are generalizations, in the crash-stop fault model, of the

algorithms of the same names proposed by Guerraoui et al.[32]. Quorum is optimized for the

execution of non-conflicting requests and can withstand less than one third of the acceptors

crashing. It is fast even when requests are concurrent, as long as they commute. ZLight

works under contention even when requests conflict and can withstand less than half of the

acceptors crashing. However it relies on a correct leader to make progress and will abort

otherwise.

In the rest of this chapter we consider a dependency relation # of the data type D. We say

that two requests r1 and r2 commute when 〈r1,r2〉 ∉ #. As we have seen in section 3.2, the

notion of “sequence of requests up to the order of commuting requests” is captured by the

data-type representation H # (D). In the rest of the chapter, we will therefore consider the

data-type representation H # (D).

We work in the message-passing model with a fully connected network in which messages

can be lost but not duplicated or corrupted in any way. On top of the client processes, we

79

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

consider a set A of N acceptor processes.

6.2 Related Work

There are many fault-tolerant algorithms implementing Consensus, many of which could be

considered variants of Paxos optimizing their performance according to different metrics or

under different assumptions. The following algorithms are examples in the crash-stop fault

model: Ring Paxos [65], Multi-Ring Paxos [64], Fast Paxos [48], Disk Paxos [29], Egalitarian

Paxos [73], Multi-Coordinated Paxos [12], Vertical Paxos [55], Cheap Paxos [56], Paxos-MIC

[41], Mencius [63], and Fast Mencius [90]. In the Byzantine model, examples of algorithms

based on Paxos include FaB Paxos [66], Zyzzyva, [46], PBFT [14], Aardvark [19], Q/U [1], and

HQ [22].

The Abstract framework [35] allows building adaptive Byzantine fault-tolerant algorithms

out of independent modules. The Aliph algorithm is an adaptive Byzantine fault-tolerant

algorithm built in the Abstract framework. Aliph uses three types of modules among which

are Byzantine versions of the Quorum and ZLight algorithms presented in this chapter. The

speculative linearizability framework, presented in chapter 5, is inspired from the Abstract

framework.

Generalized Paxos [49] is an adaptive fault-tolerant algorithm that optimizes the execution

of commuting requests and that can switch between two different modes of execution. The

algorithm uses the concept of ballot, which can be either a fast ballot , in which case an

optimistic mode is used, or a classic ballot, in which a mode similar to the original Paxos

is used. The consistency across ballots is ensured by some invariants about the size of the

intersection of the Quorums that the two modes use. In principle, other types of modes could

be used if they preserve these invariants. However, in contrast to our work, there is no clearly

identified interface for adding new ballot types to the algorithm.

Most if not all of the algorithms cited above rely on the notion of a quorum. A quorum

is a set of servers big enough to reliably hold information despite of the failures allowed by

the computing model. There trade-offs between the tolerated number of faults, the nature

of faults (Byzantine faults or crashes), and the latency to respond to a request are captured

by the notion of Refined Quorum System [34]. Lower bounds relating the latency and size of

quorums in the crash-stop model are rigorously proved in [50].

6.3 Fast and Safe Modes

In this section we present the specifications of fast and safe modes, which are both specula-

tively linearizable. Those specifications abstract over the communication between processes

and over the strategy used to coordinate acceptors: the state of every process is readable

by every other process and acceptors nondeterministically execute new requests. One can

80

6.3. Fast and Safe Modes

refine fast or safe modes by implementing the state accesses and coordination using the

network, obtaining a concrete algorithm. For example, Quorum refines the fast mode I/O

automatonand ZLight refines the safe mode I/O automaton.

The two I/O automata Safe(i) and Fast(i) have the external signature of a speculatively

linearizable i th mode instance. The input actions of Safe (i) and Fast (i) are the actions the

form Switch i
p (c, iv) or Inv i

p (c) where p is a client, c is a command, and iv is a switch value

(a ∆-state) except when i = 1, in which case there are not input switch actions. The output

actions of Safe (i) and Fast (i) are the actions the form Switch i+1
p (c, iv) or Respi

p (o) where p
is a client, c is a command, o is an output, and iv is a switch value (a ∆-state).

Both Safe (i) and Fast (i) have the same set of states: a set initVals , tracking the init values

received, and, for every client p, a request pending
[
p
]
, tracking the pending request of p, the

status of p, status [o], and, for every acceptor a , the status of a , accStatus [a], and the local

∆-state of a , dState [a].

On top of the actions of their external signature, i.e., the invocations, responses, init actions,

and abort actions, the two I/O automata have four types of internal actions: Panic
(
p
)
, where

p is a client, and, for every acceptor a , Exec (a), WakeUp (a), and Stop (a).

Clients are in status “idle”, “ready”, “pending”, “panic”, or “aborted”. A Panic (c) action brings

a client p from the status “pending” to the status “panic”, at which point p may later abort. As

in SLin (i , i +1), if i = 1, then every client is initially ready; otherwise, every client is initially

sleeping.

The acceptors also have a status, which is either “idle”, “ready”, or “stopped”. If i = 1,

then every acceptor is initially “ready”; otherwise, every acceptor is initially “idle”. After a

WakeUp (a) action, the acceptor becomes ready. After a Stop (a) action, the acceptor a is

stopped. Finally, for every acceptor a , dState [a] is initially ⊥.

6.3.1 Behavior of The Safe (i) I/O automaton

To make progress, the Safe (i) I/O automaton relies on a safe quorum of acceptors to be correct.

The safe quorums are the sets of acceptors such that the intersection between any two safe

quorums is nonempty. This translates to the following definition of safe quorums.

SafeQuorum =
{
Q ⊆A : |Q | ≥

⌊
N
2

⌋
+1

}
(6.1)

The acceptors are said consistent when for every two acceptors a1 and a2, either dState [a1]

is a prefix of dState [a2] or dState [a2] is a prefix of dState [a1]. The Safe (i) I/O automaton

ensures that the acceptors are always consistent. However it abstracts over the implementation

of this guarantee, leaving as much freedom as possible to the implementations. In practice,

the guarantee can be ensured by a leader, as in ZLight, but other implementations are possible.

81

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

We now describe the actions of the Safe (i) I/O automaton.

1. An init action Switch i
p (c,v) is enabled when the client p is in status “idle”, which is

possible only if i > 1. The action adds v to the set initVals , sets pending
[
p
]

to 〈p,c〉,
and sets the status of p to “pending”.

2. An invocation action Inv i
p (c) is enabled when the client p is ready. The action sets

pending
[
p
]

to 〈p,c〉 and sets the status of p to “pending”.

3. WakeUp (a), executed by an acceptor a , is enabled if a is “idle” and if there exists

iv ∈ initVals such that substituting iv for the value of dState [a] would leave the accep-

tors in a consistent state. The effect of the action is to perform the substitution and to

set the status of a to “ready”.

4. Exec (a) is enabled when a is “ready”, a client p has a pending request 〈p,k 〉, and if

substituting dState [a] • c for the value of dState [a] would leave the acceptors in a

consistent state. The effect of the action is to perform the substitution. In leader-based

algorithms, the action models an acceptor receiving the next request to execute from

the leader.

5. A response action Respi
p (o) is enabled when the client p has a pending request r and

there is a safe quorum Q of acceptors which are not idle and whose set of ∆-states SQ

is such that GLB
(
SQ

)
contains r and o = γ(GLB

(
SQ

)
,r). The effect of the action is to

set the status of p to “ready”.

6. Panic
(
p
)
, executed by a client p, is enabled when p has a pending request. The effect

of the action is to set the status of p to “panic”. In leader-based algorithms, the action

models the client p detecting a faulty leader and initiating a mode change.

7. Stop (a), executed by an acceptor a , is enabled when there is a client p which has

panicked. The effect of the action is to set the status of the acceptor a to “stopped”,

preventing it from executing any new requests. The action models the acceptor a
receiving through the network a notification that the client p has panicked.

8. The abort action Switch i+1
p (c,av) is enabled when p has panicked, pending

[
p
]= 〈p,c〉,

and there exists a safe quorum Q of acceptors which have stopped and whose set of

∆-states SQ is such that Max
(
SQ

)= av . Its effect is to set the status of p to “aborted”.

The action models p aborting when it has received from every acceptor in a ∈ Q an

acknowledgement that a has stopped along with the ∆-state of a and using an abort

value equal to the maximal ∆-state received.

The Safe (i) I/O automaton simulates the SLin [i , i +1] I/O automaton in a simple way. First

add a history variable abortVals which is initialized to the empty set and which is updated on

every abort action by adding the abort value it. Then Safe (i) refines SLin [i , i +1] under the

refinement mapping f associating a state of s of Safe (i) to the state of t of SLin [i , i +1] as

follows.

82

6.3. Fast and Safe Modes

1. Every client p has the same status in t as in s except that when p has panicked in s , then

p is considered pending in SLin [i , i +1].

2. Every client has the same pending request in s and t .

3. The boolean initialized (t) be true if and only if there is, in s , a safe quorum of acceptors

which are not idle.

4. The ∆-state dState(t) is the maximum over all safe quorums Q of the glb of the ∆-states

of the members of Q :

s =Max
{{
dState [a] : a ∈ Q

}
:Q ∈ SafeQuorum∧∀a ∈ Q : status [a] 6= idle

}
. (6.2)

5. The sets initVals(t) and abortVals(t) are equal, respectively, to initVals(s) and abortVals (s).

The most interesting case of the proof of refinement, had we formalized it, would be the

abort action. In this case we need to show that the abort value is a save abort value, i.e.,

an extension with pending requests of the global ∆-state dState(t) of SLin [i , i +1]. Before

the abort action, we know that the global ∆-state dState(t) is the glb of the ∆-states of a safe

quorum Q of acceptors. Therefore, every acceptor of Q has a∆-state dState(s) [a] greater than

or equal to dState (t). By property of safe quorums, any other safe quorum R has a member

b ∈ Q . Moreover, because the acceptors are always consistent, every acceptor a ∈ R is such

that dState (s) [a] is a prefix of dState (s) [b] or vice versa. Therefore the maximum m of the

∆-states of R is an extension of dState . Finally, the acceptors only execute pending requests,

so the m is an extension of dState with pending requests.

The TLA+ formalization of the Safe (i) I/O automaton and of the refinement mapping can

be found in appendix A. The refinement has been model checked exhaustively with TLC using

the consensus data type with four acceptors, three clients, and two consensus values, and with

the generic data type with three acceptors, two clients, a unique command, and sequences of

length smaller than or equal to 3.

6.3.2 Behavior of The Fast (i) I/O automaton

To compute the output to its request, a client of the Fast (i) I/O automaton communicates

with a fast quorum of acceptors. In contrast to the safe quorums of Safe (i), the ∆-states of

a fast quorum of acceptors can become inconsistent, allowing implementations in which

clients communicate directly with each acceptor, without the intermediary of a leader, and

get a response to their request with a latency of two communication delays. But, to allow

safe aborts when the ∆-states of the acceptors become inconsistent, fast quorums have to be

bigger than safe quorums. Still, only a smaller type of quorum, recovery quorums, is needed

in order for implementations to eventually abort. To sum up, in a fast mode, a client needs

to communicate with a fast quorum of acceptors in order to determine a response to its

request and a client needs to communicate with a recovery quorum of acceptors in order to

83

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

determine an abort value and switch mode. Fast quorums and recovery quorums must satisfy

the following constraints:

1. If Q and R are two fast quorums, then Q ∩R 6= ;.

2. If Q is a fast quorum and R is a recovery quorum, then the intersection of Q and R
consists of a strict majority of the members of R:

|Q ∩R| ≥
⌊ |R|

2

⌋
+1. (6.3)

Fast quorums and recovery quorums have been described before in the context of Refined

Quorum Systems [34]. Lower bounds on the size of quorums for solving asynchronous con-

sensus are given in [50]. To satisfy the constraints on the intersection of quorums, we can take

the following definitions of fast and recovery quorums:

FastQuorum =
{
Q ⊆A : |Q | ≥

⌊
2N

3

⌋
+1

}
(6.4)

RecoveryQuorum =
{
Q ⊆A : |Q | ≥

⌊
2N

3

⌋
+1

}
(6.5)

or

FastQuorum =
{
Q ⊆A : |Q | ≥

⌊
3N

4

⌋
+1

}
(6.6)

RecoveryQuorum =
{
Q ⊆A : |Q | ≥

⌊
N
2

⌋
+1

}
(6.7)

or

FastQuorum = {
A

}
(6.8)

RecoveryQuorum = {
{a} : a ∈ A

}
(6.9)

The transitions of the Fast (i) I/O automaton are similar to the ones of the Safe (i) I/O

automaton. The Exec (A), Resp (a), and WakeUp (A) actions are identical to the ones of the

Safe (i) I/O automaton, except that the consistency condition is removed and fast quorums

are substituted for safe quorums. Therefore, the ∆-states of the acceptors can become incon-

sistent, meaning there may be two ∆-states such that neither is the prefix of the other.

Aborting in Fast (i)

The abort action has to be changed more significantly in order to allow aborting when the

acceptors are inconsistent. A client running the Safe (i) I/O automaton aborts with the

maximum ∆-state of a safe quorum of acceptors. In the Fast (i) I/O automaton, the set of

∆-states of a recovery quorum of acceptors may not have a maximum if the acceptors are

inconsistent.

84

6.3. Fast and Safe Modes

To satisfy speculative linearizability, a client needs to abort with a safe abort value, i.e., an

extension with pending requests of the last ∆-state used to produce a response. Observe that

the executions of Fast (i) satisfy the following invariant: there exists a fast quorum Q such that

the last ∆-state used to produce a response is a prefix of the glb of the ∆-states of Q . Therefore,

every member of a ∈ Q has a larger ∆-state than lcv :

∀a ∈ Q : dState [a] ≥ lcv (6.10)

By property of recovery quorums, for every recovery quorum R, Q∩R consists of a majority of

R. Therefore, in every strict majority M of the members of R, there is one acceptor a ∈ Q . By

eq. (6.10), dState [a] is an extension of lcv . Therefore, either the glb lM of the ∆-states of the

acceptors in M is a prefix of lcv , or it is an extension of lcv . Moreover, if we take M =R∩Q ,

then lM is an extension of lcv . To sum up, for every recovery quorum R,

1. for every strict majority M of R, the glb of the ∆-states of R is either a prefix or an

extension of the last ∆-state used to produce a response.

2. the set of acceptors Q∩R is a strict majority of R and the glb of Q∩R is an extension of

lcv .

Let MajSets (R) be the set of majorities of R. Define G (R) as the set of obtained by taking the

glb of each of the members of MajSets (R),

G (R) = {
GLB (ds) : ds ∈MajSets (R)

}
(6.11)

Finally, define the abort values determined from R as the members of G which have no

extension in G ,

AbortValues (R) = {
g ∈G (R) : ∀g ′ ∈G (R) : ¬g ¹ g ′

}
(6.12)

From the properties listed above in items 1 and 2, we can conclude that any member of

AbortValues (R) is of the form lcv ?rs , where lcv is the last ∆-state used to produce an output

and rs is a sequence of pending requests. Therefore, to abort, a client choses a recovery

quorum R and uses an arbitrary value in AbortValues (R) as abort value.

We now describe the complete transition relation of the Fast (i) I/O automaton.

1. An init action Switch i
p (c,v) is enabled when the client p is in status “idle”, which is

possible only if i > 1. The action adds v to the set initVals , sets pending
[
p
]

to 〈p,c〉,
and sets the status of p to “pending”.

2. An invocation action Inv i
p (c) is enabled when the client p is ready. The action sets

pending
[
p
]

to 〈p,c〉 and sets the status of p to “pending”.

85

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

3. WakeUp (a), executed by an acceptor a , is enabled if a is “idle” and initVals in nonempty.

The effect of the action is to set dState [a] to one of the ∆-states in initVals and to set

the status of a to “ready”. Note that there is no constraint on the init value chosen to

update dState [a].

4. Exec (a) is enabled when a is “ready” and there is a client p which has a pending request

〈p,c〉. The effect of the action is to execute the request 〈p,c〉 by updating dState [a] to

dState [a]•〈p,c〉.

5. A response action Respi
p (o) is enabled when the client p has a pending request r and

there is a fast quorum Q of acceptors which are not idle and whose set of ∆-states SQ

is such that GLB
(
SQ

)
contains r and o = γ(GLB

(
SQ

)
,r). The effect of the action is to

set the status of p to “ready”.

6. Panic
(
p
)
, executed by a client p, is enabled when p has a pending request. The effect of

the action is to set the status of p to “panic”. The action models the client p detecting an

inconsistent fast quorum of acceptors and initiating a mode change.

7. Stop (a), executed by an acceptor a , is enabled when there is a client p which has

panicked. The effect of the action is to set the status of the acceptor a to “stopped”,

preventing it from executing any new requests. The action models the acceptor a
receiving through the network a notification that the client p has panicked.

8. The abort action Switch i+1
p (c,av) is enabled when p has panicked, pending

[
p
]= 〈p,c〉,

and there exists a recovery quorum R of acceptors which have stopped and such that

av ∈ AbortValues
(
Q

)
. The effect of the action is to set the status of p to “aborted”. The

action models the client p aborting when it has received from every acceptor in a ∈ Q
an acknowledgement that a has stopped along with the ∆-state of a .

Similarly to theSafe (i) I/O automaton, theFast (i) I/O automaton simulates theSLin [i , i +1]

I/O automaton. The refinement mapping is the same, adding the same abortVals history vari-

able, except that fast quorums are substituted for safe quorums.

We have seen that both the safe mode specification and fast mode specification are specula-

tively linearizable. Therefore, any concrete mode refining either the safe mode specification

or the fast mode specification is also speculatively linearizable and can be combined with any

other speculatively linearizable mode.

We will now present the Quorum and ZLight modes and show that Quorum refines the

fast mode and ZLight refines the safe mode. We will also see that the QZ adaptive algorithm,

obtained by combining Quorum and ZLight, has the same progress guarantee as Generalized

Paxos and can execute non-conflicting requests with a latency of two communication delays.

86

6.4. The QZ Algorithm

6.4 The QZ Algorithm

In this section we present the Quorum and ZLight modes and the adaptive algorithm

QZ = {
Quorum ,ZLight

}
. (6.13)

TheQuorum (i) I/O automaton refines the fast mode I/O automatonFast (i), whereasZLight (i)

refines the safe mode I/O automaton Safe (i). The QZ adaptive algorithm has the similar

progress guarantees as Generalized Paxos: invocations are eventually given a response if there

eventually is a recovery quorum of acceptors which is correct for a long enough time.

6.4.1 Quorum

The Quorum algorithm implements the fast mode specification by concretely specifying how

new requests and the ∆-states of the acceptors are propagated through the network.

A client that invokes a requests simply broadcasts it to all of the acceptors. An acceptor

that receives a new requests executes it immediately, without synchronization with the other

acceptors, and sends its new ∆-state to the client that issued the request. A client returns

a response when it has received the ∆-states of a fast quorum of acceptors, provided the

glb of the received ∆-states contains its request. If the glb of the received ∆-states does

not contain its requests, then the acceptors have become inconsistent because, for lack of

synchronization, they have executed requests in different orders. In this situation, Quorum
cannot make progress any more and clients must abort. To abort with a safe abort value, a

client “panics” by broadcasting a “panic” message to all the acceptors. The client then waits

for an acknowledgement, containing the local ∆-state of the sender, from a recovery quorum

of acceptors. Once the needed acknowledgements have been received, the client computes an

abort value as in the Safe (i) I/O automaton and switches to the next mode instance. When

an acceptor receives its first “panic” message, it stops executing new requests, mimicking the

Stop (a) action of the safe mode specification.

Let us now describe the I/O automaton ZLight (i) in more details. For simplicity, the

Quorum (i) I/O automaton is a monolithic I/O automaton, i.e., it is not obtained by composing

individual I/O automata corresponding to each agent in the system.

The signature of the Quorum (i) I/O automaton is the same as the one of the Fast (i) I/O au-

tomaton with the addition of two internal actions RcvExecAck
(
p
)

and RcvPanicAck
(
p
)
,

for every client p. Therefore, the input actions of Quorum (i) are the actions the form

Switch i
p (c, iv) or Inv i

p (c) where p is a client, c is a command, and iv is a switch value (a

∆-state) except when i = 1, in which case there are not input switch actions. The output

actions of Quorum (i) are the actions the form Switch i+1
p (c, iv) or Respi

p (o) where p is a client,

c is a command, o is an output, and iv is a switch value (a ∆-state). The internal actions of

Quorum (i) are the actions of the form Panic
(
p
)
, RcvExecAck

(
p
)
, RcvPanicAck

(
p
)

where p

87

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

is a client and Exec (a), WakeUp (a), and Stop (a), where a is an acceptor.

The states of the Quorum (i) I/O automaton are the same as the Fast (i) I/O automaton with

the addition, for every client p, of two arrays execAcks
[
p
]

[a] and panicAcks
[
p
]

[a] mapping

every acceptor a to a ∆-state. The other components, the ones of Fast (i), are status
[
p
]
,

pending
[
p
]
, initVals , accStatus [a], and dState [a]. As in Fast (i), for every client p, status

[
p
]

is the control flow location of p; for every client p, pending
[
p
]

contains the pending requests

of p if it has one; initVals contains the set of init values that appeared so far; for every acceptor

a , dState [a] contains the local ∆-state of a and accStatus [a] is the control flow location of a .

The state of Quorum (i) also has a network component that we will not explicitly describe.

However, the network allows any client or acceptor to send or receive messages to other clients

or acceptor.

Initially, for every client c, execAkcs[c] and panicAcks[c] map every acceptor to the special

value none . Moreover, as in Safe (i), if i > 1 then every client or acceptor is initially “idle”.

Otherwise, when i = 1, every client and acceptor is initially “ready” and every acceptor has a

local ∆-state equal to ⊥.

We now describe that actions of the Quorum (i) I/O automaton.

1. An init action Switch i
p (c,v) is enabled when the client p is not initialized, which is

possible only if i > 1. The action adds v to the set initVals , sets pending
[
p
]

to 〈p,c〉,
and broadcasts the messages 〈"init",v 〉 and

〈
"req",〈p,c〉〉 to all the acceptors.

2. An invocation action Inv i
p (c) is enabled when the client p is ready. The action sets

pending
[
p
]

to 〈p,c〉 and broadcasts the message
〈

"req",〈p,c〉〉 to all the acceptors.

3. WakeUp (a), executed by an acceptor a , is enabled if a is idle and a can receive an

〈"init",v 〉 message from a client. The effect of the action is to receive the message and

set dState [a] to v .

4. Exec (a) is enabled when a is ready and a can receive a
〈

"req",〈p,c〉〉 message from a

client. The effect of the action is to receive the message, set dState [a] to dState [a]•〈p,c〉,
and send the message 〈"execAck",dState [a]•〈p,c〉〉 to p.

5. RcvExecAck
(
p
)

is enabled when the client p can receive a message 〈"execAck",v 〉 from

an acceptor a . Its effect is to receive the message and to set execAcks
[
p
]

[a] to v .

6. A response action Respi
p (o) is enabled when there exists a fast quorum Q of acceptors

such that, for every a ∈ Q , p has received an ack from a , the glb g =GLB
({
execAcks

[
p
]

[a] : a ∈ Q
})

of the acks contains the pending request of p, and o = γ(g ,pending
[
p
]
).

7. Panic
(
p
)
, executed by a client p, is enabled when p has a pending request. Its effect is

to broadcast the message
〈

"panic"
〉

to all the acceptors.

88

6.4. The QZ Algorithm

8. Stop (a), executed by an acceptor a , is enabled when a can receive a
〈

"panic"
〉

message

from a client p. Its effect is to receive the message, stop a , which will not execute any

more requests, and to send the message
〈

"panicAck",dState [a]
〉

to p.

9. RcvPanicAck
(
p
)

is enabled when p has panicked and can receive a
〈

"panicAck",v
〉

message from an acceptor a . Its effect is to receive the message and to set panicAcks
[
p
]

[a]

to v .

10. The abort action Switch i+1
p (c,v) is enabled when p has panicked, pending

[
p
]= 〈p,c〉,

and there exists a recovery quorum R of acceptors such that v ∈ AbortValues (R), where

AbortValues (R) is as explained in the description of the Fast (i) I/O automaton.

Quorum refines the Fast (i) I/O automaton: the refinement mapping simply consists in

projecting the state of Quorum onto the state of Fast (i), erasing the components that are not

part of the state of Fast (i). The refinement mapping has been checked by TLC for a small

system size using the Consensus and Generic data types.

We can see that, to respond to a request, a client needs to receive acknowledgements from a

fast quorum of acceptors. However, a client can panic at any time and then abort when it has

received acknowledgements from a recovery quorum of acceptors. Therefore, if, eventually, a

recovery quorum of acceptors is correct for a long enough time, then a client will eventually

abort. If a fast quorum is correct then a client will eventually get a response to its invocation.

Finally, note that if two requests commute, then, even if they are executed in different orders

by different acceptors, Quorum will not abort and will process them with a latency of two

communication delays. This is because executing two commuting requests always results in

the same state, whichever the order of their execution.

The TLA+ specification of Quorum can be found in appendix A.

6.4.2 ZLight

Remember that safe modes use smaller quorums than fast modes but must ensure that local

∆-states of the acceptors remain consistent. The ZLight algorithm relies on a distinguished

acceptor, called the leader, to enforce the consistency requirement of safe modes. In contrast

with Quorum , a client of ZLight does not broadcast its request but sends it only to the leader.

The leader then executes the request and broadcasts its new ∆-state to all the other acceptors.

An acceptor updates its local ∆-state to any bigger ∆-state received from the leader. Both the

leader and the other acceptors send their new ∆-states to the clients in acknowledgment. A

client produces a response when it has received ∆-states from a safe quorum of acceptors. If

the leader is faulty, a client may never receive enough ∆-states from the acceptors. Therefore,

at any point, a client can abort by triggering a “panic” process similarly as in the Quorum
algorithm. The broadcasts panic messages to the acceptors and waits for acknowledgments,

containing local ∆-states, from a safe quorum of acceptors. One all the needed acknowledg-

89

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

ments have been received, the client computes an abort value as in the I/O automaton Safe (i)

and switches to the next mode.

Let us now describe the I/O automaton ZLight (i) in more details.

The signature and the states of the ZLight (i) I/O automaton is the same as the one of the

Quorum (i) I/O automaton. Their actions differ in the way that clients send their requests to

the acceptors, through the intermediary of a leader in ZLight, in the types of quorums used,

and in the way that an aborting client computes its abort value. We suppose the existence of a

distinguished acceptor leader . The actions of the ZLight (i) I/O automaton are obtained by

modifying those of the Quorum (i) I/O automaton as follows.

1. In an init action Switch i
p
(
p,v

)
, the client c sends its 〈"init",v 〉 and

〈
"req",〈p,c〉〉 mes-

sages only to the leader, instead of broadcasting to all the acceptors.

2. In an invocation action Inv i
p
(
p
)

the client c also sends its
〈

"req",〈p,c〉〉 message only to

the leader, instead of broadcasting it to all the acceptors.

3. WakeUp (leader) is as in Quorum (the leader is also an acceptor) except that, on top

of sending an acknowledgements to the client, the leader broadcasts the message

〈"leader-init",v 〉 to all the other acceptors.

4. The Exec (leader) action is as in Quorum except that, on top of sending an acknowledge-

ments to the client p sending a request, the leader broadcasts the message
〈

"leader-exec",p,dState ′ [leader]
〉

to the other acceptors, where dState ′ [a] is the new ∆-state of the leader.

5. WakeUp (a), where a is not the leader, is enable when a is idle and can receive a message

〈"leader-init",v 〉 from the leader. The effect of the action is to receive the message and

to set dState [a] to v .

6. Exec (a), where a is not the leader, is enabled when a is ready and a can receive a

〈"leader-exec",p,v 〉 message from the leader. The effect of the action is to receive the

message, to set dState [a] to v , and to send the message 〈"execAck",v 〉 to the client p.

7. RcvExecAck
(
p
)

is exactly as in Quorum .

8. A response action Respi
p (o) is as in Quorum except that a safe quorum is substituted

for the fast quorum.

9. Panic
(
p
)
, RcvPanicAck

(
p
)
, and Stop (a) are exactly the same as in Quorum .

10. The abort actionSwitch i+1
p (c,v) is enabled when the client p has panicked, pending

[
p
]=

〈p,c〉, and there exists a safe quorum R of acceptors such that v is the maximum∆-state

among the ∆-states of the acceptors in R.

ZLight (i) refines the Safe (i) I/O automaton: the refinement mapping simply consists in

projecting the state of ZLight onto the state of Safe (i), erasing the components that are not

90

6.5. Speculatively Linearizable Generalized Paxos

part of the state of Safe (i). ZLight (i) respects the consistency property of Safe (i) because

acceptors only update their state when instructed so by the leader. Therefore, some acceptors

may “lag behind” with a∆-state that is smaller than what a safe quorum of acceptors have, not

having received some messages from the leader, but they may not have inconsistent ∆-states.

The refinement mapping has been checked by TLC for a small system size using the Con-

sensus and Generic data types.

We can see that, to respond to a request, a client needs to receive acknowledgements from a

safe quorum of acceptors and that a safe quorum of acceptors send their acknowledgements

only after having received a message from the leader. Therefore to respond to a request the

algorithm needs a correct safe quorum of acceptors and a correct leader. However, a client can

panic at any time and then abort when it has received acknowledgements from a safe quorum

of acceptors, without intervention of the leader. Therefore, if, eventually, a fast quorum of

acceptors is correct for a long enough time, then a client will eventually abort its invocation

even if the leader is faulty.

The TLA+ specification of ZLight can be found in appendix A.

6.4.3 Progress Guarantees of QZ

Suppose that there eventually is a recovery quorum of acceptors which is correct for a long

enough time. Since fast quorums can be bigger than recovery quorums, a Quorum instance

is not guaranteed to respond to requests. However, it is guaranteed to abort if the recovery

quorum is correct for a long enough time. Assume that a ZLight instance takes over Quorum

when it abort. Note that recovery quorums are at least as big as safe quorums. Therefore, if

the leader of the ZLight instance is correct then ZLight will respond to the invocations if the

recovery quorum is correct for a long enough time. If the leader is incorrect, then ZLight will

abort and a new instance of ZLight, with a different leader, can take over. Therefore we see

that invocations eventually get responses when a recovery quorum of acceptors is correct for a

long enough time. Strictly speaking, we would need to make some fairness assumptions about

the appearance of ZLight instances and about the rotation of leaders. Generalized Paxos has

the same progress guarantees as QZ.

6.5 Speculatively Linearizable Generalized Paxos

In this section we informally show how to modify Generalized Paxos to make it speculatively

linearizable. Therefore one can compose Generalized Paxos with QZ. This could be useful in

case of hight leader turnover. In Generalized Paxos, a faulty leader is replaced by changing

ballot, which may or may not be faster than switching ZLight instance.

We will use the terminology defined in the paper “Generalized Consensus and Paxos” [49].

To understand this section, the reader must be familiar with the abstract Generalized Paxos

91

Chapter 6. Applying Speculative Linearizability to Fault-Tolerant Message-Passing
Systems

algorithm, as described in section 5.3 of Lamport’s paper [49]. We assume that each client in Π

plays the role of both a proposer and a learner.

Generalized Paxos can be thought of as a linearizable implementation of the data type D,

represented by ∆. In GP, processes learn about the evolution of the state of ∆, but the model

of Lamport does not specify how to compute outputs. Once a process learns a new state, it

may to compute the output to its request by checking whether its request is contained in the

new state and, if it does, use the output function γ to determine the output. Otherwise the

process waits to learn another state in which its request may be contained. Note that this

relies on the idempotence property of data types to work correctly, as is the case in the SLin
I/O automaton, in which once a state is recovered from the init values, the processes need

to determine whether their request is contained in the state and what is the corresponding

output.

However Generalized Paxos cannot abort or be initialized. It is not a mode. To make it a

mode in the speculative linearizability framework, we first modify it to allow initialization.

Let “invalid” be a special value which is not a command nor the value “none”. We initialize

the ballot array as in Generalized Paxos except that for every acceptor a, βa [0] = invalid

instead of ⊥. Then we modify the acceptors so that they wait for a 0-Quorum of acceptors a to

have βa [0] 6= invalid. We modify the proposers such that upon an init action, the proposers

broacdast their init value to all the acceptors. We modify the acceptors so that when βa [0] =
invalid, the acceptor a sets βa [0] to the first init value that it receives. Then the acceptor

queries the other acceptors a’ to check the value of βa ′ [0]. When a Quorum of acceptors is

such that βa [0] 6= invalid, then the querying acceptor can proceed executing GP normally.

For performance, it is also useful to allow Generalized Paxos to abort and switch to a more

efficient mode like Quorum or ZLight. To enable Generalized Paxos to abort, we add a special

“abort” command to the data type. A proposer who wishes Generalized Paxos to abort simply

proposes the “abort” command. We modify the acceptors so that when βa [n] contains the

“abort” command, then the acceptor broadcasts βa [n] to all the learners and stops accepting

new commands. We modify the learners (which are also the acceptors in our setting) so that

upon receiving βa [n] from an acceptor that stopped, a learner switches to the next mode

instance using βa [n] as abort value.

By applying the modifications described above, we conjecture that we obtain a specula-

tively linearizable version of Generalize Paxos, which can therefore be combined as-is with

Quorum, ZLight, or any other speculatively linearizable mode, to build an adaptive algorithm

implementing the data type D. This is only a conjecture because the author did not have the

time to specify the modifications formally and model-check the resulting algorithm. It is thus

certain that the above description is too vague and that the details are wrong, but it conveys

an important intuition.

92

6.6. Conclusion

6.6 Conclusion

We have applied speculative linearizability to build QZ , a robust linearizable algorithm in the

message-passing computation model. QZ is fault-tolerant and is an alternative to Generalized

Paxos, a state of the art algorithm in the domain. Like Generalized Paxos, QZ guarantees

progress when a quorum of acceptors is eventually correct for a long enough time and QZ
can execute non-conflicting requests with a latency of two communication delays. However,

being speculative linearizable, QZ is easily extensible whereas Generalized Paxos is not. The

QZ algorithm also has the advantage that the relative sizes of fast and recovery quorums can

be changed when changing mode instance.

We have also proposed two abstract specifications of safe and fast modes, which would

simplify extending QZ with new fast or safe modes.

The results of this chapter show that speculative linearizability can be used to build adap-

tive algorithms improving upon the state of the art in the field of fault-tolerant linearizable

algorithms.

93

7 Applying Speculative Linearizability to
Shared-Memory Consensus

In this chapter we present an adaptive, speculatively-linearizable, shared-memory consensus

algorithm. Our consensus algorithm provides evidence that speculative linearizability can be

used to build adaptive algorithms in the shared-memory model.

In shared memory, consensus cannot be implemented with atomic register [36]. However

the paper of Luchangco et al. [58] presents an adaptive consensus algorithm which uses only

atomic registers when clients do not contend for access to the shared memory and otherwise

reverts to a consensus implementation that uses the compare-and-swap hardware instruction.

We propose an adaptive algorithm, inspired from Luchangco et al., composed of two spec-

ulatively linearizable modes RegCons and CASCons . The mode RegCons responds to invo-

cations when clients do not contend. Otherwise RegCons aborts and switches to CASCons ,

which uses the compare-and-swap hardware instruction to determine the consensus value.

The practical advantage of using only atomic registers in uncontended cases is not clear

because modern processors execute a compare-and-swap instruction almost as fast as a load

or a store [23]. Our adaptive consensus algorithm is therefore presented as a proof of concept

that speculative linearizability can be applied to the shared memory model, but not as a new

practical algorithm.

We assume that the clients only use the consensus implementation for a single invocation,

even though our formal model of chapter 4 allows clients to submit new proposals after

having received a response. In practice it would not make sense to reuse the consensus

implementation once its output is decided.

The first consensus mode, RegCons , is presented, using pseudo code, in fig. 7.1. The

RegCons mode can only be used as a first mode, i.e., it has no init action.

The mode RegCons uses a wait-free splitter algorithm. The splitter can be called by each

client and takes no arguments; it guarantees that at most one client returns true, all others

returning false. Moreover, it guarantees that, in the absence of contention, exactly one client

95

Chapter 7. Applying Speculative Linearizability to Shared-Memory Consensus

returns true. The splitter algorithm can be implemented using only atomic registers as shown,

using pseudo-code, in fig. 7.2. When discussing the pseudo code of figs. 7.1 and 7.2, we say

that a client c is at line l when the statement at line l is the next statement that c will execute.

Moreover, when a client executes a return statement of an response or switch action (lines 8,

10, 17, 19, 23 of fig. 7.1, lines 7, 11, and 13 of fig. 7.2), then it stays at the corresponding line

forever.

The following inductive invariant of the splitter implementation helps to understand its

behavior. First add to the splitter a ghost variable winner , initialized to a special value “unset”

and updated to the identity of the first client p arriving at line 10 in a state where X = p. Note

that when p is at line 10, p has not yet tested whether X = p and might find it false when the

test is performed. Observe that the following property is an inductive invariant: if winner
has been set, then for every other client p, if winner 6= p and X = p, then p has not reached

past line 8. When winner is first set, we have X =winner and Y = true . For another client

p 6=winner to set X to p, p must be at line 5. Therefore it will find Y = true at line 6 and return

at line 7, never reaching past line 8.

Let us now examine the algorithm RegCons . Because at most one client returns true from

the splitter, at most one client executes lines 14 to 19. Therefore, if one client p returns valp at

line 17, then it has seen, at line 16, contention = false . Therefore no client has executed line

22, which implies that no client switched and that every client will either return valp at line 8

or switch with valp at line 10 or 22. Therefore, once p arrives at line 16 we can consider valp
to be the chosen value, as in the refinement mapping below. We see that such an execution

corresponds to an execution of SLin in which valp is linearized an then every client aborts

with or returns valp .

Now assume that every process aborts. Because at most one client p executes line 14 to 19,

then every client aborts either with ⊥, the initial value of dState , or with the value of p. Such

an execution correspond to an execution of SLin in which no request is linearized and every

process aborts.

The argument elaborated in the last two paragraphs allows us to establish the correcntess of

RegCons using the following refinement mapping.

Theorem 7.0.1. The mode RegCons is a speculatively linearizable first instance.

Proof. Add to RegCons the history variable abortVals , which is initially the empty set and is

populated with the abort values produced by RegCons .

Define the function f map a state s of RegCons the state t of SLin (Consensus) [1,2] as

follows.

1. For every client p,

(a) the pending request of p in t is the pending request of p in s ;

96

(b) if p is at lines 5, 8, or 17, then status (t)
[
p
] = "ready", if p is at lines 10, 19, or 23,

then status (t)
[
p
] = "aborted", and if p is at any other line, then status (t)

[
p
] =

"pending".

2. If there is a client p at lines 16, 17 or 19, then dState (t) = dState (s), else dState (t) =⊥.

3. The sets abortVals are the same in s and t ;

4. The boolean initialized (t) is true.

5. The set initVals (t) is empty.

The function f is a refinement mapping from RegCons to SLin (Consensus) [1,2].

When the RegCons mode aborts, it switches to theCasCons mode, described in fig. 7.3. The

CasCons mode uses the compare-and-swap hardware instruction to choose a consensus value.

The operationCAS (dState ,⊥,sval) atomically sets dState to sval if dState =⊥, and otherwise

leaves dState unchanged. It is easy to see that CasCons implements SLin (Consensus) [2,3].

We have shown, examining them in isolation from the other, that RegCons and CasCons
are speculatively linearizable. Therefore, because SLin is a modular property, we conclude

that the adaptive algorithm whose first mode inRegCons and whose second mode isCasCons
is a linearizable implementation of consensus.

This chapter has shown that speculative linearizability allows us to easily establish the

correctness of the adaptive shared-memory algorithm
{
RegCons ,CasCons

}
.

97

Chapter 7. Applying Speculative Linearizability to Shared-Memory Consensus

Figure 7.1: The RegCons Mode

Figure 7.2: The Splitter Algorithm

Figure 7.3: The CasCons Mode

98

8 Conclusion

We have seen that to be robust in practice, a distributed algorithm must have two important

features.

1. A robust algorithm must adapt its strategy in response to change in the behavior of the

system.

2. A robust algorithm must be easily extensible with new strategies, allowing incremental

development.

Point 1 is a necessity in order to maintain the performance of the system despite unpredictable

changes of behavior of its components. Point 2 is a necessity because the range of possible

behavior of the system is not predictable a priori: new behaviors, mandating new strategies,

are often discovered when the system is already in production.

With the example of State-Machine Replication, we have seen that the past, ad-hoc, ap-

proaches to building adaptive algorithms lead to impractical development costs and do not

allow incremental development.

To tackle the problem, we have proposed a formal model of adaptive distributed algorithms

which focuses on the switching mechanism of an adaptive algorithm, i.e., the problem of

switching correctly, preserving safety and liveness, from one strategy to another. Strategies are

modeled by families of I/O automatathat we call modes. Using our model, we have defined

the notion of modular property, which are the key to enabler of practical adaptive algorithms.

A modular property is a correctness property that applies to a single mode, taken in isolation.

A modular property guarantees that if each mode of an adaptive algorithm satisfies it, then the

adaptive algorithm is correct. Modular properties therefore allow to reason modularly about

adaptive algorithms, focusing on one mode at a time, incrementally. In contrast, the past,

ad-hoc, approaches that we surveyed are not practical precisely because is is not possible to

reason about modes independently.

99

Chapter 8. Conclusion

To make the development of robust distributed-algorithms practical, we have proposed a

modular property called Speculative Linearizability, forming, with our model of adaptive dis-

tributed algorithms, the Speculative Linearizability Framework. Speculation is a widely used

approach to building efficient adaptive systems by employing optimistic strategies, at the cost

of having to roll back overly optimistic changes. The Speculative Linearizability Framework

allows building practical speculative algorithm which are linearizable implementations of

data types.

To demonstrate the use of Speculative Linearizability, we have applied it to the problem of

building fault-tolerant message-passing algorithms in the crash-stop fault model. Thanks to

speculative linearizability, we have obtained QZ , an efficient and easily extensible algorithm

solving the Generalized Consensus problem. The QZ algorithm matches the state of the art

in terms of latency and resilience to faults, notably optimizing the execution of commuting

requests. However, state of the art algorithms are not easily extensible and would therefore

become impractical as soon that their strategy if fouled by a new behavior of the system. We

have also applied Speculative Linearizability to the problem of consensus in shared memory.

We have proposed a consensus algorithm, inspired from [58], which uses only registers in

uncontended cases. Although the practical implications of this algorithm are not clear, it

shows that Speculative Linearizability can also be applied to shared memory and suggest

investigating this area.

To avoid the notorious pitfalls of informal reasoning about distributed algorithms, we have

formalized parts of our work in TLA+ and in Isabelle/HOL. The TLC model checker, analyzing

TLA+ specifications, allows quick trial and error cycles that were instrumental in producing

the results of this thesis.

We conclude by proposing directions for future research on the topic of practically building

robust adaptive algorithms.

8.1 Future Work

8.1.1 Byzantine Faults in the Speculative Linearizability Framework

In the QZ algorithm, a Byzantine client can make the system violate linearizability by sending

wrong switch values when it changes mode. Making QZ resilient to this type of fault would

require cryptographic signatures to certify switch values, as done in the Byzantine fault-

tolerant algorithms of [35].

However, the speculative linearizability framework cannot be used for Byzantine fault-

tolerant algorithms because the interface of a mode instance does not contain any information

about cryptographic keys, intercepted messages, etc. This information is necessary to soundly

model Byzantine faults: in a real system, Byzantine processes could harvest cryptographic

keys and signed messages in the first mode instance and then use them in the second instance,

100

8.1. Future Work

potentially compromising it. However this cannot be modeled in the speculative linearizability

framework because the interface of a mode instance does not allow Byzantine processes to

share information from one mode instance to the other.

To model Byzantine faults, the speculative linearizability framework would have to be

modified by augmenting the interface of mode instances with actions modeling Byzantine

processes acquiring knowledge about cryptographic keys and signed messages. Modular

properties would have to be redefined to take into account the knowledge of Byzantine

processes. A Byzantine speculative linearizability framework could be based on the ideas

presented in [60] for modeling shared key communication systems using I/O automata, but

the area remains to be explored.

8.1.2 Debugging Byzantine Fault-Tolerant Algorithms

As we have observed in section 5.4.6, a mechanically-checked proof should only be attempted

when one has acquired a high degree of confidence in the truthfulness of the goal, but also

about the usefulness of the goal: proving a statement of no practical interest is also a waste of

time. Therefore we need prototyping tools that allow quickly exploring the problem space to

find relevant statements that we would like to prove, and debugging tools to quickly find bugs

and otherwise gain confidence that a statement is true before finally attempting its proof.

We have seen that the TLC model-checker allows fast prototyping and debugging in many

cases, however it would not be efficient enough to handle Byzantine Fault-Tolerant algorithms.

The state space and transition graph of such algorithms is especially large because a fraction

of the processes, the Byzantine processes, are unrestricted in their actions. As observed by

Lamport [47], TLC was not able to check nontrivial properties of a Byzantine fault-tolerant

version of Paxos.

An interesting area of research would thus be to extend TLC or build another tool that allows

fast prototyping of BFT algorithm. Symbolic reasoning technique would be required in order

to analyze the arbitrary behavior of Byzantine processes, which results in too many possible

cases to be analyzed by explicit state enumeration, as employed by TLC.

8.1.3 Debugging Proofs at an Intermediate Level of Granularity

As we have argued in section 5.4.6, the construction of mechanically-checked proofs would be

much easier if prototyping and debugging tools allowed to check high-level properties before

any proofs is attempted.

Let us draw an analogy with software testing. Software testing usually happens at three

levels: unit testing, integration testing, and system testing. Unit tests exercise the functionality

of small pieces of the system, i.e., individual functions or objects. Integration tests check that

larger modules of the system behave correctly. System tests exercise the functionality of the

101

Chapter 8. Conclusion

full system end-to-end, from the point of view of its users.

When developing a theory in Isabelle/HOL, the “software” that the user would like to develop

and test is the specifications and their proofs. The proofs are not an artifact of testing but they

are the subject of testing.

In software engineering, it is well-known that the cost of an fixing an error grows rapidly as

times advances. Therefore, as far as possible, one must not wait the completion of unit testing

to start higher level tests.

In the subjective experience of the author, the testing tools available in Isabelle/HOL only

allow unit tests. Therefore only a bottom-up approach to testing is possible and higher level

errors are discovered late in the development process, at a very high price. For example, after

carefully decomposing the refinement proof between two I/O automata in dozens of smaller

steps, we were able to test whether the individual steps were correct. However, we could not

test whether the refinement was correct as a whole before decomposing it into small steps.

When it turned out that one case was wrong and that the refinement or the I/O automata had

to be changed, the meticulous decomposition had to be thrown away and the work had to be

redone.

In contrast, the TLC model-checker excels at the highest level, i.e., end-to-end testing. For

example we were able to test whether Quorum is correct by directly testing that it refines

our specification of linearizability, without any intermediate steps. Moreover, this top-down

approach did not lead to problems once we started refining our proofs and testing lower level

refinement steps. Our experience therefore indicates that a top-down approach is much more

efficient that a bottom-up approach.

However, we found neither TLC nor Nitpick to be adequate for testing the medium granular-

ity structure of a proof. For example, it is hard to test whether the proof that Lin ′ implements

Lin would be better carried out with a history variable in conjunction to a refinement mapping

or with a forward simulation. Testing this fact would require writing a medium level proof

skeleton for both cases and testing the individual steps of the skeletons. Such a test would

reveal whether comparing the two skeletons is relevant. Without testing, one of the skeletons

might just not be feasible even if it looks simpler. Discovering this fact mid-way through the

proof would be costly.

Exploring the testing of proofs specifically at an intermediate level of granularity would be

an interesting research direction involving both technical challenges and human-computer

interaction challenges.

8.1.4 Practical Applications of Speculative Linearizability in Shared-Memory

We have see in chapter 7 that Speculative Linearizability can be applied to build shared-

memory algorithms. However we have only presented a proof of concept whose practical

102

8.1. Future Work

applications are unclear. The algorithm presented implements consensus in shared-memory

and is composed of two modes. The first mode uses only atomic registers but is unable to

make progress under contention, in which case the second mode takes over and reaches

consensus using the compare-and-swap hardware instruction. On modern multiprocessors,

the compare-and-swap instruction is roughly as fast as an atomic register access, i.e. a register

access and a memory fence [23]. However the cost of atomic register access versus compare-

and-swap may change in future multiprocessors and it may become advantageous to use

only atomic register accesses when requests do not conflict. It would thus be interesting to

investigate whether the idea underlying the shared-memory consensus algorithm generalize

to the implementation of an arbitrary data type.

103

Bibliography

[1] Michael Abd-El-Malek et al. “Fault-scalable Byzantine fault-tolerant services”. In: SOSP.

Ed. by Andrew Herbert and Kenneth P. Birman. ACM, 2005, pp. 59–74. DOI: 10.1145/

1095810.1095817.

[2] Dan Alistarh et al. “On the cost of composing shared-memory algorithms”. In: SPAA.

Ed. by Guy E. Blelloch and Maurice Herlihy. ACM, 2012, pp. 298–307. DOI: 10.1145/

2312005.2312057.

[3] Stuart F. Allen et al. “The Nuprl Open Logical Environment”. In: CADE. Ed. by David A.

McAllester. Vol. 1831. LNCS. Springer, 2000, pp. 170–176. DOI: 10.1007/10721959_12.

[4] Rajeev Alur and Thomas A. Henzinger. “Reactive Modules”. In: Formal Methods in

System Design 15.1 (1999), pp. 7–48. DOI: 10.1023/A:1008739929481.

[5] Paul C. Attie and Nancy A. Lynch. “Dynamic Input/Output Automata: A Formal Model

for Dynamic Systems”. In: CONCUR. Ed. by Kim Guldstrand Larsen and Mogens Nielsen.

Vol. 2154. LNCS. Springer, 2001, pp. 137–151. DOI: 10.1007/3-540-44685-0_10.

[6] Ananda Basu et al. “Rigorous Component-Based System Design Using the BIP Frame-

work”. In: IEEE Software 28.3 (2011), pp. 41–48. DOI: 10.1109/MS.2011.27.

[7] Mark Bickford et al. “Proving Hybrid Protocols Correct”. In: TPHOLs. Ed. by Richard J.

Boulton and Paul B. Jackson. Vol. 2152. LNCS. Springer, 2001, pp. 105–120. DOI: 10.1007/

3-540-44755-5_9.

[8] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. “Extending

Sledgehammer with SMT Solvers”. In: J. Autom. Reasoning 51.1 (2013), pp. 109–128. DOI:

10.1007/s10817-013-9278-5.

[9] Jasmin Christian Blanchette and Tobias Nipkow. “Nitpick: A Counterexample Genera-

tor for Higher-Order Logic Based on a Relational Model Finder”. In: ITP. Ed. by Matt

Kaufmann and Lawrence C. Paulson. Vol. 6172. LNCS. Springer, 2010, pp. 131–146. DOI:

10.1007/978-3-642-14052-5_11.

[10] Egon Börger and Robert F Stärk. Abstract state machines: a method for high-level system

design and analysis. Vol. 14. Springer Heidelberg, 2003.

[11] Marius Bozga et al. “Modeling Dynamic Architectures Using Dy-BIP”. In: Software

Composition. Ed. by Thomas Gschwind et al. Vol. 7306. LNCS. Springer, 2012, pp. 1–16.

DOI: 10.1007/978-3-642-30564-1_1.

105

http://dx.doi.org/10.1145/1095810.1095817
http://dx.doi.org/10.1145/1095810.1095817
http://dx.doi.org/10.1145/2312005.2312057
http://dx.doi.org/10.1145/2312005.2312057
http://dx.doi.org/10.1007/10721959_12
http://dx.doi.org/10.1023/A:1008739929481
http://dx.doi.org/10.1007/3-540-44685-0_10
http://dx.doi.org/10.1109/MS.2011.27
http://dx.doi.org/10.1007/3-540-44755-5_9
http://dx.doi.org/10.1007/3-540-44755-5_9
http://dx.doi.org/10.1007/s10817-013-9278-5
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-30564-1_1

Bibliography

[12] Lásaro J. Camargos, Rodrigo Schmidt, and Fernando Pedone. “Multicoordinated Paxos”.

In: PODC. Ed. by Indranil Gupta and Roger Wattenhofer. ACM, 2007, pp. 316–317. DOI:

10.1145/1281100.1281150.

[13] Miguel Castro and Barbara Liskov. A Correctness Proof for a Practical Byzantine-Fault-

Tolerant Replication Algorithm. Technical Memo MIT-LCS-TM-590. MIT, 1999.

[14] Miguel Castro and Barbara Liskov. “Practical byzantine fault tolerance and proactive

recovery”. In: ACM Trans. Comput. Syst. 20.4 (2002), pp. 398–461. DOI: 10.1145/571637.

571640.

[15] Ilwoo Chang, Matti A. Hiltunen, and Richard D. Schlichting. “Affordable Fault Tolerance

Through Adaptation”. In: IPPS/SPDP Workshops. 1998, pp. 585–603. DOI: 10.1007/3-540-

64359-1_730.

[16] Bernadette Charron-Bost and André Schiper. “The Heard-Of model: computing in

distributed systems with benign faults”. In: Distributed Computing 22.1 (2009), pp. 49–

71. DOI: 10.1007/s00446-009-0084-6.

[17] Wen-Ke Chen, Matti A. Hiltunen, and Richard D. Schlichting. “Constructing Adaptive

Software in Distributed Systems”. In: ICDCS. 2001, pp. 635–643. DOI: 10.1109/ICDSC.

2001.918994.

[18] A. Cimatti et al. “NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking”.

In: Proc. International Conference on Computer-Aided Verification (CAV 2002). Vol. 2404.

LNCS. Copenhagen, Denmark: Springer, 2002.

[19] Allen Clement et al. “Making Byzantine Fault Tolerant Systems Tolerate Byzantine

Faults”. In: NSDI. Ed. by Jennifer Rexford and Emin Gün Sirer. USENIX Association,

2009, pp. 153–168.

[20] RL Constable et al. Implementing mathematics. Citeseer, 1986.

[21] Denis Cousineau et al. “TLA+ Proofs”. In: CoRR. LNCS abs/1208.5933 (2012). Ed. by

Dimitra Giannakopoulou and Dominique Méry, pp. 147–154. DOI: 10.1007/978-3-642-

32759-9_14.

[22] James A. Cowling et al. “HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault

Tolerance”. In: OSDI. Ed. by Brian N. Bershad and Jeffrey C. Mogul. USENIX Association,

2006, pp. 177–190.

[23] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Everything You Always

Wanted to Know About Synchronization but Were Afraid to Ask”. In: SOSP. Ed. by

Michael Kaminsky and Mike Dahlin. ACM, 2013, pp. 33–48. DOI: 10.1145/2517349.

2522714.

[24] Tzilla Elrad and Nissim Francez. “Decomposition of Distributed Programs into Communication-

Closed Layers”. In: Sci. Comput. Program. 2.3 (1982), pp. 155–173. DOI: 10.1016/0167-

6423(83)90013-8.

106

http://dx.doi.org/10.1145/1281100.1281150
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1007/3-540-64359-1_730
http://dx.doi.org/10.1007/3-540-64359-1_730
http://dx.doi.org/10.1007/s00446-009-0084-6
http://dx.doi.org/10.1109/ICDSC.2001.918994
http://dx.doi.org/10.1109/ICDSC.2001.918994
http://dx.doi.org/10.1007/978-3-642-32759-9_14
http://dx.doi.org/10.1007/978-3-642-32759-9_14
http://dx.doi.org/10.1145/2517349.2522714
http://dx.doi.org/10.1145/2517349.2522714
http://dx.doi.org/10.1016/0167-6423(83)90013-8
http://dx.doi.org/10.1016/0167-6423(83)90013-8

Bibliography

[25] E. Allen Emerson and Vineet Kahlon. “Model Checking Large-Scale and Parameterized

Resource Allocation Systems”. In: TACAS. Ed. by Joost-Pieter Katoen and Perdita Stevens.

Vol. 2280. LNCS. Springer, 2002, pp. 251–265. DOI: 10.1007/3-540-46002-0_18.

[26] E. Allen Emerson and Vineet Kahlon. “Reducing Model Checking of the Many to the

Few”. In: CADE. Ed. by David A. McAllester. Vol. 1831. LNCS. Springer, 2000, pp. 236–254.

DOI: 10.1007/10721959_19.

[27] E. Allen Emerson and Kedar S. Namjoshi. “Reasoning about Rings”. In: POPL. Ed. by

Ron K. Cytron and Peter Lee. ACM Press, 1995, pp. 85–94. DOI: 10.1145/199448.199468.

[28] Ivana Filipovic et al. “Abstraction for concurrent objects”. In: Theor. Comput. Sci. 411.51-

52 (2010), pp. 4379–4398. DOI: 10.1016/j.tcs.2010.09.021.

[29] Eli Gafni and Leslie Lamport. “Disk Paxos”. In: Distributed Computing 16.1 (2003), pp. 1–

20. DOI: 10.1007/s00446-002-0070-8.

[30] Stephen J. Garland and John V. Guttag. “LP: The Larch Prover”. In: CADE. Ed. by Ewing L.

Lusk and Ross A. Overbeek. Vol. 310. LNCS. Springer, 1988, pp. 748–749. DOI: 10.1007/

BFb0012879.

[31] Chryssis Georgiou et al. “Automated implementation of complex distributed algorithms

specified in the IOA language”. In: STTT 11.2 (2009), pp. 153–171. DOI: 10.1007/s10009-

008-0097-7.

[32] Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Abortable Linearizable Modules”.

In: The Archive of Formal Proofs. Ed. by Gerwin Klein, Tobias Nipkow, and Lawrence

Paulson. Formal proof development. http://afp.sf.net/entries/Abortable_Linearizable_

Modules.shtml, 2012.

[33] Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Speculative linearizability”. In:

PLDI. Ed. by Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 55–66. DOI: 10.1145/

2254064.2254072.

[34] Rachid Guerraoui and Marko Vukolic. “Refined quorum systems”. In: Distributed Com-

puting 23.1 (2010), pp. 1–42. DOI: 10.1007/s00446-010-0103-7.

[35] Rachid Guerraoui et al. “The next 700 BFT protocols”. In: EuroSys. Ed. by Christine

Morin and Gilles Muller. ACM, 2010, pp. 363–376. DOI: 10.1145/1755913.1755950.

[36] Maurice Herlihy. “Wait-Free Synchronization”. In: ACM Trans. Program. Lang. Syst. 13.1

(1991), pp. 124–149. DOI: 10.1145/114005.102808.

[37] Maurice Herlihy and Jeannette M. Wing. “Linearizability: A Correctness Condition for

Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990), pp. 463–492. DOI:

10.1145/78969.78972.

[38] Matti A. Hiltunen and Richard D. Schlichting. “A Model for Adaptive Fault-Tolerant

Systems”. In: EDCC. Ed. by Klaus Echtle, Dieter K. Hammer, and David Powell. Vol. 852.

LNCS. Springer, 1994, pp. 3–20. DOI: 10.1007/3-540-58426-9_121.

[39] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM 21.8 (1978),

pp. 666–677. DOI: 10.1145/359576.359585.

107

http://dx.doi.org/10.1007/3-540-46002-0_18
http://dx.doi.org/10.1007/10721959_19
http://dx.doi.org/10.1145/199448.199468
http://dx.doi.org/10.1016/j.tcs.2010.09.021
http://dx.doi.org/10.1007/s00446-002-0070-8
http://dx.doi.org/10.1007/BFb0012879
http://dx.doi.org/10.1007/BFb0012879
http://dx.doi.org/10.1007/s10009-008-0097-7
http://dx.doi.org/10.1007/s10009-008-0097-7
http://afp.sf.net/entries/Abortable_Linearizable_Modules.shtml
http://afp.sf.net/entries/Abortable_Linearizable_Modules.shtml
http://dx.doi.org/10.1145/2254064.2254072
http://dx.doi.org/10.1145/2254064.2254072
http://dx.doi.org/10.1007/s00446-010-0103-7
http://dx.doi.org/10.1145/1755913.1755950
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1007/3-540-58426-9_121
http://dx.doi.org/10.1145/359576.359585

Bibliography

[40] Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual. Addison-

Wesley, 2004, pp. I–XII, 1–596. ISBN: 978-0-321-22862-8.

[41] Michel Hurfin, Izabela Moise, and Jean-Pierre Le Narzul. “An Adaptive Fast Paxos for

Making Quick Everlasting Decisions”. In: AINA. IEEE Computer Society, 2011, pp. 208–

215. DOI: 10.1109/AINA.2011.73.

[42] IOA Language and Toolset (web page). https://groups.csail.mit.edu/tds/ioa/. Accessed:

2013-10-18. 2003.

[43] Mauro Jaskelioff and Stephan Merz. “Proving the Correctness of Disk Paxos”. In: The

Archive of Formal Proofs. Ed. by Gerwin Klein, Tobias Nipkow, and Lawrence Paulson.

Formal proof development. http://afp.sf.net/entries/DiskPaxos.shtml, 2005.

[44] Prasad Jayanti. “Adaptive and efficient abortable mutual exclusion”. In: PODC. Ed. by

Elizabeth Borowsky and Sergio Rajsbaum. ACM, 2003, pp. 295–304. DOI: 10.1145/872035.

872079.

[45] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. “Locales - A Sectioning

Concept for Isabelle”. In: TPHOLs. Ed. by Yves Bertot et al. Vol. 1690. LNCS. Springer,

1999, pp. 149–166. DOI: 10.1007/3-540-48256-3_11.

[46] Ramakrishna Kotla et al. “Zyzzyva: Speculative Byzantine fault tolerance”. In: ACM Trans.

Comput. Syst. 27.4 (2009). DOI: 10.1145/1658357.1658358.

[47] Leslie Lamport. “Byzantizing Paxos by Refinement”. In: DISC. Ed. by David Peleg.

Vol. 6950. LNCS. Springer, 2011, pp. 211–224. DOI: 10.1007/978-3-642-24100-0_22.

[48] Leslie Lamport. “Fast Paxos”. In: Distributed Computing 19.2 (2006), pp. 79–103. DOI:

10.1007/s00446-006-0005-x.

[49] Leslie Lamport. Generalized Consensus and Paxos. https://research.microsoft.com/en-

us/um/people/lamport/pubs/pubs.html#generalized. Accessed: 2013-10-18. 2005.

[50] Leslie Lamport. “Lower bounds for asynchronous consensus”. In: Distributed Comput-

ing 19.2 (2006), pp. 104–125. DOI: 10.1007/s00446-006-0155-x.

[51] Leslie Lamport. “On Interprocess Communication. Part I: Basic Formalism”. In: Dis-

tributed Computing 1.2 (1986), pp. 77–85. DOI: 10.1007/BF01786227.

[52] Leslie Lamport. “On Interprocess Communication. Part II: Algorithms”. In: Distributed

Computing 1.2 (1986), pp. 86–101. DOI: 10.1007/BF01786228.

[53] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley, 2002. ISBN: 0-3211-4306-X.

[54] Leslie Lamport. “The Implementation of Reliable Distributed Multiprocess Systems”.

In: Computer Networks 2 (1978), pp. 95–114. DOI: 10.1016/0376-5075(78)90045-4.

[55] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Vertical paxos and primary-backup

replication”. In: PODC. Ed. by Srikanta Tirthapura and Lorenzo Alvisi. ACM, 2009,

pp. 312–313. DOI: 10.1145/1582716.1582783.

108

http://dx.doi.org/10.1109/AINA.2011.73
https://groups.csail.mit.edu/tds/ioa/
http://afp.sf.net/entries/DiskPaxos.shtml
http://dx.doi.org/10.1145/872035.872079
http://dx.doi.org/10.1145/872035.872079
http://dx.doi.org/10.1007/3-540-48256-3_11
http://dx.doi.org/10.1145/1658357.1658358
http://dx.doi.org/10.1007/978-3-642-24100-0_22
http://dx.doi.org/10.1007/s00446-006-0005-x
https://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#generalized
https://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#generalized
http://dx.doi.org/10.1007/s00446-006-0155-x
http://dx.doi.org/10.1007/BF01786227
http://dx.doi.org/10.1007/BF01786228
http://dx.doi.org/10.1016/0376-5075(78)90045-4
http://dx.doi.org/10.1145/1582716.1582783

Bibliography

[56] Leslie Lamport and Mike Massa. “Cheap Paxos”. In: DSN. IEEE Computer Society, 2004,

pp. 307–314. DOI: 10.1109/DSN.2004.1311900.

[57] Barbara Liskov and Stephen N. Zilles. “Programming with Abstract Data Types”. In:

SIGPLAN Notices 9.4 (1974), pp. 50–59.

[58] Victor Luchangco, Mark Moir, and Nir Shavit. “On the Uncontended Complexity of

Consensus”. In: DISC. Ed. by Faith Ellen Fich. Vol. 2848. LNCS. Springer, 2003, pp. 45–59.

DOI: 10.1007/978-3-540-39989-6_4.

[59] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. ISBN: 1-55860-348-4.

[60] Nancy A. Lynch. “I/O Automaton Models and Proofs for Shared-Key Communication

Systems”. In: CSFW. IEEE Computer Society, 1999, pp. 14–29. DOI: 10.1109/CSFW.1999.

779759.

[61] Nancy A. Lynch and Mark R. Tuttle. “An introduction to input/output automata”. In:

CWI Quarterly 2 (1989), pp. 219–246.

[62] Nancy A. Lynch and Frits W. Vaandrager. “Forward and Backward Simulations: I. Un-

timed Systems”. In: Inf. Comput. 121.2 (1995), pp. 214–233. DOI: 10.1006/inco.1995.1134.

[63] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. “Mencius: Building Efficient

Replicated State Machine for WANs”. In: OSDI. Ed. by Richard Draves and Robbert van

Renesse. USENIX Association, 2008, pp. 369–384.

[64] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. “Multi-Ring Paxos”. In: DSN.

Ed. by Robert S. Swarz, Philip Koopman, and Michel Cukier. IEEE Computer Society,

2012, pp. 1–12. DOI: 10.1109/DSN.2012.6263916.

[65] Parisa Jalili Marandi et al. “Ring Paxos: A high-throughput atomic broadcast protocol”.

In: DSN. IEEE, 2010, pp. 527–536. DOI: 10.1109/DSN.2010.5544272.

[66] Jean-Philippe Martin and Lorenzo Alvisi. “Fast Byzantine Consensus”. In: IEEE Trans.

Dependable Sec. Comput. 3.3 (2006), pp. 202–215. DOI: 10.1109/TDSC.2006.35.

[67] Antoni W. Mazurkiewicz. “Semantics of concurrent systems: a modular fixed-point

trace approach”. In: European Workshop on Applications and Theory in Petri Nets. 1984,

pp. 353–375.

[68] Philip K. McKinley et al. “Composing Adaptive Software”. In: IEEE Computer 37.7 (2004),

pp. 56–64. DOI: 10.1109/MC.2004.48.

[69] Stephan Merz. “The specification language TLA+”. In: Logics of specification languages.

Springer, 2008, pp. 401–451.

[70] Robin Milner. “Bigraphical Reactive Systems”. In: CONCUR. Ed. by Kim Guldstrand

Larsen and Mogens Nielsen. Vol. 2154. LNCS. Springer, 2001, pp. 16–35. DOI: 10.1007/3-

540-44685-0_2.

[71] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile Processes, I”.

In: Inf. Comput. 100.1 (1992), pp. 1–40.

109

http://dx.doi.org/10.1109/DSN.2004.1311900
http://dx.doi.org/10.1007/978-3-540-39989-6_4
http://dx.doi.org/10.1109/CSFW.1999.779759
http://dx.doi.org/10.1109/CSFW.1999.779759
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1109/DSN.2012.6263916
http://dx.doi.org/10.1109/DSN.2010.5544272
http://dx.doi.org/10.1109/TDSC.2006.35
http://dx.doi.org/10.1109/MC.2004.48
http://dx.doi.org/10.1007/3-540-44685-0_2
http://dx.doi.org/10.1007/3-540-44685-0_2

Bibliography

[72] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile Processes, II”.

In: Inf. Comput. 100.1 (1992), pp. 41–77.

[73] Iulian Moraru, David G. Andersen, and Michael Kaminsky. “There is more consensus in

Egalitarian parliaments”. In: SOSP. Ed. by Michael Kaminsky and Mike Dahlin. ACM,

2013, pp. 358–372. DOI: 10.1145/2517349.2517350.

[74] Olaf Müller. “I/O Automata and Beyond: Temporal Logic and Abstraction in Isabelle”.

In: TPHOLs. 1998, pp. 331–348.

[75] Olaf Müller and Tobias Nipkow. “Combining Model Checking and Deduction for I/O-

Automata”. In: TACAS. Ed. by Ed Brinksma et al. Vol. 1019. LNCS. Springer, 1995, pp. 1–

16. DOI: 10.1007/3-540-60630-0_1.

[76] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof As-

sistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer,

2002. ISBN: 3-540-43376-7.

[77] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. “Runtime software adapta-

tion: framework, approaches, and styles”. In: ICSE Companion. Ed. by Wilhelm Schäfer,

Matthew B. Dwyer, and Volker Gruhn. ACM, 2008, pp. 899–910. DOI: 10.1145/1370175.

1370181.

[78] Peyman Oreizy et al. “An architecture-based approach to self-adaptive software”. In:

Intelligent Systems and Their Applications, IEEE 14.3 (1999), pp. 54–62.

[79] Lawrence C. Paulson. “A Generic Tableau Prover and its Integration with Isabelle”. In: J.

UCS 5.3 (1999), pp. 73–87.

[80] Lawrence C. Paulson. “Isabelle: The Next 700 Theorem Provers”. In: CoRR cs.LO/9301106

(1993).

[81] Fernando Pedone. “Boosting System Performance with Optimistic Distributed Proto-

cols”. In: IEEE Computer 34.12 (2001), pp. 80–86. DOI: 10.1109/2.970581.

[82] C. A. Petri. “Fundamentals of a Theory of Asynchronous Information Flow”. In: IFIP

Congress. 1962, pp. 386–390.

[83] Robbert van Renesse et al. “Building Adaptive Systems Using Ensemble”. In: Softw.,

Pract. Exper. 28.9 (1998), pp. 963–979. DOI: 10.1002/(SICI)1097- 024X(19980725)28:

9<963::AID-SPE179>3.0.CO;2-9.

[84] Liliana Rosa et al. “Self-Management of Adaptable Component-Based Applications”. In:

IEEE Trans. Software Eng. 39.3 (2013), pp. 403–421. DOI: 10.1109/TSE.2012.29.

[85] Olivier Rütti and André Schiper. “A predicate-based approach to dynamic protocol

update in group communication”. In: IPDPS. IEEE, 2008, pp. 1–12. DOI: 10.1109/IPDPS.

2008.4536238.

[86] Olivier Rütti, Pawel T. Wojciechowski, and André Schiper. “Structural and algorithmic

issues of dynamic protocol update”. In: IPDPS. IEEE, 2006. DOI: 10.1109/IPDPS.2006.

1639369.

110

http://dx.doi.org/10.1145/2517349.2517350
http://dx.doi.org/10.1007/3-540-60630-0_1
http://dx.doi.org/10.1145/1370175.1370181
http://dx.doi.org/10.1145/1370175.1370181
http://dx.doi.org/10.1109/2.970581
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9<963::AID-SPE179>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9<963::AID-SPE179>3.0.CO;2-9
http://dx.doi.org/10.1109/TSE.2012.29
http://dx.doi.org/10.1109/IPDPS.2008.4536238
http://dx.doi.org/10.1109/IPDPS.2008.4536238
http://dx.doi.org/10.1109/IPDPS.2006.1639369
http://dx.doi.org/10.1109/IPDPS.2006.1639369

Bibliography

[87] Fred B. Schneider. “Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial”. In: ACM Comput. Surv. 22.4 (1990), pp. 299–319. DOI: 10.1145/

98163.98167.

[88] Atul Singh et al. “BFT Protocols Under Fire”. In: NSDI. Ed. by Jon Crowcroft and Michael

Dahlin. USENIX Association, 2008, pp. 189–204.

[89] Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette. “Foundational, Com-

positional (Co)datatypes for Higher-Order Logic: Category Theory Applied to Theorem

Proving”. In: LICS. IEEE, 2012, pp. 596–605. DOI: 10.1109/LICS.2012.75.

[90] Wei Wei et al. “Fast Mencius: Mencius with low commit latency”. In: INFOCOM. IEEE,

2013, pp. 881–889. DOI: 10.1109/INFCOM.2013.6566876.

[91] Markus Wenzel. “Isar - A Generic Interpretative Approach to Readable Formal Proof

Documents”. In: TPHOLs. Ed. by Yves Bertot et al. Vol. 1690. LNCS. Springer, 1999,

pp. 167–184. DOI: 10.1007/3-540-48256-3_12.

[92] Toh Ne Win et al. “Using simulated execution in verifying distributed algorithms”. In:

STTT 6.1 (2004), pp. 67–76. DOI: 10.1007/s10009-003-0126-5.

[93] Pawel T. Wojciechowski and Olivier Rütti. “On Correctness of Dynamic Protocol Update”.

In: FMOODS. Ed. by Martin Steffen and Gianluigi Zavattaro. Vol. 3535. LNCS. Springer,

2005, pp. 275–289. DOI: 10.1007/11494881_18.

[94] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. “Model Checking TLA+ Specifi-

cations”. In: CHARME. Ed. by Laurence Pierre and Thomas Kropf. Vol. 1703. LNCS.

Springer, 1999, pp. 54–66. DOI: 10.1007/3-540-48153-2_6.

111

http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1109/LICS.2012.75
http://dx.doi.org/10.1109/INFCOM.2013.6566876
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/s10009-003-0126-5
http://dx.doi.org/10.1007/11494881_18
http://dx.doi.org/10.1007/3-540-48153-2_6

A TLA+ Specifications

In this appendix we include all the TLA+ specifications of the algorithms presented in the

thesis. The specifications and their properties, including the composition theorem, have all

been exhaustively model checked, for small system sizes and with the three different data

types, with the TLC model checker.

113

module RDR

Specification of Recoverable Data-Type Representations

extends Sequences, Naturals, FiniteSets, Library

constants S , C , O , P , • , Output(,), Bot
For the efficiency of model checking, allow substitution of star, GLB ,

and Contains. The properties of the constants below are asserted in

assume statements.

constants ? , GLB(), Contains(,), �

Requests:

Req
∆
= P × C

Types of • and Output :

TypeOk
∆
=

∧ ∀ s ∈ S , c ∈ Req : s • c ∈ S
∧ ∀ s ∈ S , c ∈ Req : Output(s, c) ∈ O

assume TypeOk

Execute a sequence of requests:

recursive Star(, ,)
Star(s, rs, i)

∆
=

if Len(rs) < i then s
else let s2

∆
= s • rs[i]in Star(s2, rs, i + 1)

Ensures that ? and Star match.

assume ∀ s ∈ S , rs ∈ Seq(Req) : s ? rs = Star(s, rs, 1)

Idempotence property of data types:

Idem1
∆
= ∀ s ∈ S : ∀ r ∈ Req : ∀ rs ∈ Seq(Req) : r ∈ Image(rs)⇒ s ? rs = s ?Append(rs, r)

Idem2
∆
= ∀ s ∈ S : ∀ o ∈ O : ∀ p, q ∈ P : ∀ c1, c2 ∈ C :

let r1
∆
= 〈p, c1〉

r2
∆
= 〈q , c2〉

in
Output(s, r1) = o ∧ p 6= q
⇒ let s2

∆
= (s • r1) • r2

in Output(s2, r1) = o
Idem

∆
= Idem1 ∧ Idem2

assume Idem

The partial order:

PrecEq(s1, s2)
∆
=

∨ s1 = s2
∨ ∃ rs ∈ Seq(Req) : s2 = s1 ? rs

assume ∀ s1, s2 ∈ S : (s1 � s2) = PrecEq(s1, s2)

Appendix A. TLA+ Specifications

A.1 Speculative Linearizability

114

Antisymmetry of RDRs

AntiSym
∆
= ∀ s1, s2 ∈ S : s1 � s2 ∧ s2 � s1⇒ s1 = s2

assume AntiSym

Greatest lower bounds:

IsLB(s, s1, s2)
∆
= s � s1 ∧ s � s2

IsGLB(s, s1, s2)
∆
=

∧ IsLB(s, s1, s2)
∧ ∀ s3 ∈ S : s 6= s3 ∧ IsLB(s3, s1, s2)⇒ s3 � s

Semi lattice property of RDRs:

s1 t s2
∆
= choose s ∈ S : IsGLB(s, s1, s2)

GLBExists
∆
= ∀ s1, s2 ∈ S : IsGLB(s1 t s2, s1, s2)

assume GLBExists

GLB of a set of states:

recursive GLB1()
GLB1(ss)

∆
=

let s
∆
= choose s ∈ ss : true

in
if Cardinality(ss) = 1
then s
else (s tGLB1(ss \ {s}))

assume ∀ ss ∈ subset S : GLB1(ss) = GLB(ss)

The consistency property of RDRs:

Consistency
∆
= ∀ s0, s1, s2 ∈ S , rs1, rs2 ∈ Seq(Req) :

let rset
∆
= Image(rs1) ∪ Image(rs2)

in ∧ s1 = s0 ? rs1
∧ s2 = s0 ? rs2
⇒ ∃ rs ∈ Seq(rset) : s1 t s2 = s0 ? rs

assume Consistency

Checking whether an RDR contains a given request:

Contains1(s, r)
∆
= ∃ rs ∈ Seq(Req) : r ∈ Image(rs) ∧ s = Bot ? rs

assume ∀ s ∈ S , r ∈ Req : Contains(s, r) = Contains1(s, r)

115

module TestAndSet

constants P
C

∆
= {“ts”}

O
∆
= {“Won”, “Lost”}

S
∆
= {P} ∪ P

Bot
∆
= P

s • r ∆
=

if s = P then r [1] else s
Output(s, r)

∆
=

if s = P then “Won” else if r [1] = s then “Won” else “Lost”
s1 � s2

∆
=

∨ s1 = s2 ∨ s1 = P
s ? rs

∆
=

if rs = 〈〉 then s
else rs[1][1]

GLB(ss)
∆
=

if ss = {} then 〈〉
else
if ∃ s1, s2 ∈ ss : s1 6= s2
then P
else choose s ∈ ss : true

Contains(s, r)
∆
=

if s = P then false else true

116

module Consensus

extends Sequences

constants P , V
C

∆
= V

O
∆
= V

S
∆
= {V } ∪V

Bot
∆
= V

s • r ∆
=

if s = V then r [2] else s
Output(s, r)

∆
=

if s = V then r [2] else s
s1 � s2

∆
=

∨ s1 = s2 ∨ s1 = V
s ? rs

∆
=

if rs = 〈〉 ∨ s 6= V then s
else rs[1][2]

GLB(ss)
∆
=

if ss = {} then 〈〉
else
if ∃ s1, s2 ∈ ss : s1 6= s2
then V
else choose s ∈ ss : true

Contains(s, r)
∆
=

if s = V then false else true

117

module Generic

extends Library

constants P , C
O

∆
= Seq(P × C)

S
∆
= {rs ∈ Seq(P × C) : NoDup(rs, {})}

Bot
∆
= 〈〉

s • r
∆
= if r ∈ Image(s) then s else Append(s, r)

Output(s, r)
∆
= if r ∈ Image(s) then Truncate(r , s) else Append(s, r)

s1 � s2
∆
=

Prefix (s1, s2)
s ? rs

∆
= s ◦ RemDup(rs)

GLB(ss)
∆
= LongestCommonPrefix (ss)

Contains(s, r)
∆
= r ∈ Image(s)

118

module LinInterface

extends Library

constants P , C , S , O
variable interface

InvInterfaceType
∆
= [P → [cmd : C , flag : boolean]]

RespInterfaceType
∆
= [P → [output : O , flag : boolean]]

InterfaceType
∆
= [

inv : InvInterfaceType,
resp : RespInterfaceType]

InvInterfaceInit
∆
= [p ∈ P 7→ [

cmd 7→ Some(C),
flag 7→ Some(boolean)]]

RespInterfaceInit
∆
= [p ∈ P 7→ [

output 7→ Some(O),
flag 7→ Some(boolean)]]

InterfaceInit
∆
= [

inv 7→ InvInterfaceInit ,
resp 7→ RespInterfaceInit]

Invoke(p, cmd)
∆
=

interface ′ = [interface except ! .inv = [@ except ! [p] = [
cmd 7→ cmd ,
flag 7→ ¬@.flag]]]

Response(p, o)
∆
=

interface ′ = [interface except ! .resp = [@ except ! [p] = [
output 7→ o,
flag 7→ ¬@.flag]]]

119

module Linearizability

extends RDR

variables
status, pending , dState, nxtOut , interface

instance LinInterface

vars
∆
= 〈status, pending , dState, nxtOut , interface〉

Label
∆
= {“ready”, “committed”, “pending”} The status of a process.

TypeInvariant
∆
=

∀ p ∈ P :
∧ status[p] ∈ Label
∧ pending [p] ∈ C
∧ nxtOut [p] = O

∧ dState ∈ S

Invocation by process p:

Inv(p)
∆
= ∃ c ∈ C :

∧ status[p] = “ready”
∧ status ′ = [status except ! [p] = “pending”]
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ Invoke(p, c)
∧ unchanged 〈dState, nxtOut〉

Response by process p:

Resp(p)
∆
=

∧ status[p] = “committed”
∧ status ′ = [status except ! [p] = “ready”]
∧ Response(p, nxtOut [p])
∧ unchanged 〈dState, pending , nxtOut〉

Linearize one pending request.

Lin
∆
=
∧ ∃ p ∈ P :
∧ status[p] = “pending”
∧ status ′ = [status except ! [p] = “committed”]
∧ dState ′ = dState • pending [p]
∧ nxtOut ′ = [nxtOut except ! [p] = Output(dState, pending [p])]

∧ unchanged 〈pending , interface〉

Init
∆
=
∧ status = [p ∈ P 7→ “ready”]
∧ dState = Bot
∧ pending = [p ∈ P 7→ Some(Req)]

120

∧ nxtOut = [p ∈ P 7→ Some(O)]
∧ interface = InterfaceInit

Next
∆
= Lin ∨ (∃ p ∈ P : Inv(p) ∨ Resp(p))

Spec
∆
= Init ∧2[Next]vars

121

module SpecLinInterface

extends Library

constants P , C , S , O

variable interface

LI
∆
= instance LinInterface

SwitchInterfaceType
∆
= [P → [cmd : C , sval : S , flag : boolean]]

InterfaceType
∆
= [

init : SwitchInterfaceType,
inv : LI !InvInterfaceType,
resp : LI !RespInterfaceType,
abort : SwitchInterfaceType]

SwitchInterfaceInit
∆
= [p ∈ P 7→ [

cmd 7→ Some(C),
sval 7→ Some(S),
flag 7→ Some(boolean)]]

InterfaceInit
∆
= [

init 7→ SwitchInterfaceInit ,
inv 7→ LI !InvInterfaceInit ,
resp 7→ LI !RespInterfaceInit ,
abort 7→ SwitchInterfaceInit]

Invoke(p, cmd)
∆
= LI !Invoke(p, cmd)

Response(p, o)
∆
= LI !Response(p, o)

Initialize(p, cmd , sv)
∆
=

interface ′ = [interface except ! .init = [@ except ! [p] = [
cmd 7→ cmd ,
sval 7→ sv ,
flag 7→ ¬@.flag]]]

Abort(p, cmd , sv)
∆
=

interface ′ = [interface except ! .abort = [@ except ! [p] = [
cmd 7→ cmd ,
sval 7→ sv ,
flag 7→ ¬@.flag]]]

122

module SpecLin

extends Library , RDR

constant Initial true when first instance.

variables
status, pending , dState, initialized , abortVals, initVals, interface

instance SpecLinInterface

vars
∆
= 〈status, pending , dState, interface, initVals, initialized , abortVals〉

statusStr
∆
= {“idle”, “ready”, “aborted”, “pending”}

TypeInvariant
∆
=

∧ ∀ p ∈ P :
∧ status[p] ∈ statusStr
∧ pending [p] ∈ Req

∧ dState ∈ S
∧ initVals ∈ subset S
∧ abortVals ∈ subset S

Initial states

Init
∆
=
∧ if Initial

then ∧ status = [p ∈ P 7→ “ready”]
∧ initialized = true

else ∧ status = [p ∈ P 7→ “idle”]
∧ initialized = false

∧ dState = Bot
∧ pending = [p ∈ P 7→ Some(Req)]
∧ initVals = {}
∧ abortVals = {}
∧ interface = InterfaceInit

Invocation by process p:

Inv(p)
∆
= ∃ c ∈ C :

∧ status[p] = “ready”
∧ status ′ = [status except ! [p] = “pending”]
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ Invoke(p, c)
∧ unchanged 〈dState, initialized , initVals, abortVals〉

Response by process p:

Resp(p)
∆
=

∧ status[p] = “pending”
∧ initialized
∧ status ′ = [status except ! [p] = “ready”]

123

∧ Contains(dState, pending [p])
∧ Response(p, Output(dState, pending [p]))
∧ unchanged 〈dState, pending , initialized , initVals, abortVals〉

Pending
∆
=

{p ∈ P : status[p] ∈ {“pending”, “aborted”}}
PendingReqs

∆
=

{pending [p] : p ∈ Pending}
InitSets

∆
=

{is ∈ subset initVals : is 6= {}}

SafeInit
∆
=

{s1 ∈ S :
∧ initVals 6= {}
∧ ∃ is ∈ InitSets :
∃ rs ∈ NoDupSeq1(PendingReqs) :
s1 = GLB(is) ? rs

∧ ∀ a ∈ abortVals : s1 � a}

PossibleCommit
∆
=

{s1 ∈ S :
∧ dState � s1
∧ ∨ ∃ rs ∈ NoDupSeq1(PendingReqs) : s1 = dState ? rs
∨ ∃ is ∈ InitSets :
∧ dState � GLB(is)
∧ ∃ rs ∈ NoDupSeq1(PendingReqs) : s1 = GLB(is) ? rs}

SafeCommit
∆
=

{s1 ∈ PossibleCommit :
∀ a ∈ abortVals : s1 � a}

SafeAbort
∆
=

{s1 ∈ S :
if initialized
then s1 ∈ PossibleCommit
else ∃ is ∈ InitSets :
∃ rs ∈ NoDupSeq1(PendingReqs) :
s1 = GLB(is) ? rs}

Abort by process p:

Abo(p)
∆
=

∧ status[p] = “pending”
∧ status ′ = [status except ! [p] = “aborted”]
∧ ∃ s1 ∈ SafeAbort :
∧Abort(p, pending [p][2], s1)
∧ abortVals ′ = abortVals ∪ {s1}
∧ unchanged 〈dState, pending , initialized , initVals〉

124

Linearize some pending requests.

Lin
∆
=
∧ initialized
∧ PendingReqs 6= {}
∧ ∃ s ∈ SafeCommit : dState ′ = s
∧ dState ′ ∈ S For TLC

∧ unchanged 〈status, pending , interface, initialized , initVals, abortVals〉

Init call

Ini(p)
∆
=

∧ status[p] = “idle”
∧ ∃ c ∈ C , sval ∈ S :
∧ Initialize(p, c, sval)
∧ status ′ = [status except ! [p] = “pending”]
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ initVals ′ = initVals ∪ {sval}

∧ unchanged 〈dState, initialized , abortVals〉

Recover
∆
=

∧ ¬initialized
∧ ∃ s1 ∈ SafeInit : dState ′ = s1
∧ dState ′ ∈ S For TLC

∧ initialized ′ = true
∧ unchanged 〈pending , status, interface, initVals, abortVals〉

Next
∆
= ∃ p ∈ P : Lin ∨ Inv(p) ∨ Resp(p) ∨Abo(p) ∨ Ini(p) ∨ Recover

Spec
∆
= Init ∧2[Next]vars

125

module SpecLinCorrectness

extends RDR

module SpecLinIsLin

variable interface

Mode1(status, pending , dState, initialized , initVals, abortVals)
∆
=

instance SpecLin with Initial ← true

Lin(status, pending , dState, nxtOut)
∆
= instance Linearizability with

interface ← [inv 7→ interface.inv , resp 7→ interface.resp]

Mode1Spec
∆
= ∃∃∃∃∃∃ status, pending , s, initVals, abortVals, initialized :

Mode1(status, pending , s, initVals, abortVals, initialized) !Spec

LinSpec
∆
= ∃∃∃∃∃∃ status, pending , s, nxtOut : Lin(status, pending , s, nxtOut) !Spec

theorem Mode1Spec ⇒ LinSpec

module SpecLinIsIdemPotent

Here we compose two instances of speculative linearizability using the method described in

section 2.4.6.

extends SpecLinInterface

SingleMode(status, pending , dState, initVals, abortVals, initialized)
∆
=

instance SpecLin with Initial ← true

module Composition

variables status1, pending1, dState1, initVals1, abortVals1, initialized1, interface1
vars1

∆
= 〈status1, pending1, dState1, initVals1, abortVals1, initialized1,

interface1〉
Mode1

∆
= instance SpecLin with

Initial ← true,
status ← status1, pending ← pending1, dState ← dState1, initVals ← initVals1,
abortVals ← abortVals1,
initialized ← initialized1, interface ← interface1

variables status2, pending2, dState2, initVals2, abortVals2, initialized2, interface2
vars2

∆
= 〈status2, pending2, dState2, initVals2, abortVals2, initialized2,

interface2〉
Mode2

∆
= instance SpecLin with

Initial ← false,
status ← status2, pending ← pending2, dState ← dState2, initVals ← initVals2,
abortVals ← abortVals2,

126

initialized ← initialized2, interface ← interface2

LinkInterfaces
∆
=

∧ interface1′.abort = interface2′.init
∧ ∀ p ∈ P :
∧ interface1′.inv [p] 6= interface1.inv [p]
⇒ interface.inv ′ = [interface.inv except ! [p]

= [@ except ! .cmd = interface1′.inv [p].cmd ,
! .flag = ¬@]]

∧ interface1′.resp[p] 6= interface1.resp[p]
⇒ interface.resp′ = [interface.resp except ! [p]

= [@ except ! .output = interface1′.resp[p].output ,
! .flag = ¬@]]

∧ interface2′.inv [p] 6= interface2.inv [p]
⇒ interface.inv ′ = [interface.inv except ! [p]

= [@ except ! .cmd = interface2′.inv [p].cmd ,
! .flag = ¬@]]

∧ interface2′.resp[p] 6= interface2.resp[p]
⇒ interface.resp′ = [interface.resp except ! [p]

= [@ except ! .output = interface2′.resp[p].output ,
! .flag = ¬@]]

∧ interface1′.interface.inv = interface1.interface.inv
∧ interface2′.interface.inv = interface2.interface.inv
⇒ interface.inv ′ = interface.inv

∧ interface1′.interface.resp = interface1.interface.resp
∧ interface2′.interface.resp = interface2.interface.resp
⇒ interface.resp′ = interface.resp

∧ interface1′.abort = interface2′.init

CompoNext
∆
=

∧ ∨ ∧ Mode1 !Next
∧ unchanged vars2

∨ ∧ Mode2 !Next
∧ unchanged vars1

∨ ∃ p ∈ P : Mode1 !Abo(p) ∧Mode2 !Ini(p)
∧ LinkInterfaces

CompoInit
∆
= Mode1 !Init ∧Mode2 !Init ∧ interface = InterfaceInit

CompoSpec
∆
= CompoInit ∧2[CompoNext]〈vars1, vars2, interface〉

Compo(status1, pending1, dState1, initVals1, abortVals1, initialized1, interface1,
status2, pending2, dState2, initVals2, abortVals2, initialized2, interface2)

∆
= instance Composition

127

CompoSpec
∆
=

∃∃∃∃∃∃ status1, pending1, dState1, initVals1, abortVals1, initialized1, interface1 :
∃∃∃∃∃∃ status2, pending2, dState2, initVals2, abortVals2, initialized2, interface2 :

Compo(status1, pending1, dState1, initVals1, abortVals1, initialized1,
interface1, status2, pending2, dState2, initVals2, abortVals2,

initialized2, interface2) !CompoSpec

SingleModeSpec
∆
=

∃∃∃∃∃∃ status, pending , dState, initVals, abortVals, initialized :
SingleMode(status, pending , dState, initVals, abortVals, initialized) !Spec

theorem CompoSpec ⇒ SingleModeSpec

128

module MPGC

extends RDR, Library

constants Initial , Acceptor

RespQuorum is the set of quorums used to determine a response

AbortQuorum is the set of quorums used to determine an abort value

AbortValues([Q → S]) is the set of safe abort values given

the dStates of a quorum Q of acceptors.

constants RespQuorum, AbortQuorum, AbortValues()

variables status, pending , initVals, dState, accStatus, interface,
pastPending
abortVals is a history variable

variable abortVals

instance SpecLinInterface

vars
∆
= 〈status, pending , initVals, dState, accStatus, interface,

abortVals, pastPending〉
Labels

∆
= {“idle”, “ready”, “pending”, “panic”, “aborted”}

AcceptorLabels
∆
= {“idle”, “ready”, “stopped”}

TypeInvariant
∆
=

∧ ∀ p ∈ P :
∧ status[p] ∈ Labels
∧ pending [p] ∈ Req
∧ ∀ r ∈ Acceptor :
∧ dState[r] ∈ S
∧ accStatus[r] ∈ AcceptorLabels
∧ initVals = {}
∧ pastPending ⊆ Req

Init
∆
=

∧ status =
if Initial
then [p ∈ P 7→ “ready”]
else [p ∈ P 7→ “idle”]
∧ pending = [p ∈ P 7→ Some(Req)]
∧ initVals = {}
∧ dState = [r ∈ Acceptor 7→ Bot]
∧ accStatus =
if Initial
then [r ∈ Acceptor 7→ “ready”]
else [r ∈ Acceptor 7→ “idle”]
∧ interface = InterfaceInit

A.2. Message-Passing Adaptive Algorithms

A.2 Message-Passing Adaptive Algorithms

129

∧ abortVals = {}
∧ pastPending = {}

Ini(p)
∆
= ∃ c ∈ C , v ∈ S :

∧ status[p] = “idle”
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ initVals ′ = initVals ∪ {v}
∧ status ′ = [status except ! [p] = “pending”]
∧ Initialize(p, c, v)
∧ pastPending ′ = pastPending ∪ {〈p, c〉}
∧ unchanged 〈dState, accStatus, abortVals〉

Inv(p)
∆
= ∃ c ∈ C :

∧ status[p] = “ready”
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ status ′ = [status except ! [p] = “pending”]
∧ Invoke(p, c)
∧ pastPending ′ = pastPending ∪ {〈p, c〉}
∧ unchanged 〈dState, accStatus, initVals, abortVals〉

SrvStates(Q)
∆
=

{s ∈ S : ∃ srv ∈ Q : s = dState[srv]}

Res(p)
∆
=

∧ status[p] = “pending”
∧ status ′ = [status except ! [p] = “ready”]
∧ ∃Q ∈ RespQuorum :
∧ ∀ srv ∈ Q : accStatus[srv] 6= “idle”
∧ let glb

∆
= GLB(SrvStates(Q))

in ∧ Contains(glb, pending [p])
∧ Response(p, Output(glb, pending [p]))

∧ unchanged 〈pending , initVals, dState, accStatus,
abortVals, pastPending〉

Computing an abort value: all thirds contain at least one RDR of the Quorum that was used
for the last commit. Therefore every GLB is either a prefix of the last committed RDR or an
extension of it with pending requests.

Abo(p)
∆
=

∧ status[p] = “panic”
∧ ∃Q ∈ AbortQuorum :
∧ ∀ srv ∈ Q : accStatus[srv] = “stopped”
∧ ∃ s ∈ AbortValues([a ∈ Q 7→ dState[a]]) :
∧Abort(p, pending [p][2], s)
∧ abortVals ′ = abortVals ∪ {s}

∧ status ′ = [status except ! [p] = “aborted”]
∧ unchanged 〈pending , initVals, dState, accStatus, pastPending〉

130

We abstract over time: a process can panic at any moment.

Panic(p)
∆
=

∧ status[p] = “pending”
∧ status ′ = [status except ! [p] = “panic”]
∧ unchanged 〈pending , initVals, dState, accStatus, interface,
abortVals, pastPending〉

Pending
∆
=

{p ∈ P : status[p] ∈ {“pending”, “panic”, “aborted”}}

A Acceptor executes a pending request.

Exec(r)
∆
=

∧ accStatus[r] = “ready”
∧ ∃ req ∈ pastPending :
dState ′ = [dState except ! [r] = @ • req]
∧ unchanged 〈status, pending , initVals, accStatus, interface,
abortVals, pastPending〉

A Acceptor sets its local state to one of the init values of the processes.

WakeUp(r)
∆
=

∧ accStatus[r] = “idle”
∧ ∃ iv ∈ initVals :
∧ dState ′ = [dState except ! [r] = iv]
∧ accStatus ′ = [accStatus except ! [r] = “ready”]
∧ unchanged 〈status, pending , initVals, interface, abortVals, pastPending〉

Stop(r)
∆
= ∃ p ∈ P :

∧ status[p] ∈ {“panic”, “aborted”}
∧ accStatus[r] = “ready”
∧ accStatus ′ = [accStatus except ! [r] = “stopped”]
∧ unchanged 〈status, pending , initVals, interface, dState,
abortVals, pastPending〉

Next
∆
=
∨ ∃ p ∈ P : Ini(p) ∨ Inv(p) ∨ Res(p) ∨Abo(p) ∨ Panic(p)
∨ ∃ r ∈ Acceptor : Exec(r) ∨WakeUp(r) ∨ Stop(r)

Spec
∆
= Init ∧2[Next]vars

131

module FastMPGCDefs

extends FiniteSets, Library

constants � , GLB()

constants RespQuorum, AbortQuorum, Acceptor

assume ∀Q , R ∈ RespQuorum : Q ∩ R 6= {}
assume ∀Q ∈ RespQuorum, R ∈ AbortQuorum :

Cardinality(Q ∩ R) ≥ (Cardinality(R)÷ 2) + 1

Examples of quorums:

N
∆
= Cardinality(Acceptor)

RespQuorum1
∆
=

{Q ∈ subset Acceptor :
Cardinality(Q) ≥ ((2 ∗N)÷ 3) + 1}

AbortQuorum1
∆
= RespQuorum1

RespQuorum2
∆
=

{Q ∈ subset Acceptor :
Cardinality(Q) ≥ ((3 ∗N)÷ 4) + 1}

AbortQuorum2
∆
=

{Q ∈ subset Acceptor :
Cardinality(Q) ≥ (N ÷ 2) + 1}

RespQuorum3
∆
= {Acceptor}

AbortQuorum3
∆
= {{a} : a ∈ Acceptor}

RemovePrefixes(ss)
∆
=

{s ∈ ss : ¬(∃ s1 ∈ ss \ {s} : s � s1)}

Majority(Q)
∆
=

{Maj ∈ subset Q :
Cardinality(Maj) ≥ Cardinality(Q)÷ 2 + 1}

Assumes DStates is a function [Q → S] where S is an abort quorum.

AbortValues(DStates)
∆
=

let Q
∆
= domain DStates

MajSets
∆
= {Image([a ∈ Maj 7→ DStates[a]]) : Maj ∈ Majority(Q)}

G
∆
= {GLB(ss) : ss ∈ MajSets}

in RemovePrefixes(G)

132

module FastMPGC

extends FiniteSets, Naturals, Library , Consensus, TLCDefs

constants Initial , Acceptor

RespQuorum is the set of quorums used to determine a response

AbortQuorum is the set of quorums used to determine an abort value

AbortValues([Q → S]) is the set of safe abort values given

the dStates of a quorum Q of acceptors.

constants RespQuorum, AbortQuorum

instance FastMPGCDefs

variables status, pending , initVals, dState, accStatus, interface,
abortVals, pastPending

instance MPGC

slin status
∆
= [p ∈ P 7→ if status[p] ∈ {“pending”, “panic”} then “pending” else status[p]]

slin pending
∆
= pending

slin dState
∆
= Max ({GLB(SrvStates(Q)) : Q ∈ RespQuorum}, lambda a, b : a � b)

slin interface
∆
= interface

slin initialized
∆
=

if Initial then true
else ∃Q ∈ RespQuorum : ∀ a ∈ Q : accStatus[a] 6= “idle”

slin initVals
∆
= initVals

slin abortVals
∆
= abortVals

SLin
∆
= instance SpecLin with

status ← slin status,
pending ← slin pending ,
dState ← slin dState,
interface ← slin interface,
initialized ← slin initialized ,
initVals ← slin initVals,
abortVals ← slin abortVals

theorem Spec ⇒ SLin !Spec

133

module SafeMPGCDefs

extends FiniteSets, Library

constants � , GLB()

constants Acceptor

N
∆
= Cardinality(Acceptor)

Quorum
∆
=

{Q ∈ subset Acceptor :
Cardinality(Q) ≥ (N ÷ 2) + 1}

RespQuorum
∆
= Quorum

AbortQuorum
∆
= Quorum

assume ∀Q , R ∈ RespQuorum : Q ∩ R 6= {}
assume ∀Q ∈ RespQuorum, R ∈ AbortQuorum :
Cardinality(Q ∩ R) ≥ (Cardinality(R)÷ 2) + 1

There is only one abort value, the maximum of the dStates of the quorum.

AbortValues(DStates)
∆
=

{choose s ∈ Image(DStates) :
∀ s1 ∈ Image(DStates) :
s1 � s}

134

module SafeMPGC

extends FiniteSets, Naturals, Library , Generic, TLCDefs

constants Initial , Acceptor

instance SafeMPGCDefs

variables status, pending , initVals, dState, accStatus, interface,
abortVals, pastPending

In safe algorithms, the acceptors cannot become inconsistent. This can

be implemented with a leader, or otherwise.

AcceptorConsistency
∆
=

∀ acc1, acc2 ∈ Acceptor :
let s1

∆
= dState[acc1]

s2
∆
= dState[acc2]

in s1 � s2 ∨ s2 � s1

instance MPGC

ConsistentSpec
∆
= Init ∧2[Next ∧AcceptorConsistency ′]vars

slin status
∆
= [p ∈ P 7→ if status[p] ∈ {“pending”, “panic”} then “pending” else status[p]]

slin pending
∆
= pending

slin dState
∆
= Max ({GLB(SrvStates(Q)) : Q ∈ RespQuorum}, lambda a, b : a � b)

slin interface
∆
= interface

slin initialized
∆
=

if Initial then true
else ∃Q ∈ RespQuorum : ∀ a ∈ Q : accStatus[a] 6= “idle”

slin initVals
∆
= initVals

slin abortVals
∆
= abortVals

SLin
∆
= instance SpecLin with

status ← slin status,
pending ← slin pending ,
dState ← slin dState,
interface ← slin interface,
initialized ← slin initialized ,
initVals ← slin initVals,
abortVals ← slin abortVals

theorem ConsistentSpec ⇒ SLin !Spec

135

module Network

constant Msg , Agent

Packet
∆
= [from : Agent , to : Agent , msg : Msg]

MkPacket(src, m, dst)
∆
= [

from 7→ src,
msg 7→ m,
to 7→ dst]

variable network

Async channels with message loss

but no duplication or corruption (e.g. TCP).

Packets(src, ms)
∆
=

union {{MkPacket(src, m, dst) : m ∈ ms[dst]} : dst ∈ domain ms}
ms must be a function from destination to set of messages.

Snd(src, ms)
∆
=

network ′ = network ∪ Packets(src, ms)

Rcv(dst , m, src)
∆
=

let packet
∆
= MkPacket(src, m, dst)

in ∧ packet ∈ network
∧ network ′ = network \ {packet}

Receive and reply at once, to simplify.

RcvSnd(dst , m, src, ms)
∆
=

let packet
∆
= MkPacket(src, m, dst)

in ∧ packet ∈ network
∧ network ′ = (network \ {packet}) ∪ Packets(dst , ms)

NetworkInvariant
∆
=

∀ packet ∈ network :
packet ∈ Packet

136

module Quorum

extends Consensus, Library , TLCDefs
instance RDR

constants AbortQuorum, RespQuorum, Initial , Acceptor

instance FastMPGCDefs

variables status, pending , initVals, execAcks, panicAcks, dState,
network , accStatus, interface
abortVals and pastPending are history variables

variable abortVals, pastPending

instance SpecLinInterface

vars
∆
= 〈status, pending , initVals, execAcks, panicAcks, dState,

accStatus, interface, network , abortVals, pastPending〉

Labels
∆
= {“idle”, “ready”, “pending”, “panic”, “aborted”}

AcceptorLabels
∆
= {“idle”, “ready”, “stopped”}

Agent
∆
= P ∪Acceptor

TLC must be able to test members of a set for equality, therefore

one cannot have the following set: {1, true}. Since TLC can

test equality of sequences pointwise starting with the first

element, we will maCe sure that messages are sequences whose

first element is a string.

Msg
∆
= {〈“req”, r〉 : r ∈ Req} ∪ {〈“execAck”, s〉 : s ∈ S}

∪ {〈“panic”〉} ∪ {〈“panicAck”, s〉 : s ∈ S}
∪ {〈“init”, s〉 : s ∈ S}

instance Network

TypeInvariant
∆
=

∧ ∀ p ∈ P :
∧ status[p] ∈ Labels
∧ pending [p] ∈ Req
∧ ∀ a ∈ Acceptor :
∧ execAcks[p][a] ∈ {{s} : s ∈ S} ∪ {{}}
∧ panicAcks[p][a] ∈ {{s} : s ∈ S} ∪ {{}}

∧ ∀ a ∈ Acceptor :
∧ dState[a] ∈ S
∧ accStatus[a] ∈ AcceptorLabels

∧ initVals ⊆ S
∧ abortVals ⊆ S
∧ pastPending ⊆ Req

The processes

137

InitProcs
∆
=

∧ status = [p ∈ P 7→ if Initial then “ready” else “idle”]
∧ pending = [p ∈ P 7→ Some(Req)]
∧ execAcks = [p ∈ P 7→ [a ∈ Acceptor 7→ {}]]
∧ panicAcks = [p ∈ P 7→ [a ∈ Acceptor 7→ {}]]

Inv(p)
∆
=

∧ status[p] = “ready”
∧ ∃ c ∈ C :
∧ Invoke(p, c)
∧ Snd(p, [a ∈ Acceptor 7→ {〈“req”, 〈p, c〉〉}])
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ pastPending ′ = pastPending ∪ {〈p, c〉}
∧ status ′ = [status except ! [p] = “pending”]
∧ unchanged 〈initVals, execAcks, panicAcks, dState, accStatus,
abortVals〉

Ini(p)
∆
=

∧ status[p] = “idle”
∧ ∃ c ∈ C , s ∈ S :
∧ Initialize(p, c, s)
∧ Snd(p, [a ∈ Acceptor 7→ {〈“init”, s〉, 〈“req”, 〈p, c〉〉}])
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ initVals ′ = initVals ∪ {s}
∧ pastPending ′ = pastPending ∪ {〈p, c〉}
∧ status ′ = [status except ! [p] = “pending”]
∧ unchanged 〈execAcks, panicAcks, dState, accStatus, abortVals〉

RcvExecAcC (p)
∆
=

∧ status[p] ∈ {“pending”, “panic”}
∧ ∃ s ∈ S , a ∈ Acceptor :
∧ Rcv(p, 〈“execAck”, s〉, a)
∧ execAcks ′ = [execAcks except ! [p] = [@ except ! [a] = {s}]]
∧ unchanged 〈status, pending , initVals, dState, accStatus,
interface, abortVals, panicAcks, pastPending〉

RcvPanicAck(p)
∆
=

∧ status[p] = “panic”
∧ ∃ s ∈ S , a ∈ Acceptor :
∧ Rcv(p, 〈“panicAck”, s〉, a)
∧ panicAcks ′ = [panicAcks except ! [p] = [@ except ! [a] = {s}]]
∧ unchanged 〈status, pending , execAcks, initVals, dState,
accStatus, interface, abortVals, pastPending〉

A process can panic at any time because it times out.

Panic(p)
∆
=

138

∧ status[p] = “pending”
∧ status ′ = [status except ! [p] = “panic”]
∧ Snd(p, [a ∈ Acceptor 7→ {〈“panic”〉}])
∧ unchanged 〈pending , initVals, execAcks, panicAcks, dState,
accStatus, interface, abortVals, pastPending〉

Res(p)
∆
=

∧ status[p] = “pending”
∧ ∃Q ∈ RespQuorum :
∧ ∀ a ∈ Q : execAcks[p][a] 6= {}
∧ let acks

∆
= {s ∈ S : ∃ a ∈ Q : execAcks[p][a] = {s}}

glb
∆
= GLB(acks)

req
∆
= pending [p]

in ∧ Contains(glb, req)
∧ Response(p, Output(glb, req))

∧ status ′ = [status except ! [p] = “ready”]
∧ execAcks ′ = [execAcks except ! [p] = [a ∈ Acceptor 7→ {}]]
∧ unchanged 〈pending , initVals, panicAcks, dState, accStatus,
network , abortVals, pastPending〉

PanicAck(p, a)
∆
=

choose s ∈ S : panicAcks[p][a] = {s}

Abo(p)
∆
=

∧ status[p] = “panic”
∧ ∃Q ∈ AbortQuorum :
∧ ∀ a ∈ Q : panicAcks[p][a] 6= {}
∧ let acks

∆
= [a ∈ Q 7→ PanicAck(p, a)]

in ∃ s ∈ AbortValues(acks) :
∧Abort(p, pending [p][2], s)
∧ abortVals ′ = abortVals ∪ {s}

∧ status ′ = [status except ! [p] = “aborted”]
∧ unchanged 〈pending , initVals, execAcks, panicAcks, dState, accStatus,
network , pastPending〉

The Acceptors

InitAcceptor
∆
=

∧ accStatus = [a ∈ Acceptor 7→ if Initial then “ready” else “idle”]
∧ dState = [a ∈ Acceptor 7→ Bot]

WakeUp(a)
∆
=

∧ accStatus[a] = “idle”
∧ accStatus ′ = [accStatus except ! [a] = “ready”]
∧ ∃ p ∈ P , s ∈ S :
∧ Rcv(a, 〈“init”, s〉, p)
∧ dState ′ = [dState except ! [a] = s]

139

∧ unchanged 〈status, initVals, panicAcks, pending , execAcks,
interface, abortVals, pastPending〉

Exec(a)
∆
=

∧ accStatus[a] = “ready”
∧ ∃ p ∈ P , req ∈ Req :
∧ RcvSnd(a, 〈“req”, req〉, p,

[q ∈ {p} 7→ {〈“execAck”, dState[a] • req〉}])
∧ dState ′ = [dState except ! [a] = @ • req]
∧ dState ′[a] ∈ S For TLC

∧ unchanged 〈status, initVals, pending , execAcks, interface,
accStatus, abortVals, panicAcks, pastPending〉

Stop(a)
∆
=

∧ accStatus[a] = “ready”
∧ ∃ p ∈ P : RcvSnd(a, 〈“panic”〉, p,
[q ∈ {p} 7→ {〈“panicAck”, dState[a]〉}])
∧ accStatus ′ = [accStatus except ! [a] = “stopped”]
∧ unchanged 〈status, initVals, pending , execAcks, interface, dState,
abortVals, panicAcks, pastPending〉

The full spec

Init
∆
=

∧ InitProcs
∧ InitAcceptor
∧ interface = InterfaceInit
∧ network = {}
∧ abortVals = {}
∧ initVals = {}
∧ pastPending = {}

Next
∆
=

∨ ∃ p ∈ P : Inv(p) ∨ Ini(p) ∨ RcvPanicAck(p) ∨ RcvExecAcC (p)
∨ Panic(p) ∨Abo(p) ∨ Res(p)
∨ ∃ a ∈ Acceptor : WakeUp(a) ∨ Exec(a) ∨ Stop(a)

Spec
∆
= Init ∧2[Next]vars

Fast
∆
= instance FastMPGC

theorem Spec ⇒ Fast !Spec

140

module ZLight

extends Generic, Library , TLCDefs
instance RDR

constants Initial , Leader , Follower
assume Leader /∈ Follower

Acceptor
∆
= Follower ∪ {Leader}

instance SafeMPGCDefs

variables status, pending , initVals, execAcks, panicAcks, dState,
network , accStatus, interface
abortVals and pastPending are history variables

variable abortVals, pastPending

instance SpecLinInterface

vars
∆
= 〈status, pending , initVals, execAcks, panicAcks, dState,

accStatus, interface, network , abortVals, pastPending〉

Labels
∆
= {“idle”, “ready”, “pending”, “panic”, “aborted”}

AcceptorLabels
∆
= {“idle”, “ready”, “stopped”}

Agent
∆
= P ∪Acceptor

TLC must be able to test members of a set for equality, therefore

one cannot have the following set: {1, true}. Since TLC can

test equality of sequences pointwise starting with the first

element, we will make sure that messages are sequences whose

first element is a string.

Msg
∆
= {〈“req”, r〉 : r ∈ Req} ∪ {〈“execAck”, s〉 : s ∈ S}
∪ {〈“panic”〉} ∪ {〈“panicAck”, s〉 : s ∈ S}
∪ {〈“init”, s〉 : s ∈ S}
∪ {〈“leaderInit”, s〉 : s ∈ S}
∪ {〈“leaderExec”, s, p〉 : s ∈ S , p ∈ P}

instance Network

TypeInvariant
∆
=

∧ ∀ p ∈ P :
∧ status[p] ∈ Labels
∧ pending [p] ∈ Req
∧ ∀ a ∈ Acceptor :
∧ execAcks[p][a] ∈ {{s} : s ∈ S} ∪ {{}}
∧ panicAcks[p][a] ∈ {{s} : s ∈ S} ∪ {{}}

∧ ∀ a ∈ Acceptor :
∧ dState[a] ∈ S
∧ accStatus[a] ∈ AcceptorLabels

141

∧ initVals ⊆ S
∧ abortVals ⊆ S
∧ pastPending ⊆ Req

The processes

InitProcs
∆
=

∧ status = [p ∈ P 7→ if Initial then “ready” else “idle”]
∧ pending = [p ∈ P 7→ Some(Req)]
∧ execAcks = [p ∈ P 7→ [a ∈ Acceptor 7→ {}]]
∧ panicAcks = [p ∈ P 7→ [a ∈ Acceptor 7→ {}]]

Inv(p)
∆
=

∧ status[p] = “ready”
∧ ∃ c ∈ C :
∧ Invoke(p, c)
∧ Snd(p, [a ∈ {Leader} 7→ {〈“req”, 〈p, c〉〉}])
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ pastPending ′ = pastPending ∪ {〈p, c〉}

∧ status ′ = [status except ! [p] = “pending”]
∧ unchanged 〈initVals, abortVals, execAcks, dState, accStatus, panicAcks〉

Ini(p)
∆
=

∧ status[p] = “idle”
∧ ∃ c ∈ C , s ∈ S :
∧ Initialize(p, c, s)
∧ Snd(p, [a ∈ {Leader} 7→ {〈“init”, s〉, 〈“req”, 〈p, c〉〉}])
∧ pending ′ = [pending except ! [p] = 〈p, c〉]
∧ initVals ′ = initVals ∪ {s}
∧ pastPending ′ = pastPending ∪ {〈p, c〉}

∧ status ′ = [status except ! [p] = “pending”]
∧ unchanged 〈execAcks, dState, accStatus, abortVals, panicAcks〉

RcvExecAcC (p)
∆
=

∧ status[p] ∈ {“pending”, “panic”}
∧ ∃ s ∈ S , a ∈ Acceptor :
∧ Rcv(p, 〈“execAck”, s〉, a)
∧ execAcks ′ = [execAcks except ! [p] = [@ except ! [a] = {s}]]
∧ unchanged 〈status, pending , initVals, dState, accStatus,
interface, abortVals, panicAcks, pastPending〉

RcvPanicAck(p)
∆
=

∧ status[p] = “panic”
∧ ∃ s ∈ S , a ∈ Acceptor :
∧ Rcv(p, 〈“panicAck”, s〉, a)
∧ panicAcks ′ = [panicAcks except ! [p] = [@ except ! [a] = {s}]]
∧ unchanged 〈status, pending , execAcks, initVals, dState,

142

accStatus, interface, abortVals, pastPending〉

A process can panic at any time because it times out.

Panic(p)
∆
=

∧ status[p] = “pending”
∧ status ′ = [status except ! [p] = “panic”]
∧ Snd(p, [a ∈ Acceptor 7→ {〈“panic”〉}])
∧ unchanged 〈pending , initVals, execAcks, panicAcks, dState,
accStatus, interface, abortVals, pastPending〉

Res(p)
∆
=

∧ status[p] = “pending”
∧ ∃Q ∈ RespQuorum :
∧ ∀ a ∈ Q : execAcks[p][a] 6= {}
∧ let acks

∆
= {s ∈ S : ∃ a ∈ Q : execAcks[p][a] = {s}}

glb
∆
= GLB(acks)

req
∆
= pending [p]

in ∧ Contains(glb, req)
∧ Response(p, Output(glb, req))

∧ status ′ = [status except ! [p] = “ready”]
∧ execAcks ′ = [execAcks except ! [p] = [a ∈ Acceptor 7→ {}]]
∧ unchanged 〈pending , initVals, panicAcks, dState, accStatus,
network , abortVals, pastPending〉

PanicAck(p, a)
∆
=

choose s ∈ S : panicAcks[p][a] = {s}

Abo(p)
∆
=

∧ status[p] = “panic”
∧ ∃Q ∈ AbortQuorum :
∧ ∀ a ∈ Q : panicAcks[p][a] 6= {}
∧ let acks

∆
= [a ∈ Q 7→ PanicAck(p, a)]

in ∃ s ∈ AbortValues(acks) :
∧Abort(p, pending [p][2], s)
∧ abortVals ′ = abortVals ∪ {s}

∧ status ′ = [status except ! [p] = “aborted”]
∧ unchanged 〈pending , initVals, execAcks, panicAcks, dState, accStatus,
network , pastPending〉

The Acceptors

InitAcceptor
∆
=

∧ accStatus = [rep ∈ Acceptor
7→ if Initial then “ready” else “idle”]
∧ dState = [rep ∈ Acceptor 7→ Bot]

WakeUp(rep)
∆
=

143

∧ accStatus[rep] = “idle”
∧ accStatus ′ = [accStatus except ! [rep] = “ready”]
∧ if rep = Leader

then ∃ p ∈ P , s ∈ S :
∧ RcvSnd(rep, 〈“init”, s〉, p,

[a ∈ Follower 7→ {〈“leaderInit”, s〉}])
∧ dState ′ = [dState except ! [rep] = s]

else ∃ s ∈ S :
∧ Rcv(rep, 〈“leaderInit”, s〉, Leader)
∧ dState ′ = [dState except ! [rep] = s]

∧ unchanged 〈status, pending , execAcks, interface,
initVals, abortVals, panicAcks, pastPending〉

Exec(rep)
∆
=

∧ accStatus[rep] = “ready”
∧ if rep = Leader

then ∃ p ∈ P , req ∈ Req :
let newDState

∆
= dState[rep] • reqin

∧ RcvSnd(rep, 〈“req”, req〉, p, [x ∈ Follower ∪ {p} 7→
if x ∈ Follower
then {〈“leaderExec”, newDState, p〉}
else {〈“execAck”, dState[rep] • req〉}])
∧ dState ′ = [dState except ! [rep] = newDState]

else ∃ s ∈ S , p ∈ P :
∧ ∃ req ∈ Req : s = dState[rep] • req don’t skip updates

∧ RcvSnd(rep, 〈“leaderExec”, s, p〉, Leader ,
[q ∈ {p} 7→ {〈“execAck”, s〉}])
∧ dState ′ = [dState except ! [rep] = s]

∧ unchanged 〈status, pending , execAcks, interface, accStatus,
initVals, abortVals, panicAcks, pastPending〉

Stop(a)
∆
=

∧ accStatus[a] = “ready”
∧ ∃ p ∈ P : RcvSnd(a, 〈“panic”〉, p,
[q ∈ {p} 7→ {〈“panicAck”, dState[a]〉}])
∧ accStatus ′ = [accStatus except ! [a] = “stopped”]
∧ unchanged 〈status, initVals, pending , execAcks, interface, dState,
abortVals, panicAcks, pastPending〉

The full spec

Init
∆
=

∧ InitProcs
∧ InitAcceptor
∧ interface = InterfaceInit
∧ network = {}

144

∧ abortVals = {}
∧ initVals = {}
∧ pastPending = {}

Next
∆
=

∨ ∃ p ∈ P : Inv(p) ∨ Ini(p) ∨ RcvPanicAck(p) ∨ RcvExecAcC (p)
∨ Panic(p) ∨Abo(p) ∨ Res(p)
∨ ∃ a ∈ Acceptor : WakeUp(a) ∨ Exec(a) ∨ Stop(a)

Spec
∆
= Init ∧2[Next]vars

Safe
∆
= instance SafeMPGC

theorem Spec ⇒ Safe !Spec

145

module SharedMemConsensus

extends Library , Consensus, TLCDefs

instance RDR

local variables start with an underscore.

variables
v , d , contention, pending , pc,
interface,
spinterface,
abortVals ghost variable

variables splitterPc, x , y

instance SpecLinInterface
instance SplitterConcreteInterface

Splitter
∆
= instance Splitter with

interface ← spinterface,
pc ← splitterPc

splitterVars
∆
= 〈splitterPc, x , y , spinterface〉

vars
∆
= 〈v , d , contention, pending , pc, interface, spinterface, abortVals〉

TypeInvariant
∆
=

∧ pc ∈ [P → {“L1”, “L2”, “L3”, “L4”, “L5”, “L6”, “L7”, “L8”, “L9”,
“L10”, “COMMITTED”, “ABORTED”}]

∧ pending ∈ [P → Req]
∧ v ∈ S
∧ d ∈ boolean
∧ contention ∈ boolean

Init
∆
=
∧ pc = [p ∈ P 7→ “L1”]
∧ d = false
∧ v = Bot
∧ contention = false
∧ pending = [p ∈ P 7→ Some(Req)]
∧ interface = InterfaceInit
∧ abortVals = {}

PCFromTo(p, l1, l2)
∆
=

∧ pc[p] = l1
∧ pc′ = [pc except ! [p] = l2]

Return(p, o)
∆
=

Appendix A. TLA+ Specifications

A.3 Shared-Memory Consensus

146

∧ pc′ = [pc except ! [p] = “COMMITTED”]
∧ Response(p, o)

GiveUp(p, av)
∆
=

∧ pc′ = [pc except ! [p] = “ABORTED”]
∧Abort(p, pending [p][2], av)
∧ abortVals ′ = abortVals ∪ {av}

Step1(p)
∆
=

∧ pc[p] = “L1”
∧ pc′ = [pc except ! [p] = “L2”]
∧ ∃ c ∈ C :

∧ Invoke(p, c)
∧ pending ′ = [pending except ! [p] = 〈p, c〉]

∧ unchanged 〈v , d , contention, spinterface, abortVals〉

Step2(p)
∆
=

∧ pc[p] = “L2”
To be more precise, one should not atomically return or abort and read “contention”.

∧ if d = true
then

if ¬contention
then
∧ Return(p, v)
∧ unchanged abortVals

else GiveUp(p, v)
else
∧ pc′ = [pc except ! [p] = “L3”]
∧ unchanged 〈interface, abortVals〉

∧ unchanged 〈v , d , contention, pending , spinterface〉

Step3a(p)
∆
=

∧ pc[p] = “L3”
∧ InvokeSplitter(p, spinterface, spinterface ′)
∧ unchanged 〈v , d , contention, pending , pc, interface, abortVals〉

Step3b(p)
∆
=

∧ ∃ b ∈ boolean :
∧ SplitterResponse(p, b, spinterface, spinterface ′)
∧ if b

then pc′ = [pc except ! [p] = “L4”]
else pc′ = [pc except ! [p] = “L9”]

∧ unchanged 〈v , d , contention, pending , interface, abortVals〉

Step4(p)
∆
=

∧ PCFromTo(p, “L4”, “L5”)
∧ v ′ = pending [p][2]

147

∧ unchanged 〈d , contention, pending , interface, spinterface, abortVals〉

Step5(p)
∆
=

∧ pc[p] = “L5”
∧ if ¬contention

then
∧ pc′ = [pc except ! [p] = “L6”]

else
∧ pc′ = [pc except ! [p] = “L8”]

∧ unchanged 〈v , d , contention, pending , interface, spinterface, abortVals〉

Step6(p)
∆
=

∧ PCFromTo(p, “L6”, “L7”)
∧ d ′ = true
∧ unchanged 〈v , contention, pending , interface, spinterface, abortVals〉

Step7(p)
∆
=

∧ pc[p] = “L7”
∧ Return(p, v)
∧ unchanged 〈v , d , contention, pending , spinterface, abortVals〉

Step8(p)
∆
=

∧ pc[p] = “L8”
∧GiveUp(p, Bot)
∧ unchanged 〈v , d , contention, pending , spinterface〉

Step9(p)
∆
=

∧ PCFromTo(p, “L9”, “L10”)
∧ contention ′ = true
∧ unchanged 〈v , d , pending , interface, spinterface, abortVals〉

Here we could commit in case v is not Bot , but only with the cstruct version.

Step10(p)
∆
=

∧ pc[p] = “L10”
∧GiveUp(p, v)
∧ unchanged 〈v , d , contention, pending , spinterface〉

Next
∆
= ∃ p ∈ P :
∨ Step1(p) ∨ Step2(p) ∨ Step3a(p) ∨ Step3b(p) ∨ Step4(p) ∨ Step5(p) ∨ Step6(p) ∨ Step7(p)
∨ Step8(p) ∨ Step9(p) ∨ Step10(p)

NextComp
∆
=

∧ ∨Next
∨ unchanged vars

∧ ∨ Splitter !Next
∨ x ′ = x ∧ y ′ = y ∧ splitterPc′ = splitterPc ∧ spinterface ′ = spinterface

Spec
∆
= Init ∧ Splitter !Init ∧2[NextComp]〈vars, splitterVars〉

148

status
∆
=

[p ∈ P 7→
if pc[p] ∈ {“L1”, “COMMITTED”}
then “ready”
else if pc[p] = “ABORTED”

then “aborted”
else “pending”]

dState
∆
=

if ∃ p ∈ P : pc[p] ∈ {“L6”, “L7”, “COMMITTED”}
then v
else Bot

SLin
∆
= instance SpecLin with

Initial ← true,
pending ← pending ,
initialized ← true,
initVals ← {}

theorem Spec ⇒ SLin !Spec

149

module SplitterConcreteInterface

extends Library

constant P

SpInterfaceType
∆
= [

resp : [P → [
output : boolean ,
flag : boolean]],

inv : [P → boolean]]
SpInterfaceInit

∆
= [

resp 7→ [p ∈ P 7→ [
output 7→ Some(boolean),
flag 7→ Some(boolean)]],

inv 7→ [p ∈ P 7→ Some(boolean)]]

InvokeSplitter(p, interface, newinterface)
∆
=

newinterface = [interface except ! .inv = [@ except ! [p] = ¬@]]

SplitterResponse(p, b, interface, newinterface)
∆
=

newinterface = [interface except ! .resp = [@ except ! [p] = [
output 7→ b,
flag 7→ ¬@.flag]]]

150

module Splitter

extends SplitterInterface, Library

constant P

variables
x , y , pc,
interface

vars
∆
= 〈x , y , pc, interface〉

Labels
∆
= {“START”, “L1”, “L2”, “L3”, “L4”, “END”}

TypeInvariant
∆
=

∧ x ∈ P
∧ y ∈ boolean
∧ pc ∈ [P → Labels]
∧ interface ∈ SpInterfaceType

PCFromTo(p, l1, l2)
∆
=

∧ pc[p] = l1
∧ pc′ = [pc except ! [p] = l2]

Start(p)
∆
=

∧ pc[p] = “START”
∧ InvokeSplitter(p, interface, interface ′)
∧ pc′ = [pc except ! [p] = “L1”]
∧ unchanged 〈x , y〉

WriteX (p)
∆
=

∧ PCFromTo(p, “L1”, “L2”)
∧ x ′ = p
∧ interface ′ = interface
∧ unchanged y
∧ unchanged 〈y, interface〉

TestY (p)
∆
=

∧ pc[p] = “L2”
∧ if y = true

then ∧ SplitterResponse(p, false, interface, interface ′)
∧ pc′ = [pc except ! [p] = “END”]

else ∧ pc′ = [pc except ! [p] = “L3”]
∧ interface ′ = interface

∧ unchanged 〈x , y〉

WriteY (p)
∆
=

∧ PCFromTo(p, “L3”, “L4”)
∧ y ′ = true

151

∧ interface ′ = interface
∧ unchanged x

TestX (p)
∆
=

∧ PCFromTo(p, “L4”, “END”)
∧ if x = p

then SplitterResponse(p, true, interface, interface ′)
else SplitterResponse(p, false, interface, interface ′)

∧ unchanged 〈x , y〉

Init
∆
=
∧ pc = [p ∈ P 7→ “START”]
∧ x = Some(P)
∧ y = false
∧ interface = SpInterfaceInit

Next
∆
= ∃ p ∈ P :

Start(p) ∨WriteX (p) ∨ TestY (p) ∨WriteY (p) ∨ TestX (p)

Spec
∆
= Init ∧2[Next]vars

152

B Isabelle/HOL Theories

In this appendix we include our formalization of the theory of I/O automata in Isabelle/HOL,

the specification of the ALM family of I/O automata, and the invariants and the refinement

mapping used to prove the idempotence of ALM . The idempotence proof is described at a

high level in section 5.4.6.

153

theory IOA
imports Main
begin

1 I/O Automata

This theory is inspired by the IOA theory of Olaf Mueller

1.1 Signatures

record ′a signature =
inputs:: ′a set
outputs:: ′a set
internals:: ′a set

definition actions :: ′a signature ⇒ ′a set where
actions asig ≡ inputs asig ∪ outputs asig ∪ internals asig

definition externals :: ′a signature ⇒ ′a set where
externals asig ≡ inputs asig ∪ outputs asig

definition locals :: ′a signature ⇒ ′a set where
locals asig ≡ internals asig ∪ outputs asig

definition is-asig :: ′a signature ⇒ bool where
is-asig triple ≡

inputs triple ∩ outputs triple = {} ∧
outputs triple ∩ internals triple = {} ∧
inputs triple ∩ internals triple = {}

lemma internal-inter-external :
assumes is-asig sig
shows internals sig ∩ externals sig = {}
〈proof 〉

definition hide-asig where
hide-asig asig actns ≡

(|inputs = inputs asig − actns, outputs = outputs asig − actns,
internals = internals asig ∪actns|)

1.2 I/O Automata

type-synonym
(′a, ′s) transition = ′s × ′a × ′s

Appendix B. Isabelle/HOL Theories

154

record (′a, ′s) ioa =
asig :: ′a signature
start :: ′s set
trans::(′a, ′s)transition set

abbreviation act A ≡ actions (asig A)
abbreviation ext A ≡ externals (asig A)
abbreviation int where int A ≡ internals (asig A)
abbreviation inp A ≡ inputs (asig A)
abbreviation out A ≡ outputs (asig A)
abbreviation local A ≡ locals (asig A)

definition is-ioa::(′a, ′s) ioa ⇒ bool where
is-ioa A ≡ is-asig (asig A)
∧ (∀ triple . triple ∈ trans A −→ (fst o snd) triple ∈ act A)

definition hide where
hide A actns ≡ A(|asig := hide-asig (asig A) actns|)

definition is-trans:: ′s ⇒ ′a ⇒ (′a, ′s)ioa ⇒ ′s ⇒ bool where
is-trans s1 a A s2 ≡ (s1 ,a,s2) ∈ trans A

notation
is-trans (- −-−-−→ - [81 ,81 ,81 ,81] 100)

definition rename-set where
rename-set A ren ≡ {b. ∃ x ∈ A . ren b = Some x}

definition rename where
rename A ren ≡

(|asig = (|inputs = rename-set (inp A) ren,
outputs = rename-set (out A) ren,
internals = rename-set (int A) ren|),

start = start A,
trans = {tr . ∃ x . ren (fst (snd tr)) = Some x ∧ (fst tr) −x−A−→ (snd (snd

tr))}|)

Reachable states and invariants

inductive
reachable :: (′a, ′s) ioa ⇒ ′s ⇒ bool
for A :: (′a, ′s) ioa
where

reachable-0 : s ∈ start A =⇒ reachable A s
| reachable-n: [[reachable A s; s −a−A−→ t]] =⇒ reachable A t

155

definition invariant where
invariant A P ≡ (∀ s . reachable A s −→ P(s))

theorem invariantI :
fixes A P
assumes

∧
s . s ∈ start A =⇒ P s

and
∧

s t a . [[reachable A s; P s; s −a−A−→ t]] =⇒ P t
shows invariant A P
〈proof 〉

1.3 Composition of families of ioas

record (′id , ′a) family =
ids :: ′id set
memb :: ′id ⇒ ′a

definition is-ioa-fam where
is-ioa-fam fam ≡ ∀ i ∈ ids fam . is-ioa (memb fam i)

definition compatible2 where
compatible2 A B ≡
out A ∩ out B = {} ∧
int A ∩ act B = {} ∧
int B ∩ act A = {}

definition compatible::(′id , (′a, ′s)ioa) family ⇒ bool where
compatible fam ≡ finite (ids fam) ∧

(∀ i ∈ ids fam . ∀ j ∈ ids fam . i 6= j −→
compatible2 (memb fam i) (memb fam j))

definition asig-comp2 where
asig-comp2 A B ≡

(|inputs = (inputs A ∪ inputs B) − (outputs A ∪ outputs B),
outputs = outputs A ∪ outputs B ,
internals = internals A ∪ internals B |)

definition asig-comp::(′id , (′a, ′s)ioa) family ⇒ ′a signature where
asig-comp fam ≡

(| inputs =
⋃

i∈(ids fam). inp (memb fam i)
− (

⋃
i∈(ids fam). out (memb fam i)),

outputs =
⋃

i∈(ids fam). out (memb fam i),
internals =

⋃
i∈(ids fam). int (memb fam i) |)

Appendix B. Isabelle/HOL Theories

156

definition par2 (infixr ‖ 10) where
A ‖ B ≡

(|asig = asig-comp2 (asig A) (asig B),
start = {pr . fst pr ∈ start A ∧ snd pr ∈ start B},
trans = {tr .
let s = fst tr ; a = fst (snd tr); t = snd (snd tr)
in (a ∈ act A ∨ a ∈ act B)
∧ (if a ∈ act A

then fst s −a−A−→ fst t
else fst s = fst t)

∧ (if a ∈ act B
then snd s −a−B−→ snd t
else snd s = snd t) }|)

definition par ::(′id , (′a, ′s)ioa) family ⇒ (′a, ′id ⇒ ′s)ioa where
par fam ≡ let ids = ids fam; memb = memb fam in

(| asig = asig-comp fam,
start = {s . ∀ i∈ids . s i ∈ start (memb i)},
trans = { (s, a, s ′) .

(∃ i∈ids . a ∈ act (memb i))
∧ (∀ i∈ids .

if a ∈ act (memb i)
then s i −a−(memb i)−→ s ′ i
else s i = (s ′ i)) } |)

lemmas asig-simps = hide-asig-def is-asig-def locals-def externals-def actions-def
hide-def compatible-def asig-comp-def

lemmas ioa-simps = rename-def rename-set-def is-trans-def is-ioa-def par-def

1.4 Executions and traces

type-synonym
(′s, ′a)pairs = (′s × ′a) list

type-synonym
— Executions grow to the left

(′s, ′a)execution = (′s, ′a)pairs × ′s
type-synonym
′a trace = ′a list

record (′a, ′s)execution-module =
execs::(′a, ′s)execution set
asig :: ′a signature

record ′a trace-module =

157

traces:: ′a trace set
asig :: ′a signature

fun is-exec-frag-of ::(′a, ′s)ioa ⇒ (′s, ′a)execution ⇒ bool where
is-exec-frag-of A ((p#p ′#ps), s) =

(fst p ′ −snd p−A−→ fst p ∧ is-exec-frag-of A ((p ′#ps), s))
| is-exec-frag-of A ([p], s) = s −snd p−A−→ fst p
| is-exec-frag-of A ([], s) = True

definition is-exec-of ::(′a, ′s)ioa ⇒ (′s, ′a)execution ⇒ bool where
is-exec-of A e ≡ snd e ∈ start A ∧ is-exec-frag-of A e

definition filter-act where
filter-act ≡ map snd

definition schedule where
schedule ≡ filter-act o fst

definition trace where
trace sig ≡ filter (λ a . a ∈ externals sig) o schedule

definition is-schedule-of where
is-schedule-of A sch ≡

(∃ e . is-exec-of A e ∧ sch = filter-act (fst e))

definition is-trace-of where
is-trace-of A tr ≡

(∃ sch . is-schedule-of A sch ∧ tr = filter (λ a. a ∈ ext A) sch)

definition traces where
traces A ≡ {tr . is-trace-of A tr}

lemma traces-alt :
shows traces A = {tr . ∃ e . is-exec-of A e
∧ tr = trace (ioa.asig A) e}

〈proof 〉

lemmas trace-simps = traces-def is-trace-of-def is-schedule-of-def filter-act-def is-exec-of-def
trace-def schedule-def

definition proj-trace:: ′a trace ⇒ (′a signature) ⇒ ′a trace (infixr | 12) where
proj-trace t sig ≡ filter (λ a . a ∈ actions sig) t

Appendix B. Isabelle/HOL Theories

158

definition ioa-implements :: (′a, ′s1)ioa ⇒ (′a, ′s2)ioa ⇒ bool (infixr =<| 12)
where

A =<| B ≡ inp A = inp B ∧ out A = out B ∧ traces A ⊆ traces B

1.5 Operations on executions

definition cons-exec where
cons-exec p e ≡ (p#(fst e), snd e)

definition append-exec where
append-exec e ′ e ≡ ((fst e ′)@(fst e), snd e)

fun last-state where
last-state ([],s) = s
| last-state (p#ps,s) = fst p

lemma last-state-reachable:
fixes A e
assumes is-exec-of A e
shows reachable A (last-state e) 〈proof 〉

lemma trans-from-last-state:
assumes is-exec-frag-of A e and (last-state e)−a−A−→s ′

shows is-exec-frag-of A (cons-exec (s ′,a) e)
〈proof 〉

lemma exec-frag-prefix :
fixes A p ps
assumes is-exec-frag-of A (cons-exec p e)
shows is-exec-frag-of A e
〈proof 〉

lemma trace-same-ext :
fixes A B e
assumes ext A = ext B
shows trace (ioa.asig A) e = trace (ioa.asig B) e
〈proof 〉

lemma trace-append-is-append-trace:
fixes e e ′ sig
shows trace sig (append-exec e ′ e) = trace sig e ′ @ trace sig e
〈proof 〉

lemma append-exec-frags-is-exec-frag :
fixes e e ′ A as

159

assumes is-exec-frag-of A e and last-state e = snd e ′

and is-exec-frag-of A e ′

shows is-exec-frag-of A (append-exec e ′ e)
〈proof 〉

lemma last-state-of-append :
fixes e e ′

assumes snd e ′ = last-state e
shows last-state (append-exec e ′ e) = last-state e ′

〈proof 〉

end

theory Simulations
imports IOA
begin

2 Definition and soundness of refinement mappings,
forward simulations and backward simulations

definition refines where
refines e s a t A f ≡ snd e = f s ∧ last-state e = f t ∧ is-exec-frag-of A e

∧ (let tr = trace (ioa.asig A) e in
if a ∈ ext A then tr = [a] else tr = [])

definition
is-ref-map :: (′s1 ⇒ ′s2) ⇒ (′a, ′s1)ioa ⇒ (′a, ′s2)ioa ⇒ bool where
is-ref-map f B A ≡

(∀ s ∈ start B . f s ∈ start A) ∧ (∀ s t a. reachable B s ∧ s −a−B−→ t
−→ (∃ e . refines e s a t A f))

definition
is-forward-sim :: (′s1 ⇒ (′s2 set)) ⇒ (′a, ′s1)ioa ⇒ (′a, ′s2)ioa ⇒ bool where
is-forward-sim f B A ≡
(∀ s ∈ start B . f s ∩ start A 6= {})
∧ (∀ s s ′ t a. s ′ ∈ f s ∧ s −a−B−→ t ∧ reachable B s
−→ (∃ e . snd e = s ′ ∧ last-state e ∈ f t ∧ is-exec-frag-of A e

∧ (let tr = trace (ioa.asig A) e in
if a ∈ ext A then tr = [a] else tr = [])))

definition
is-backward-sim :: (′s1 ⇒ (′s2 set)) ⇒ (′a, ′s1)ioa ⇒ (′a, ′s2)ioa ⇒ bool where

Appendix B. Isabelle/HOL Theories

160

is-backward-sim f B A ≡
(∀ s . f s 6= {}) (∗ Restricting this to reachable states would suffice ∗)
∧ (∀ s ∈ start B . f s ⊆ start A)
∧ (∀ s t a t ′. t ′ ∈ f t ∧ s −a−B−→ t ∧ reachable B s
−→ (∃ e . snd e ∈ f s ∧ last-state e = t ′ ∧ is-exec-frag-of A e

∧ (let tr = trace (ioa.asig A) e in
if a ∈ ext A then tr = [a] else tr = [])))

3 A series of lemmas that will be useful in the
soundness proofs

lemma step-eq-traces:
fixes e-B ′ A e e-A ′ a t
defines e-A ≡ append-exec e e-A ′ and e-B ≡ cons-exec (t ,a) e-B ′

and tr ≡ trace (ioa.asig A) e
assumes 1 :trace (ioa.asig A) e-A ′ = trace (ioa.asig A) e-B ′

and 2 :if a ∈ ext A then tr = [a] else tr = []
shows trace (ioa.asig A) e-A = trace (ioa.asig A) e-B
〈proof 〉

lemma exec-inc-imp-trace-inc:
fixes A B
assumes ext B = ext A
and

∧
e-B . is-exec-of B e-B

=⇒ ∃ e-A . is-exec-of A e-A ∧ trace (ioa.asig A) e-A = trace (ioa.asig A) e-B
shows traces B ⊆ traces A
〈proof 〉

4 Soundness of refinement mappings

lemma ref-map-execs:
fixes A::(′a, ′sA)ioa and B ::(′a, ′sB)ioa and f :: ′sB ⇒ ′sA and e-B
assumes is-ref-map f B A and is-exec-of B e-B
shows ∃ e-A . is-exec-of A e-A
∧ trace (ioa.asig A) e-A = trace (ioa.asig A) e-B

〈proof 〉

theorem ref-map-soundness:
fixes A::(′a, ′sA)ioa and B ::(′a, ′sB)ioa and f :: ′sB ⇒ ′sA
assumes is-ref-map f B A and ext A = ext B
shows traces B ⊆ traces A
〈proof 〉

161

5 Soundness of forward simulations

lemma forward-sim-execs:
fixes A::(′a, ′sA)ioa and B ::(′a, ′sB)ioa and f :: ′sB ⇒ ′sA set and e-B
assumes is-forward-sim f B A and is-exec-of B e-B
shows ∃ e-A . is-exec-of A e-A
∧ trace (ioa.asig A) e-A = trace (ioa.asig A) e-B

〈proof 〉

theorem forward-sim-soundness:
fixes A::(′a, ′sA)ioa and B ::(′a, ′sB)ioa and f :: ′sB ⇒ ′sA set
assumes is-forward-sim f B A and ext A = ext B
shows traces B ⊆ traces A
〈proof 〉

6 Soundness of backward simulations

lemma backward-sim-execs:
fixes A::(′a, ′sA)ioa and B ::(′a, ′sB)ioa and f :: ′sB ⇒ ′sA set and e-B
assumes is-backward-sim f B A and is-exec-of B e-B
shows ∃ e-A . is-exec-of A e-A
∧ trace (ioa.asig A) e-A = trace (ioa.asig A) e-B

〈proof 〉

theorem backward-sim-soundness:
fixes A::(′a, ′sA)ioa and B ::(′a, ′sB)ioa and f :: ′sB ⇒ ′sA set
assumes is-backward-sim f B A and ext A = ext B
shows traces B ⊆ traces A
〈proof 〉

end

7 Definition and properties of the longest common
postfix of a set of lists

theory LCP
imports Main ∼∼/src/HOL/Library/Sublist
begin

definition common-postfix-p :: (′a list) set => ′a list => bool

Appendix B. Isabelle/HOL Theories

162

— Predicate that recognizes the common postfix of a set of lists
— The common postfix of the empty set is the empty list

where
common-postfix-p xss xs ≡ (if (xss = {}) then (xs = []) else (∀ xs ′ . xs ′ ∈ xss
−→ suffixeq xs xs ′))

definition l-c-p-pred :: ′a list set ⇒ ′a list => bool
— Predicate that recognizes the longest common postfix of a set of lists
where
l-c-p-pred xss xs ≡ common-postfix-p xss xs ∧ (ALL xs ′ . common-postfix-p xss

xs ′ −→ suffixeq xs ′ xs)

definition l-c-p:: ′a list set ⇒ ′a list
— The longest common postfix of a set of lists
where
l-c-p ≡ λ xss . THE xs . l-c-p-pred xss xs

lemma l-c-p-ok : l-c-p-pred xss (l-c-p xss)
— Proof that the definition of the longest common postfix of a set of lists is

consistent

lemma l-c-p-lemma:
— A useful lemma
assumes ls 6= {} and ∀ l ∈ ls . ∃ l ′ . l = l ′ @ xs
shows suffixeq xs (l-c-p ls)

lemma l-c-p-common-postfix : common-postfix-p xss (l-c-p xss)
〈proof 〉

lemma l-c-p-longest : common-postfix-p xss xs −→ suffixeq xs (l-c-p xss)
〈proof 〉

end

8 The ALM Automata specification

theory ALM
imports IOA LCP
begin

typedecl client
— A non-empty set of clients

typedecl data
— Data contained in requests

163

datatype request =
— A request is composed of a sender and data
Req client data

fun request-snd :: request ⇒ client
where request-snd (Req c -) = c

type-synonym hist = request list
— Type of histories of requests.

datatype ALM-action =
— The actions of the ALM automaton
Invoke client request
| Commit client nat hist
| Switch client nat hist request
| Initialize nat hist
| Linearize nat hist
| Abort nat

datatype phase = Sleep | Pending | Ready | Aborted
— Executions phases of a client

definition linearizations :: request set ⇒ hist set
— The possible linearizations of a set of requests
where
linearizations reqs ≡ {h . set h ⊆ reqs ∧ distinct h}

definition postfix-all :: hist ⇒ hist set ⇒ hist set
— appends to the right the first argument to every member of the history set
where
postfix-all h hs ≡ {h ′ . ∃ h ′′ . h ′ = h ′′ @ h ∧ h ′′ ∈ hs}

definition
ALM-asig :: nat ⇒ nat ⇒ ALM-action signature
— The action signature of ALM automata
— Input actions, output actions, and internal actions
where
ALM-asig id1 id2 ≡ (|

inputs = {act . ∃ c r h .
act = Invoke c r | act = Switch c id1 h r},

outputs = {act . ∃ c h r id ′ .
id1 <= id ′ ∧ id ′ < id2 ∧ act = Commit c id ′ h
| act = Switch c id2 h r},

internals = {act . ∃ h .
act = Abort id1

Appendix B. Isabelle/HOL Theories

164

| act = Linearize id1 h
| act = Initialize id1 h} |)

record ALM-state =
— The state of the ALM automata
pending :: client ⇒ request
— Associates a pending request to a client process
initHists :: hist set
— The set of init histories submitted by clients
phase :: client ⇒ phase
— Associates a phase to a client process
hist :: hist
— Represents the chosen linearization of the concurrent history of the current

instance only
aborted :: bool
initialized :: bool

definition pendingReqs :: ALM-state ⇒ request set
— the set of requests that have been invoked but that are not yet in the hist

parameter
where
pendingReqs s ≡ {r . ∃ c .

r = pending s c
∧ r /∈ set (hist s)
∧ phase s c ∈ {Pending , Aborted}}

definition initValidReqs :: ALM-state ⇒ request set
— any request that appears in an init hist after the longest common prefix or

that is pending
where
initValidReqs s ≡ {r .

(r ∈ pendingReqs s ∨ (∃ h ∈ initHists s . r ∈ set h))
∧ r /∈ set (l-c-p (initHists s))}

definition Invoke-trans :: nat ⇒ nat ⇒ client ⇒ request ⇒ ALM-state ⇒ ALM-state
⇒ bool
where

Invoke-trans id1 id2 c r s s ′ ≡
(if phase s c = Ready ∧ request-snd r = c ∧ r /∈ set (hist s)
then s ′ = s(|pending := (pending s)(c := r),

phase := (phase s)(c := Pending)|)
else s ′ = s)

definition Linearize-trans :: nat ⇒ nat ⇒ nat ⇒ hist ⇒ ALM-state ⇒ ALM-state
⇒ bool

165

where
Linearize-trans id1 id2 i h s s ′ ≡

(initialized s ∧ ¬ aborted s
∧ h ∈ postfix-all (hist s) (linearizations (pendingReqs s))
∧ s ′ = s(|hist := h|))

fun awake :: phase ⇒ bool
where awake Sleep = False | awake - = True

definition Initialize-trans :: nat ⇒ nat ⇒ nat ⇒ hist ⇒ ALM-state ⇒ ALM-state
⇒ bool
where

Initialize-trans id1 id2 i h s s ′ ≡
((∃ c . awake (phase s c)) ∧ ¬ aborted s ∧ ¬ initialized s
∧ h ∈ postfix-all (l-c-p (initHists s)) (linearizations (initValidReqs s))
∧ s ′ = s(|hist := h, initialized := True|))

definition Commit-trans :: nat ⇒ nat ⇒ client ⇒ nat ⇒ hist ⇒ ALM-state ⇒
ALM-state ⇒ bool
where

Commit-trans id1 id2 c i h s s ′ ≡
(phase s c = Pending ∧ pending s c ∈ set (hist s)
∧ h = dropWhile (λ r . r 6= pending s c) (hist s)
∧ s ′ = s (|phase := (phase s)(c := Ready)|))

definition Abort-trans :: nat ⇒ nat ⇒ nat ⇒ ALM-state ⇒ ALM-state ⇒ bool
where

Abort-trans id1 id2 i s s ′ ≡
(¬ aborted s ∧ (∃ c . phase s c 6= Sleep)
∧ s ′ = s(|aborted := True|))

definition Switch-trans1 :: nat ⇒ nat ⇒ client ⇒ nat ⇒ hist ⇒ request ⇒
ALM-state ⇒ ALM-state ⇒ bool

— The case in which i = id1
where

Switch-trans1 id1 id2 c i h r s s ′ ≡
(if phase s c = Sleep
then s ′ = s (|initHists := {h} ∪ (initHists s),

phase := (phase s)(c := Pending),
pending := (pending s)(c := r)|)

else s ′ = s)

definition Switch-trans2 :: nat ⇒ nat ⇒ client ⇒ nat ⇒ hist ⇒ request ⇒
ALM-state ⇒ ALM-state ⇒ bool

— The case in which i = id2

Appendix B. Isabelle/HOL Theories

166

where
Switch-trans2 id1 id2 c i h r s s ′ ≡

aborted s
∧ phase s c = Pending ∧ r = pending s c
∧ (if initialized s

then (h ∈ postfix-all (hist s) (linearizations (pendingReqs s)))
else (h ∈ postfix-all (l-c-p (initHists s)) (linearizations (initValidReqs s))))
∧ s ′ = s(|phase := (phase s)(c := Aborted)|)

fun ALM-trans-p :: nat ⇒ nat ⇒ ALM-state ⇒ ALM-action ⇒ ALM-state ⇒
bool
where

ALM-trans-p id1 id2 s (Invoke c r) s ′ = Invoke-trans id1 id2 c r s s ′ |
ALM-trans-p id1 id2 s (Linearize i h) s ′ = Linearize-trans id1 id2 i h s s ′ |
ALM-trans-p id1 id2 s (Initialize i h) s ′ = Initialize-trans id1 id2 i h s s ′ |
ALM-trans-p id1 id2 s (Commit c i h) s ′ = Commit-trans id1 id2 c i h s s ′ |
ALM-trans-p id1 id2 s (Abort i) s ′ = Abort-trans id1 id2 i s s ′ |
ALM-trans-p id1 id2 s (Switch c i h r) s ′ =

((i = id1 ∧ id1 6= 0 ∧ Switch-trans1 id1 id2 c i h r s s ′)
∨ (i = id2 ∧ Switch-trans2 id1 id2 c i h r s s ′))

definition ALM-trans :: nat ⇒ nat ⇒ (ALM-action, ALM-state)transition set
where

ALM-trans id1 id2 ≡ { (s,a,s ′) . ALM-trans-p id1 id2 s a s ′}

definition ALM-start :: nat ⇒ ALM-state set
— the set of start states
where
ALM-start i ≡ { s .
∀ c . phase s c = (if i 6= 0 then Sleep else Ready)
∧ hist s = []
∧ ¬ aborted s
∧ (if i 6= 0 then ¬ initialized s else initialized s)
∧ initHists s = {}}

definition ALM-ioa :: nat ⇒ nat ⇒ (ALM-action, ALM-state)ioa
— The ALM automaton
where
ALM-ioa id1 id2 ≡

(|ioa.asig = ALM-asig id1 id2 ,
start = ALM-start id1 ,
trans = ALM-trans id1 id2 |)

type-synonym compo-state = ALM-state × ALM-state

167

definition composeALMs :: nat ⇒ nat ⇒ (ALM-action, compo-state) ioa
— the composition of two ALMs
where
composeALMs id1 id2 ≡

hide ((ALM-ioa 0 id1) ‖ (ALM-ioa id1 id2))
{act . EX c tr r . act = Switch c id1 tr r}

end
theory IdemPotence
imports ALM Simulations
begin

8.1 A case rule for decomposing the transition relation of
the composition of two ALMs

definition either :: nat ⇒ nat ⇒ nat ⇒
(nat ⇒ nat ⇒ ALM-state ⇒ ALM-state ⇒ bool) ⇒
ALM-state ⇒ ALM-state ⇒ ALM-state ⇒ ALM-state ⇒ bool

where
either i id1 id2 tr s t s ′ t ′ ≡

(i = 0 ∧ tr 0 id1 s s ′ ∧ t = t ′)
∨ (i = id1 ∧ tr id1 id2 t t ′ ∧ s = s ′)

lemma trans-elim:
fixes id1 id2 s t a s ′ t ′ P
assumes id1 6= 0 and id1 < id2

and (s,t) −a−composeALMs id1 id2−→ (s ′,t ′)
obtains

(Invoke) c r
where Invoke-trans 0 id1 c r s s ′

∧ Invoke-trans id1 id2 c r t t ′

| (Switch1) c h r
where Switch-trans2 0 id1 c id1 h r s s ′

∧ Switch-trans1 id1 id2 c id1 h r t t ′

| (Switch2) c h r
where s = s ′ ∧ Switch-trans2 id1 id2 c id2 h r t t ′

| (Commit1) i c h
where i < id1 ∧ Commit-trans 0 id1 c i h s s ′∧ t = t ′

| (Commit2) i c h
where i ≥ id1 ∧ i < id2
∧ Commit-trans id1 id2 c i h t t ′ ∧ s = s ′

| (Lin1) h
where Linearize-trans 0 id1 0 h s s ′ ∧ t = t ′

| (Lin2) h

Appendix B. Isabelle/HOL Theories

168

where Linearize-trans id1 id2 id1 h t t ′ ∧ s = s ′

| (Init1) h
where Initialize-trans 0 id1 0 h s s ′ ∧ t = t ′

| (Init2) h
where Initialize-trans id1 id2 id1 h t t ′ ∧ s = s ′

| (Abort1) Abort-trans 0 id1 0 s s ′ ∧ t = t ′

| (Abort2) Abort-trans id1 id2 id1 t t ′ ∧ s = s ′

8.2 Invariants of a single ALM instance

fun P1a :: (ALM-state ∗ ALM-state) ⇒ bool
where
— In ALM 1, a pending request of client c has client c as sender
P1a (s1 ,s2) = (∀ c . phase s1 c ∈ {Pending , Aborted} −−> request-snd (pending

s1 c) = c)

fun P1b :: (ALM-state ∗ ALM-state) ⇒ bool
where
— In ALM 2, a pending request of client c has client c as sender
P1b (s1 ,s2) = (∀ c . phase s2 c 6= Sleep −−> request-snd (pending s2 c) = c)

fun P2 :: (ALM-state ∗ ALM-state) ⇒ bool where
P2 (s1 ,s2) = ((∀ c . phase s2 c = Sleep) −→ (¬ initialized s2 ∧ hist s2 = []))

fun P3 :: (ALM-state ∗ ALM-state) ⇒ bool where
P3 (s1 ,s2) = (∀ c . (phase s2 c = Ready −→ initialized s2))

fun P4 :: (ALM-state ∗ ALM-state) => bool
where
— The set of init histories of ALM 2 is empty when no client ever invoked anything

P4 (s1 ,s2) = ((∀ c . phase s2 c = Sleep) = (initHists s2 = {}))

fun P5 :: (ALM-state ∗ ALM-state) ⇒ bool
— In ALM 1 a client never sleeps
where
P5 (s1 ,s2) = (∀ c . phase s1 c 6= Sleep)

8.3 Invariants of the composition of two ALM instances

fun P6 :: (ALM-state ∗ ALM-state) => bool
— Non-interference accross instances
where
P6 (s1 ,s2) = ((∼ aborted s1 −→ (ALL c . phase s2 c = Sleep))

169

∧ (ALL c . phase s1 c 6= Aborted = (phase s2 c = Sleep)))

fun P7 :: (ALM-state ∗ ALM-state) => bool
— Before initialization of the ALM 2, pending requests are the same as in ALM

1 and no new requests may be accepted (phase is not Ready)
where
P7 (s1 ,s2) = (∀ c . phase s1 c = Aborted ∧ ¬ initialized s2
−→ (pending s2 c = pending s1 c ∧ phase s2 c ∈ {Pending , Aborted}))

fun P8 :: (ALM-state ∗ ALM-state) => bool
— Init histories of ALM 2 are built from the history of ALM 1 plus pending

requests of ALM 1
where
P8 (s1 ,s2) = (∀ h ∈ initHists s2 . h ∈ postfix-all (hist s1) (linearizations

(pendingReqs s1)))

fun P9 :: (ALM-state ∗ ALM-state) ⇒ bool
— ALM 2 does not abort before ALM 1 aborts
where
P9 (s1 ,s2)= (aborted s2 −→ aborted s1)

fun P10 :: (ALM-state ∗ ALM-state) => bool
— ALM 1 is always initialized and when ALM 2 is not initialized its history is

empty
where
P10 (s1 ,s2) = (initialized s1 ∧ (¬ initialized s2 −→ (hist s2 = [])))

fun P11 :: (ALM-state ∗ ALM-state) => bool
where
— After ALM 2 has been invoked and before it is initialized, any request found

in init histories after their longest common prefix is pending in ALM 1
P11 (s1 ,s2) = (((∃ c . phase s2 c 6= Sleep) ∧ ¬ initialized s2)
−→ initValidReqs s2 ⊆ pendingReqs s1)

fun P12 :: (ALM-state ∗ ALM-state) => bool
where
— After ALM 2 has been invoked and before it is initialized, the longest common

prefix of the init histories of ALM 2 is buit from appending a set of request pending
in ALM 1 to the history of ALM 1

P12 (s1 ,s2) = ((∃ c . phase s2 c 6= Sleep)
−→ (∃ rs . l-c-p (initHists s2) = rs @ (hist s1) ∧ set rs ⊆ pendingReqs s1 ∧

distinct rs))

fun P13 :: (ALM-state ∗ ALM-state) => bool
where

Appendix B. Isabelle/HOL Theories

170

— After ALM 2 has been invoked and before it is initialized, any history that
may be chosen at initialization is a valid linearization of the concurrent history of
ALM 1

P13 (s1 ,s2) = (((∃ c . phase s2 c 6= Sleep) ∧ ¬ initialized s2)
−→ postfix-all (l-c-p (initHists s2)) (linearizations (initValidReqs s2)) ⊆ postfix-all

(hist s1) (linearizations (pendingReqs s1)))

fun P14 :: (ALM-state ∗ ALM-state) => bool
where
— The history of ALM 1 is a postfix of the history of ALM 2 and requests

appearing in ALM 2 after the history of ALM 1 are not in the history of ALM 1
P14 (s1 ,s2) = ((hist s2 6= [] ∨ initialized s2) −→ (∃ rs .

hist s2 = rs @ (hist s1)
∧ set rs ∩ set (hist s1) = {}))

fun P15 :: (ALM-state ∗ ALM-state) => bool
where
— A client that hasn’t yet invoked ALM 2 has no request commited in ALM 2

except for its pending request
P15 (s1 ,s2) = (∀ r . let c = request-snd r in phase s2 c = Sleep ∧ r ∈ set (hist

s2)
−→ (r ∈ set (hist s1) ∨ r ∈ pendingReqs s1))

8.4 The refinement proof

definition ref-mapping :: (ALM-state ∗ ALM-state) ⇒ ALM-state
— The refinement mapping between the composition of two ALMs and a single

ALM
where
ref-mapping ≡ λ (s1 , s2) .

(|pending = λc. (if phase s1 c 6= Aborted then pending s1 c else pending s2 c),
initHists = {},
phase = λc. (if phase s1 c 6= Aborted then phase s1 c else phase s2 c),
hist = (if hist s2 = [] then hist s1 else hist s2),
aborted = aborted s2 ,
initialized = True|)

theorem composition:
assumes id1 6= 0 and id1 < id2
shows ((composeALMs id1 id2) =<| (ALM-ioa 0 id2))
— The composition theorem
〈proof 〉

end

171

Croix Rouges 12
1007 Lausanne, Switzerland

+41 78 669 64 32
giuliano.losa@epfl.ch

Giuliano Losa

Education

08/2009-02/2014 (expected)
EPFL, Switzerland, PhD student in Computer Science, 5th year.

Supervised by Rachid Guerraoui and Viktor Kuncak.

Thesis title: Modularity in the Design of Robust Distributed Algo-
rithms.

2007-2009 EPFL, Switzerland, Master in Computer Science.

2005-2009 Supélec, France, Master in Electrical Engineering.

2003 Baccalauréat Scientifique, option mathématiques, mention très bien.

Work Experience

09/2008-03/2009
IBM T.J. Watson Research Center, USA, Data-Intensive Systems and
Analytics Group. Master thesis.

Design and specification of the SPL programming language.

Design and implementation of a distributed object store, using C++.

07/2007-08/2007
C.E.A., France, Study and port of a hard real-time operating system
on Linux.

Publications

Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Speculative
linearizability”. In: PLDI. Ed. by Jan Vitek, Haibo Lin, and Frank Tip.
ACM, 2012, pp. 55–66. DOI: 10.1145/2254064.2254072.

Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Abortable
Linearizable Modules”. In: The Archive of Formal Proofs. Ed. by Ger-
win Klein, Tobias Nipkow, and Lawrence Paulson. Formal proof de-
velopment. http://afp.sf.net/entries/Abortable_Linearizable_
Modules.shtml, 2012.

172

Dan Alistarh et al. “On the cost of composing shared-memory algo-
rithms”. In: SPAA. Ed. by Guy E. Blelloch and Maurice Herlihy. ACM,
2012, pp. 298–307. DOI: 10.1145/2312005.2312057

Giuliano Losa et al. “CAPSULE: language and system support for
efficient state sharing in distributed stream processing systems”.
In: DEBS. Ed. by François Bry et al. ACM, 2012, pp. 268–277. DOI:
10.1145/2335484.2335514

Martin Hirzel et al. SPL Stream Processing Language Specification,
IBM Research report RC24897. Tech. rep. IBM, 2009

Languages

French: native speaker.

English: excellent.

Italian: fluent.

German: basic.

Extra-curricular activities

2006-2007 President of “Supélec Rézo”, the student association in charge of the
computer network of Supélec’s campus in Gif-Sur-Yvette.

	Abstract
	Résumé
	Introduction
	Robust Distributed Systems and Adaptation
	The Problem of Dynamically Changing Strategy
	Contributions
	Sepeculative Linearizability
	Model Checking and Mechanically-Checked Proofs
	Publications

	Specifying Distributed Systems
	Introduction
	Notation
	I/O Automata
	Definition of I/O Automata and their Traces
	Composition
	Hiding and Projection
	Simulation Proofs

	TLA+
	A Basic Example
	The Implementation Relation
	Refinement Mappings
	Hiding Internal State
	Composing Specifications
	Expressing I/O Automata Specifications in TLA+

	Conclusion

	Linearizability: I/O-Automata Specification and Properties
	Introduction
	Data Types and Data-Type Representations
	Data Types
	Data-Type Representations
	Examples of Data-Type Representations
	Space of Possible Representations

	I/O automata Specification of Linearizability
	Well-Formed Data-Type Implementations
	The Linearizability I/O Automaton
	Examples: consensus and test-and-set

	Refining the Linearizability I/O Automaton
	The Lin' I/O Automaton
	The NDLin I/O Automaton

	The Abstraction Theorem
	The Inter-Object Composition Theorem
	The Original Definition of Linearizability
	Happens-before relation
	Safe reordering
	Closure of a trace
	Linearizability

	Conclusion

	Adaptive Algorithms and Modular Reasoning
	Introduction
	Related Work
	Modeling Adaptive Algorithms with I/O Automata
	A Model for Adaptive Algorithms
	Well-Formed Mode Instances
	Composing Modes Instances
	A Correctness Condition for Adaptive Algorithms

	Modular Properties
	The Modularity Theorem

	Conclusion

	Speculative Linearizability
	Introduction
	Related Work
	Recoverable Data-Type Representations (RDRs)
	The History Data-Type Representation

	Speculative Linearizability
	The I/O Automaton SLin[1,i]
	Linearizability of SLin
	The I/O Automaton SLin[i,j]
	Idempotence of SLin
	SLin is a modular property
	Proving Idempotence Mechanically

	Conclusion

	Applying Speculative Linearizability to Fault-Tolerant Message-Passing Systems
	Introduction
	Related Work
	Fast and Safe Modes
	Behavior of The Safe(i) I/O automaton
	Behavior of The Fast(i) I/O automaton

	The QZ Algorithm
	Quorum
	ZLight
	Progress Guarantees of QZ

	Speculatively Linearizable Generalized Paxos
	Conclusion

	Applying Speculative Linearizability to Shared-Memory Consensus
	Conclusion
	Future Work
	Byzantine Faults in the Speculative Linearizability Framework
	Debugging Byzantine Fault-Tolerant Algorithms
	Debugging Proofs at an Intermediate Level of Granularity
	Practical Applications of Speculative Linearizability in Shared-Memory

	Bibliography
	TLA+ Specifications
	Speculative Linearizability
	Message-Passing Adaptive Algorithms
	Shared-Memory Consensus

	Isabelle/HOL Theories
	Curriculum Vitae

