


5 Speculative Linearizability

5.1 Introduction

In the preceding chapter, we have motivated the need for modular reasoning and we have

precisely defined modular properties, which enable scalable and incremental design of adap-

tive algorithms. However one important question remain: are there modular properties which

are efficiently implementable in the shared-memory or message-passing models of compu-

tation?

In this chapter we propose a modular property called speculative linearizability. Specula-

tive linearizability takes a parameter that allows one to instantiate it for any given data type.

In the next two chapters, we show that speculative linearizability can be efficiently imple-

mented in the message-passing model and we present a proof of concept implementation in

shared memory.

The SLin (∆) [i , i +1] automaton models an i th mode instance which behaves specula-

tively, i.e., which only works under optimistic assumptions. If the optimistic assumptions

hold, this allows the system to perform efficiently. However, if the optimistic assumptions do

not hold, the state of the system can become inconsistent. In this case, the clients must de-

tect the inconsistency, abort their execution of the current mode instance and switch to the

next mode instance, passing a ∆-state as switch value. When the processes abort, the task

of recovering a consistent state and continuing the execution is picked up by the next mode

instance. To recover a consistent state, the next mode instance uses the ∆-states received as

switch values from the previous instance. The family of I/O automata SLin (∆) formally spec-

ifies this process and, notably, defines how the execution of a mode should be encoded in the

switch values in order for the next mode to continue the execution and ensure that it remains

linearizable.

The parameter ∆ of the family of I/O automata SLin (∆) must be a recoverable data-type

representation, abbreviated RDR, which is a special case of data-type representation. An RDR

guarantees that a consistent state can be recovered from a set of different states of the RDR.

59



Chapter 5. Speculative Linearizability

The notion of RDR is based on the notion of C-Struct Set proposed in [12] to generalize the

Paxos algorithm.

5.2 Related Work

Several reduction theorems can simplify the analysis of adaptive distributed algorithms.

In the next three paragraphs we reference reduction theorems that apply to distributed al-

gorithms in general. The Abstract framework provides, to our knowledge, the only reduction

theorem specifically targeting adaptive algorithms.

The abstraction and compositional properties of Linearizability [10, 13, 14, 8], presented in

chapter 3, are useful in simplifying the development of distributed systems: to reason about

the safety of a distributed system containing linearizable objects, it suffices to consider only

the executions in which the linearizable objects are accessed sequentially, thus abstracting

over concurrent accesses of the objects; accessing two linearizable objects in parallel, without

any synchronization, results in an execution which is linearizable to a simple product of the

two base objects.

Elrad and Francez [4] define communication-closed layers and show that to reason about

the safety of algorithms composed of communication-closed layers, one can assume that

the layers are sequentially composed, without interleaving. Charron-Bost and Schiper [3]

build on this work to propose a model unifying the treatment of process faults and com-

munication faults in distributed algorithms that evolve in communication-closed rounds.

Their work is not directly applicable to our case because algorithms which continuously re-

ceive requests, as opposed to one-shot algorithms like consensus, cannot be decomposed in

communication-closed layers: their clients can always interact across layers.

Cut-off theorems are another kind of reduction theorems: they reduce the correctness of

a system to the correctness of its instances that have a fixed, usually small, size. For exam-

ple, some properties of networks of processes connected in a ring have cutoff sizes below 5

[7], meaning that verifying them on a system containing 5 processes is sufficient to conclude

that the system is correct for any number of processes. Emerson and Kahlon derives cutoff

bounds [6] for systems whose processes are instances of a generic process template. Exam-

ples include a cache coherence protocol. A later paper [5] generalizes the method to networks

of heterogeneous processes.

The Abstract framework [9] proposes a reduction theorem that is the main inspiration be-

hind the Speculative Linearizability framework. In the Abstract framework, adaptive algo-

rithms do not optimize the execution of commuting requests and must maintain full ex-

ecution histories in their data-structures. Inspired by work on the Generalized Consensus

problem [12], we have in our turn generalized the Abstract framework to allow optimized

execution of commuting requests and to minimize the size of the data-structures that im-

plementations must use. The abstract framework is obtained by instantiating the speculative

60



5.3. Recoverable Data-Type Representations (RDRs)

linearizability framework for the Generic data type defined in section 3.2.3.

5.3 Recoverable Data-Type Representations (RDRs)

Remember that we consider a data-type representation∆= 〈
Σ,O ,γ

〉
of D, whereΣ= 〈

S ,C ,
{⊥}

,δ
〉

is state machine. The states s ∈ S of the state machine are called ∆-states. To define recover-

able data-type representations, we need the concepts of ordering of ∆-state and of greatest

lower bound.

We say that a ∆-state d is smaller than a ∆-state d ′, noted d ¹ d ′, when there exists a se-

quence of requests rs such that executing rs starting from d results in d ′,

d ¹ d ′ ⇔∃rs : d ′ = d ?rs . (5.1)

Note that the “smaller than” relation on∆-states is not necessarily a partial order, for example

when the transition relation δ has cycles.

A ∆-state d is a lower bound of a set of ∆-states ds when d is smaller than every member of

ds . We write GLB (ds) for the greatest lower bound, or glb for short, of the ∆-states ds , when

it exists. Also note that the glb of a set of ∆-states does not necessarily exist.

We say that∆ is a recoverable data-type representation when the following three properties

hold:

Property 5.3.1 (Antisymmetry). The “smaller than” relation on ∆-states, ¹, is antisymmetric.

Property 5.3.2 (Existence of GLB). Every two ∆-states have a unique greatest lower bound.

Property 5.3.3 (Consistency). If two∆-states both contain a request r , then their glb also con-

tains r .

Corollary 5.3.1. Consider three ∆-states d0, d1, and d2, a set of requests R, and two sequences

of requests rs1,rs2 ∈ R∗. If d1 = d0?rs1 and d2 = d0?rs2, then there exists a sequence of requests

rs ∈ R∗ such that GLB (d1,d2) = d0?rs .

TODO: A figure to illustrate the corollary? Hard to depict.

Properties 5.3.1 and 5.3.2 imply that that the set S of ∆-states and the “smaller than” rela-

tion form a join semi lattice with ⊥ as least element: by definition, ¹ is reflexive and transitive;

with property 5.3.1, we get that ¹ is a partial order; with property 5.3.2 we have that 〈S ,¹〉 is

a join semi-lattice.

We will see that properties 5.3.1 to 5.3.3 are crucial for the successful recovery of an aborted

instance of the SLin I/O automaton.

The reader who is familiar with the Generalized Consensus problem [12] will recognize the

61



Chapter 5. Speculative Linearizability

similarity between RDRs and C-Struct Sets. Although similar, RDRs have a notion of behavior

that includes the outputs that clients receive, whereas C-Struct Sets do not.

We now show that any data type has a RDR and, in particular, we present the History RDR,

H # (D), of a data type. Like Fold (∆), which is a minimal data-type representation, H # (D) is

a minimal recoverable data-type representation.

Lemma 5.3.1. Every data type has a recoverable data-type representation.

Proof sketch. Unfold (∆) is a recoverable data-type representation of D.

The state of the representation Unfold (∆), defined in section 3.2.4, is the full sequence of

requests that have been executed so far, modulo duplicated requests. In this case, a∆-state d

is smaller than a ∆-state d ′ if d is a prefix of d ′. Moreover, the greatest lower bound of d and

d ′ is their longest common prefix.

The RDR Unfold (∆) is not a very efficient representation because it uses full execution

histories. In section 3.2.4 we have seen that Fold (∆) minimizes the number of states that a

representation can have. However, Fold (∆) is not always a RDR because it may introduce

cycles in the state transition graph representing δ.

In order to obtain RDRs with small state spaces, we now introduce the History RDRH # (D),

where # is a dependency relation of D .

5.3.1 The History Data-Type Representation

We say that two requests r and r ′ commute when, for every behavior b = 〈op1, . . . ,opn〉 of

D , if r and r ′ appear in two adjacent operations opi and opi +1, then the behavior obtained

by swapping opi and opi+1 is also a behavior of D . Note that this means that we can swap

commuting requests without affecting subsequent requests and without changing the output

that the two swapped requests receive. The commutativity property of requests is formalized

in a dependency relation which contains every pair of requests that do not commute.

However, it is often difficult to determine whether two requests commute. Instead, we can

use an over-approximation of the dependency relation by including requests that commute in

the dependency relation. We say that a relation # over requests is a dependency relation of D

when # is symmetric and, if r and r ′ are two requests that do not commute, then
〈
r ,r ′

〉 ∈ #.

When
〈
r ,r ′

〉 ∈ # we say that r and r ′ are (mutually) dependent.

Given a dependency relation #, we say that two sequences of requests rs and rs ′ are equiv-

alent when one can be obtained from the other by applying a permutation that preserves the

relative order of dependent requests. More precisely, the sequences of requests rs and rs ′ are

equivalent when there exists a permutation σ such that, for every position i , rs [i ] = rs ′ [σ [i ]]

62



5.3. Recoverable Data-Type Representations (RDRs)

and, for every position j , if i < j and
〈
rs [i ] ,rs

[
j
]〉 ∈ #, then the permutation σ preserves the

order of i and j , σ [i ] <σ
[
j
]
.

The equivalence relation is symmetric, transitive, and reflexive, therefore we can define the

equivalence class Eq (rs) of a sequence of requests and we know that the equivalence classes

form a partition of the set of sequences of requests. Let H be the set of equivalence classes.

The history data-type representing H # (D) uses equivalence classes of the dependency re-

lation as states. The transition function δ# as mapping the equivalence class Eq (rs) of a se-

quence of requests rs and a new request r to the equivalence class of the concatenation of rs

and r ,

δ#
(
Eq (rs) ,r

)=Eq
(
Append (rs ,r )

)
. (5.2)

Moreover, we define the output function γ# such that the output obtained by executing a

request r on the equivalence class Eq (rs) is equal to the output obtained by executing in ∆

the request r on the ∆-state ⊥?rs ,

γ#
(
Eq (rs) ,r

)= γ (⊥?rs ,r ) . (5.3)

Now define the history data-type representation H # (D) as the data-type representation

whose states are the equivalence classes of #, whose initial state is the equivalence class of

the empty sequence of requests, whose transition function is δ#, and whose output function

is γ#,

H # (D) = 〈〈
H ,

{
Eq (〈〉)},C ,δ#

〉
,O ,γ#

〉
. (5.4)

Note that because ∆ is a data-type representation of D, if rs ′ and rs are equivalent, then,

for every request r, δ(rs ′,r ) and δ(rs ,r ) are equivalent and γ (rs ,r ) = γ
(
rs ′,r

)
. Therefore γH

and δH are well defined.

TODO: Say something rigorous about equivalence classes and stuff in the notation section.

Then invoke it to justify the definitions.

We now have the following important property.

Theorem 5.3.1. If the relation on requests # is a dependency relation of D then the data-type

representation H # (D) is a recoverable data-type representation.

Proof sketch. See section 4.4 of Lamport’s paper [12], where the properties of interest are

proved in the context of C-Struct Sets. The proof of Lamport is based on the work of Mazurkiewicz

[15] on trace theory.

Theorem 5.3.1 is important because, in contrast to Unfold (∆), executing commutative re-

63



Chapter 5. Speculative Linearizability

quests in any order always leads to the same ∆-state in H # (D). With the unfold (∆) RDR,

executing commutative requests in different orders lead to different ∆-states. We will see in

chapter 6 that this property allows algorithms to execute commutative requests without syn-

chronization.

5.4 Speculative Linearizability

Speculative linearizability is a modular property

SLin = {
SLin

[
i , j

]
: i , j ∈ N}

. (5.5)

Therefore, for every i ∈ N, the SLin [i , i +1] I/O automaton is a well-formed i th mode in-

stance. This means that, when i > 1, clients start their execution with an init action, followed

by a response, then an invocation, then a response, etc. until they abort a pending request

by emitting an abort action. If i = 1, then the clients start their execution with an invocation

action instead of an init action.

We will first examine the I/O automaton SLin [1, i ] where i > 1.

5.4.1 The I/O Automaton SLin [1, i ]

The definition of the SLin [1, i ] I/O automaton ensures that, as required of a modular prop-

erty, SLin [1, i ] is linearizable when its abort actions are hidden and SLin [1,2] is a well-

formed first mode instance.

Signature

As noted above, every client starts its execution with an invocation action, therefore the

SLin [1, i ] I/O automaton has no input switch actions. The input actions of SLin [1, i ] are the

invocation actions whose instance number belongs to 1..(i −1),

Inputs (SLin [1, i ]) = Invs1,i−1. (5.6)

The set of output actions of the I/O automaton SLin
[
1, j

]
consists of the response actions

whose instance number belongs to 1..(j−1) and of the switch actions whose instance number

is j ,

Outputs (SLin [1, i ]) =Resps1,i−1 ∪Switchs i . (5.7)

The signature of SLin [1, i ] contains all invocations and responses in the instance number

range 1..(i −1) in order to satisfy the idempotence property of modular properties. This will

become clear once we define, in the next section, the I/O automaton SLin [i , i ] in the general

case, i , i ∈ N.

64



5.4. Speculative Linearizability

The SLin [1, i ] I/O automaton is very similar to the NDLin I/O automaton of section 3.4

except that it has abort actions. Like in the NDLin I/O automaton, the internal actions of

the I/O automaton SLin [1, i ], of the form Linearize1, are actions which linearize a whole

sequence of pending requests at once.

We define the operatorPendingReqs as the set of requests r such that there exists a process

p in status “pending” or “aborted” such that pending
[
p
]= r .

State Space and Transition Relation

The state of SLin [1, i ] consists of 4 components, dState , tracking the current state of the

RDR ∆, abortVals , tracking the set of abort values that have been produced so far, and, for

every client p, status
[
p
]
, tracking the control flow location of p, and pending

[
p
]
, containing

the pending request of p.

Initially, dState is ⊥, abortVals is the empty set, and, for every client p, status
[
p
]= "ready"

and pending
[
p
]

is arbitrary. As in the ModeInst
(
1,p

)
I/O automaton, a client p can be either

in status “ready”, “pending”, or “aborted”.

Given a state of SLin [1, i ], we say that d is a choosable-∆-state, d ∈ Choosable , when

1. there is a sequence of pending requests rs ∈ Seq (
PendingReqs

)
where d = dState ? rs

and

2. d is bounded above by every member of abortVals .

We will see below that the Linearize1 action updates dState to a choosable-∆-state.

We now describe the transition relation of SLin [1, i ].

1. The invocation action Invmp (c) wherem ∈ i ..(i−1) is enabled when p is ready. Its effect

is to update pending
[
p
]

to 〈p,c〉 and to set status
[
p
]

to "pending". The client p now

has a pending request. Note that this action is the same as the Invp (c) action of the

NDLin I/O automaton.

2. The Linearize1 action is similar to the Linearize action of the NDLin I/O automaton,

linearizing multiple pending requests at once, but it restricts the possible new values of

dState to the ones that are bounded above by every abort value: The action Linearize1

is enabled when at least one client is in status “pending” and its effect is update dState

to a choosable ∆-state.

3. The response actionRespmp (o) wherem ∈ i ..(i−1) is enabled when p is in status “pend-

ing”, dState contains the pending request of p, and the output o is equal to the output

obtained by executing the pending request of p on dState , o = γ
(
dState ,pending

[
p
])

.

4. The abort action Switch ip (c,av ) is enabled when p is in status “pending”, the pending

request of p is 〈p,c〉, and the abort value av is of the form av = dState ? rs where rs

is a sequence rs of pending requests. The abort action models the client p extracting

65



Chapter 5. Speculative Linearizability

pending

readystart

aborted

Resps1,i−1
p

Contains
(
dState ,pending

[
p
])Invs1,i−1

p

Switchs ip

Figure 5.1 – The control flow of a process p in the SLin [1, i ] I/O automaton

an “approximate” but safe estimate of dState from an implementation that has been

corrupted by overly optimistic speculative updates.

The control flow of a client p is represented graphically in fig. 5.1.

An Important Invariant

Property 5.4.1. In every reachable state of SLin [1, i ], every abort value av ∈ abortValues is of

the form dState?rs , where rs ∈ Seq (
PendingReqs

)
.

As we will see in the next subsection, in the composition SLin [1, i ]×SLin [
i , j

]
, the I/O

automaton SLin
[
i , j

]
relies on the invariant to recover a consistent state of the RDR ∆ and

continue the execution where SLin [1, i ] left it, preserving linearizability.

5.4.2 Linearizability of SLin

We see that, ignoring the abort actions, the actions of the SLin [1, i ] I/O automaton are all

actions of the NDLin I/O automaton. Moreover, the abort action only stops a client, setting

its status to “aborted”. Therefore it is easy to show that, if one ignores the instance numbers

of actions, SLin [1, i ] implements NDLin .

Theorem 5.4.1. For every i ∈ N, the projection of SLin [1, i ] onto the invocation and response

actions implements the I/O automaton NDLin .

Proof sketch. Let f be the function mapping a state of s of SLin [1, i ] to a state t of NDLin

such that

1. the dState and pending components of s and t are equal;

2. the status of a client p in t is the same as the status of p in s except that if s .status
[
p
]=

"aborted", then t .status
[
p
]= "pending".

66



5.4. Speculative Linearizability

It is easy to see that the function f is a refinement mapping from SLin [1, i ] to NDLin .

Corollary 5.4.1 (Linearizability of SLin). For every n ∈ N, the projection of SLin [1, i ] onto the

invocation and response actions is linearizable.

Proof sketch. Using corollary 3.4.1, NDLin ≤Lin , by transitivity of the implementation rela-

tion.

5.4.3 The I/O Automaton SLin
[
i , j

]
For SLin to be a modular property, the composition SLin [1, i ]×SLin [

i , j
]
, for 1 < i < j ,

must implement SLin
[
1, j

]
. Therefore, the I/O automaton SLin

[
i , j

]
must be able to con-

tinue the execution started bySLin [1, i ] while preserving linearizability. Moreover,SLin [i , i +1]

must be a well-formed mode instance. We will now define SLin
[
i , j

]
with these constraints

in mind.

Signature

The input actions of SLin
[
i , j

]
are the invocation actions whose instance number belongs

to i ..(j −1) and the switch actions of instance number i (the init actions),

Inputs (SLin [1, i ]) = Invs i ,j−1 ∪Switchs i . (5.8)

The set of output actions of the I/O automaton SLin
[
i , j

]
consists of the response actions

whose instance number belongs to i ..(j−1) and of the switch actions whose instance number

is j (the abort actions),

Outputs
(
SLin

[
i , j

])=Resps i ,j−1 ∪Switchs j . (5.9)

The internal actions of SLin
[
i , j

]
are the actions of the form Linearize ip and Recover i .

We see that SLin [i , i +1] has the signature of a well-formed mode instance, that the signa-

ture of SLin [1, i ] is compatible with the signature of SLin
[
i , j

]
, and that the external signa-

ture of SLin [1, i ]×SLin [
i , j

]
is equal to the external signature of SLin

[
1, j

]
.

State Space

The state ofSLin
[
i , j

]
consists of 6 components, dState , tracking the current∆-state, intVals ,

tracking the set of init values that have been received so far, abortVals , tracking the set of

abort values that have been produced so far, initialized , a boolean, and, for every client p,

status
[
p
]
, tracking the control flow location of p, and pending

[
p
]
, containing the pending

request of p.

67



Chapter 5. Speculative Linearizability

We see that a state of SLin
[
i , j

]
has all the components of a state of SLin [1, i ] plus the

boolean initialized and the set of∆-states initVals . We will see thatSLin
[
i , j

]
when initialized

is true, SLin
[
i , j

]
executes exactly like SLin [1, i ].

Initially, dState is ⊥, the sets initVals and abortVals are empty, initialized is false, and, for

every client p, status
[
p
]= "idle" and pending

[
p
]

is arbitrary.

As in the ModeInst
(
i ,p

)
I/O automaton, a client p can be either in status “idle”, “ready”,

“pending”, or “aborted”. Note that, in contrast to SLin [1, i ], the initial control flow of a client

if not “ready” but “idle”.

Transition Relation

Given a state s of SLin
[
i , j

]
, we define four sets of ∆-states: the set of glbs of init values,

G , the set of safe init values, SafeInits , the set of choosable values, Choosable , and the set of

safe abort values, SafeAborts . We will see that safe init values are used in the recover action

to initialize dState , choosable values are used in the Linearize i action to update dState , and

safe abort values are used in the Switch jp actions as abort values. The intuition behind the

definitions presented below are to be found in the proof sketch of the idempotence property

of SLin .

Let G be the set of the ∆-states g where g is the glb of a nonempty subset initVals ,

G = {
GLB (ivs) : ivs ⊆ initVals

}
. (5.10)

We say that a ∆-state d is a safe init value, d ∈ SafeInits , when

1. d is of the form g ? rs where g ∈G , rs ∈ Seq (
PendingReqs

)
is a sequence of pending

requests and

2. d is bounded above by every member of abortVals .

We say that a ∆-state d is a safe ∆-state, d ∈ SafeDStates , when

1. d is greater than or equal to dState and

2. d is bounded above by every member of abortVals and

3. there is a sequence of pending requests rs where either

(a) d = dState?rs or

(b) there exists g ∈G such that d = g ?rs .

More formally, the set of safe ∆-states is defined as follows.

SafeDStates = {
s ∈ S : dState ¹ s ∧ (∀av ∈ abortVals : s ¹ av )

∧∃rs ∈ Seq (
PendingReqs

)
: s = dState?rs ∨∃g ∈G : s = g ?rs

}
.

(5.11)

We now define the set of safe abort values, SafeAborts .

68



5.4. Speculative Linearizability

1. If the boolean initialized is false, then the safe abort values are the ∆-states of the form

g ?rs where g ∈G and rs ∈ Seq (
PendingReqs

)
is a sequence of pending requests.

2. If initialized is true, then the safe abort values are the ∆-states d such that

(a) d is greater than or equal to dState and

(b) there is a sequence of pending requests rs where either

i. d = dState?rs or

ii. there exists g ∈G such that d = g ?rs .

Formally, if initialized is false, then

SafeAborts = {
g ?rs : g ∈G ∧rs ∈ Seq (

PendingReqs
)}

, (5.12)

and if initialized is true, then

SafeAborts = {
s ∈ S : dState ¹ s

∧∃rs ∈ Seq (
PendingReqs

)
: s = dState?rs ∨∃g ∈G : s = g ?rs

} (5.13)

We now describe the transition relation of SLin
[
i , j

]
.

1. The init action Switch ip (c, iv ) is enabled when p is in status “idle”. Its effect is to update

pending
[
p
]

to 〈p,c〉, to add iv to the set initVals , and to set status
[
p
]

to "pending".

2. theRecover i action is enabled when the boolean initialized is false and the set initVals

is nonempty. Its effect is to set dState to a safe init and to set set initialized to true.

3. The invocation action Invmp (c) wherem ∈ i ..(j −1) is enabled when p is ready. Its effect

is to update pending
[
p
]

to 〈p,c〉 and to set status
[
p
]

to "pending".

4. The Linearize i action is enabled when at least one client has a pending request and

the boolean initialized is true. Its effect is to linearize an arbitrary sequence of pending

requests by updating dState to a choosable ∆-state.

5. The response actionRespmp (o) wherem ∈ i ..(j−1) is enabled when p is in status “pend-

ing”, the boolean initialized is true, dState contains the pending request of p, and the

output o is equal to the output obtained by executing the pending request of p on

dState , o = γ
(
dState ,pending

[
p
])

. The effect of the response action is to update the

status of p to “ready”.

6. The abort action Switch
j
p (c,av ) is enabled when p is in status “pending”, the pending

request of p is 〈p,c〉, and av is a safe abort value.

The control flow of a client p is represented graphically in fig. 5.1.

5.4.4 Idempotence of SLin

We have shown in section 5.4.2 that SLin is linearizable. To prove that SLin is a modular

property, we still need to show that SLin is idempotent and well-formed. We now address

69



Chapter 5. Speculative Linearizability

sleepingstart pending

ready

aborted

Switchs ip

Resps
i ,j−1
p

Contains
(
dState

(
pending

[
p
]))Invs

i ,j−1
p

Switchs
j
p

Figure 5.2 – The control flow of a process p in the SLin
[
i , j

]
I/O automaton when i > 1.

idempotence. The invariants and refinement proof sketch below should help the reader un-

derstand the definitions of the previous section.

Theorem 5.4.2 (Idempotence of SLin). The family of I/O automata
{
SLin

[
i , j

]
: i , j ∈ N}

is

idempotent.

To sketch the proof of this result we first need to establish a few invariants of the I/O au-

tomaton SLin [1, i ]×SLin [i , i +1].

Consider a state 〈s1,s2〉 of SLin [1, i ]×SLin [i , i +1].

Let PendingReqs ′ be the set of requests r which are pending in s2 or such that there exists

p where status (s1)
[
p
]= "pending" and pending

[
p
]= r ,

PendingReqs ′ =PendingReqs (s2)∪{
pending

[
p
]

: status (s1)
[
p
]= "pending"

}
(5.14)

Note that if 〈s1,s2〉 and s are related by the refinement mapping f , then PendingReqs (s) =
PendingReqs ′.

Lemma 5.4.1 (Invariant 1). If initialized (s2) is false, thenPendingReqs ′ is a equal toPendingReqs (s1).

Lemma 5.4.2 (Invariant 2). If initialized (s2) is false, then for every safe init value iv ∈ SafeInits (s2),

there exists a sequence of pending requests rs ∈ PendingReqs ′ such that iv = dState (s1)?rs .

Lemma 5.4.3 (Invariant 3). If initialized (s2) is false, then for every safe abort value av ∈ SafeAborts (s2),

there exists a sequence of pending requests rs ∈ PendingReqs ′ such that av = dState (s1)?rs .

Lemma 5.4.4 (Invariant 4). If initialized (s2) is true and the ∆-state d is such that

– dState (s2) ≤ d and

– there exists g ∈G (s2) and a sequence of pending requests rs ∈ Seq (
PendingReqs (s2)

)
such

that d = g ?rs ,

then there exists a sequence of requests rs ′ ∈ Seq (
PendingReqs ′

)
such that d = dState (s2)?rs ′.

70



5.4. Speculative Linearizability

The invariants 2, 3, and 4 follow from the conjunction of the invariant of SLin [1, i ] pre-

sented in the previous section (property 5.4.1), the consistency property of recoverable data-

type representations, and the first invariant.

Let us now sketch the proof of theorem 5.4.2

Theorem 5.4.2 (Idempotence of SLin). The family of I/O automata
{
SLin

[
i , j

]
: i , j ∈ N}

is

idempotent.

Proof sketch. Define the function f mapping a state 〈s1,s2〉 of SLin [1, i ]×SLin [i , i +1] to the

state s of SLin [1, i +1] where

1. the boolean initialized (s) is true;

2. if dState (s2) =⊥, then dState (s) is equal to dState (s2), else dState (s) is equal to dState (s1);

3. for every client p, if status (s1)
[
p
] = "aborted", then status (s)

[
p
] = status (s2)

[
p
]
, else

status (s)
[
p
]= status (s1)

[
p
]
;

4. for every client p, if status (s1)
[
p
] = "aborted", then pending (s)

[
p
] = pending (s2)

[
p
]
,

else pending (s)
[
p
]= pending (s1)

[
p
]
;

5. the set abortVals(s) is equal to abortVals (s2).

Under the refinement mapping f , the I/O automaton SLin [1, i ]×SLin [i , i +1] simulates

the I/O automaton SLin [1, i +1] as follows.

1. Invoke and response actions of both SLin [1, i ] and SLin [i , i +1] simulate, respectively,

invoke and response actions of SLin [1, i +1].

2. The Recovery i action of SLin [i , i +1] simulates a Linearize1 action of SLin [1, i +1].

3. The switch actions Switch i , which are the abort actions of SLin [1, i ] and the init ac-

tions of SLin [i , i +1], are stuttering steps for SLin [1, i +1].

4. The abort actions of SLin [i , i +1], Switch i+1, simulate abort actions of SLin [1, i +1].

5. Both theLinearize1 and theLinearize i actions simulate aLinearize1 action ofSLin [1, i +1].

The most interesting cases are those of the Recover i action, the Switch j abort action of

SLin [i , i +1], and the Linearize i action of SLin [i , i +1].

5.4.5 SLin is a modular property

We have proved in the preceding sections that SLin is linearizable and that SLin is idem-

potent. To prove thatSLin is a modular property, it remains to show thatSLin is well-formed.

Theorem 5.4.3 (SLin is Well-Formed). For every j ∈ N, SLin
[
j , j +1

]≤ModeInst
(
j
)

and the

I/O automata SLin
[
1, j

]
and SLin

[
j , j +1

]
are compatible.

71



Chapter 5. Speculative Linearizability

Proof sketch. Consider the function f which maps a state s of SLin
[
j , j +1

]
to the state t

of ModeInst
(
j
)

by projecting s onto its status component, f [s] = pending (s). The function

f is a refinement mapping from SLin [i , i +1] to ModeInst (i ). Also note that the external

signature of SLin [i , i +1] is the same as the external signature of ModeInst (i ). Therefore,

SLin [i , i +1] ≤ModeInst (i ).

Moreover, it is easy to see that the I/O automataSLin [1, i ] andSLin [i , i +1] are compatible

by looking at their signatures.

Finally, we can prove our main theorem.

Theorem 5.4.4. The family of I/O automaton
{
SLin

[
i , j

]
: i , j ∈ N}

is a modular property.

Proof sketch. Theorem 5.4.3 shows that SLin [i , i +1] is a well-formed i th mode instance,

corollary 5.4.1 shows thatSLin [i , i +1] is linearizable, and theorem 5.4.2 shows thatSLin [i , i +1]

is idempotent. Therefore
{
SLin

[
i , j

]
: i , j ∈ N}

is a modular property.

5.4.6 Proving Idempotence Mechanically

In an effort to make the results of this thesis trustworthy, we have mechanically proved in

Isabelle/HOL the idempotence of a restricted version of the speculative linearizability prop-

erty. We present our proof in this chapter.

Isabelle/HOL [16] is a highly trustworthy interactive proof assistant for higher order logic

offering a sophisticated infrastructure. It is an instance of the generic interactive proof assis-

tant Isabelle [18]. Isabelle/HOL allows writing and interactively proving statements in higher

order logic. All proofs are checked by a small, highly trusted kernel of inference rules. A large

library of derived proof rules and theorems is available and several packages provide auto-

mated setup for higher level concepts such as records, recursive and co-recursive data-types

[19], recursive functions, modular organisation of specifications with locales [11], etc. The

Isar proof language [20] allows writing structured and readable proofs in a style which is

close to a detailed manual proof. Several automatic proof methods are available, such has the

simplifier, the tableau prover [17], and Sledgehammer [1], which can call external automatic

provers and SMT solvers [1] and reconstruct the obtained proofs in Isabelle/HOL. Moreover,

the Nitpick tool [2] can search for counterexamples to putative theorems.

We have proved the idempotence theorem for a specification I/O automaton ALM which

is close to the SLin I/O automaton except that the data type is fixed to the Generic data type

presented in section 3.2.3 and that its behavior is restricted in a few corner cases.

Consider the representation∆ of theGeneric data-type presented in section 3.2.3. Remem-

ber that in an execution of∆, the state of∆ is the sequence of requests, without the duplicates,

that have been executed up to this point. Moreover, the output contained in a response is the

72



5.4. Speculative Linearizability

current state. The data-type representation ∆ is a recoverable data-type representation: the

“less than” relation on states is the prefix relation on sequences, and the glb of a set of∆-states

is their longest common prefix.

The I/O automataALM
[
i , j

]
, for 1 ≤ i < j , is very similar to the I/O automatonSLin (∆)

[
i , j

]
both in structure and in behavior. TheALM [1, i ] I/O automaton, for 1 < i , has the same set of

traces as SLin [1, i ]. The set of traces of the ALM
[
i , j

]
I/O automaton, for 1 < i < j , is a strict

subset of the set of traces of SLin
[
i , j

]
because the abort actions of ALM

[
i , j

]
are more re-

stricted. In ALM
[
i , j

]
, when the boolean initialized is true, the safe abort values are of the

form d = dState?rs , where rs is a sequence of pending requests. However, in SLin
[
i , j

]
, the

abort values can also be of the form d = g ? rs , where g ∈ {
GLB (is) : is ⊆ initVals

}
, rs is a

sequence of pending requests, and dState ≤ d . If there is an init value which is strictly bigger

than dState and which cannot be obtained by appending pending requests to dState , then

some safe abort values of SLin are not safe abort values of ALM .

The difference between the ALM I/O automata and the SLin I/O automata is not signifi-

cant and they both have the same structure and rely on the same invariants. However we have

found out by model checking our specifications that, in a corner case, theQuorum algorithm

violates the more restricted abort actions of the ALM I/O automata.

The Isabelle/HOL proof shows that ALM [1, i ] ×ALM
[
i , j

]
implements ALM

[
1, j

]
, for

1 < i < j . The refinement mapping is essentially the same as in the proof of theorem 5.4.2.

We prove the refinement mapping correct with the help of 15 state invariants about the com-

posite automaton. The proof is written in the structured proof language Isar and consists of

roughly 500 proof steps (lines containing the keywork “by”). With the specification, it forms

a total of 1600 lines of Isabelle/HOL code.

Our automata specification can be used as the basis for mechanically-checked refinement

proofs of distributed protocols. Our proof of the composition is a good example of such a

refinement proof and shows that mechanically-checked proof of speculatively linearizable

algorithms are possible.

We conclude the chapter by a few remarks on our experience with Isabelle/HOL. It is ex-

tremely time consuming for a relatively novice user to formalize and prove in Isabelle/HOL

a theory that is not well-understood beforehand. The problem is that Nitpick and the other

debugging tools available in Isabelle are not able to check high level properties like the idem-

potence or linearizability of SLin . Only deeply nested proof steps can be debugged in Is-

abelle/HOL. As a result, many errors where discovered late in the development and ulti-

mately, although ALM was proved idempotent after a lot of effort, it was found inadequate

for proving Quorum . After this experience, we formalized all of our results in TLA+ and we

were able to check all our claims, end to end, with TLC before even attempting to write a

proof. Many errors were eliminated in the process, which culminated in a few month to the

theory presented in this thesis. In contrast, our first development took more than a year and

resulted in a mechanically checked proof of a property which is not exactly the right one in

73



Chapter 5. Speculative Linearizability

practice. In conclusion, even though experienced users may be able to use Isabelle/HOL ef-

fectively, the learning curve is still too steep for an outsider. However, debugging tools that

allow quick prototyping are extremely useful and if integrated with Isabelle/HOL could allow

a much broader audience to use it.

5.5 Conclusion

In this chapter we have presented the modular property SLin . Together with our model of

adaptive algorithm the SLin modular property forms the Speculative Linearizability frame-

work.

We have introduced recoverable data-type representations (RDRs) and we have seen that

the speculative linearizability property models systems in which the processes behave specu-

latively, i.e., they optimistically update a distributed implementation of the state of a RDR in a

way that leads to increased performance under some optimistic assumptions and to the cor-

ruption of the state otherwise. If the state of the system is corrupted by an overly optimistic

update, then the processes must detect it, abort their execution, and switch to the next mode,

bringing along their estimate of the corrupted RDR state. Thanks to the properties of RDRs,

the next modes can use the set of different RDRs received from the processes to recover a

consistent RDR state and continue the execution in a linearizable fashion.

In the next chapter we will see that the speculative linearizability property is efficiently im-

plementable in the message-passing model of computation. To do so, we will present spec-

ulatively linearizable adaptive algorithms that efficiently implement any data type. We will

also see in chapter 7 that speculative linearizability can be applied to the shared-memory

model.

74





Bibliography

[1] Jasmin Christian BLANCHETTE, Sascha BÖHME, and Lawrence C. PAULSON. “Extending

Sledgehammer with SMT Solvers”. In: J. Autom. Reasoning 51.1 (2013), pp. 109–128.

DOI: 10.1007/s10817-013-9278-5.

[2] Jasmin Christian BLANCHETTE and Tobias NIPKOW. “Nitpick: A Counterexample Gen-

erator for Higher-Order Logic Based on a Relational Model Finder”. In: ITP. Ed. by Matt

KAUFMANN and Lawrence C. PAULSON. Vol. 6172. LNCS. Springer, 2010, pp. 131–146.

DOI: 10.1007/978-3-642-14052-5_11.

[3] Bernadette CHARRON-BOST and André SCHIPER. “The Heard-Of model: computing in

distributed systems with benign faults”. In: Distributed Computing 22.1 (2009), pp. 49–

71. DOI: 10.1007/s00446-009-0084-6.

[4] Tzilla ELRAD and Nissim FRANCEZ. “Decomposition of Distributed Programs into Communication-

Closed Layers”. In: Sci. Comput. Program. 2.3 (1982), pp. 155–173. DOI: 10.1016/0167-

6423(83)90013-8.

[5] E. Allen EMERSON and Vineet KAHLON. “Model Checking Large-Scale and Parameter-

ized Resource Allocation Systems”. In: TACAS. Ed. by Joost-Pieter KATOEN and Perdita

STEVENS. Vol. 2280. LNCS. Springer, 2002, pp. 251–265. DOI: 10.1007/3- 540- 46002-

0_18.

[6] E. Allen EMERSON and Vineet KAHLON. “Reducing Model Checking of the Many to the

Few”. In: CADE. Ed. by David A. MCALLESTER. Vol. 1831. LNCS. Springer, 2000, pp. 236–

254. DOI: 10.1007/10721959_19.

[7] E. Allen EMERSON and Kedar S. NAMJOSHI. “Reasoning about Rings”. In: POPL. Ed.

by Ron K. CYTRON and Peter LEE. ACM Press, 1995, pp. 85–94. DOI: 10.1145/199448.

199468.

[8] Ivana FILIPOVIC et al. “Abstraction for concurrent objects”. In: Theor. Comput. Sci. 411.51-

52 (2010), pp. 4379–4398. DOI: 10.1016/j.tcs.2010.09.021.

[9] Rachid GUERRAOUI et al. “The next 700 BFT protocols”. In: EuroSys. Ed. by Christine

MORIN and Gilles MULLER. ACM, 2010, pp. 363–376. DOI: 10.1145/1755913.1755950.

[10] Maurice HERLIHY and Jeannette M. WING. “Linearizability: A Correctness Condition

for Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990), pp. 463–492.

DOI: 10.1145/78969.78972.

99



Bibliography

[11] Florian KAMMÜLLER, Markus WENZEL, and Lawrence C. PAULSON. “Locales - A Sec-

tioning Concept for Isabelle”. In: TPHOLs. Ed. by Yves BERTOT et al. Vol. 1690. LNCS.

Springer, 1999, pp. 149–166. DOI: 10.1007/3-540-48256-3_11.

[12] Leslie LAMPORT. Generalized Consensus and Paxos. https://research.microsoft.com/

en - us / um / people / lamport / pubs / pubs . html # generalized. Accessed: 2013-10-18.

2005.

[13] Leslie LAMPORT. “On Interprocess Communication. Part I: Basic Formalism”. In: Dis-

tributed Computing 1.2 (1986), pp. 77–85. DOI: 10.1007/BF01786227.

[14] Leslie LAMPORT. “On Interprocess Communication. Part II: Algorithms”. In: Distributed

Computing 1.2 (1986), pp. 86–101. DOI: 10.1007/BF01786228.

[15] Antoni W. MAZURKIEWICZ. “Semantics of concurrent systems: a modular fixed-point

trace approach”. In: European Workshop on Applications and Theory in Petri Nets. 1984,

pp. 353–375.

[16] Tobias NIPKOW, Lawrence C. PAULSON, and Markus WENZEL. Isabelle/HOL - A Proof As-

sistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer,

2002. ISBN: 3-540-43376-7.

[17] Lawrence C. PAULSON. “A Generic Tableau Prover and its Integration with Isabelle”. In:

J. UCS 5.3 (1999), pp. 73–87.

[18] Lawrence C. PAULSON. “Isabelle: The Next 700 Theorem Provers”. In: CoRR cs.LO/9301106

(1993).

[19] Dmitriy TRAYTEL, Andrei POPESCU, and Jasmin Christian BLANCHETTE. “Foundational,

Compositional (Co)datatypes for Higher-Order Logic: Category Theory Applied to The-

orem Proving”. In: LICS. IEEE, 2012, pp. 596–605. DOI: 10.1109/LICS.2012.75.

[20] Markus WENZEL. “Isar - A Generic Interpretative Approach to Readable Formal Proof

Documents”. In: TPHOLs. Ed. by Yves BERTOT et al. Vol. 1690. LNCS. Springer, 1999,

pp. 167–184. DOI: 10.1007/3-540-48256-3_12.

100



Croix Rouges 12
1007 Lausanne, Switzerland

+41 78 669 64 32
giuliano.losa@epfl.ch

Giuliano Losa

Education

08/2009-02/2014 (expected)
EPFL, Switzerland, PhD student in Computer Science, 5th year.

Supervised by Rachid Guerraoui and Viktor Kuncak.

Thesis title: Modularity in the Design of Robust Distributed Algo-
rithms.

2007-2009 EPFL, Switzerland, Master in Computer Science.

2005-2009 Supélec, France, Master in Electrical Engineering.

2003 Baccalauréat Scientifique, option mathématiques, mention très bien.

Work Experience

09/2008-03/2009
IBM T.J. Watson Research Center, USA, Data-Intensive Systems and
Analytics Group. Master thesis.

Design and specification of the SPL programming language.

Design and implementation of a distributed object store, using C++.

07/2007-08/2007
C.E.A., France, Study and port of a hard real-time operating system
on Linux.

Publications

Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Speculative
linearizability”. In: PLDI. Ed. by Jan Vitek, Haibo Lin, and Frank Tip.
ACM, 2012, pp. 55–66. DOI: 10.1145/2254064.2254072.

Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. “Abortable
Linearizable Modules”. In: The Archive of Formal Proofs. Ed. by Ger-
win Klein, Tobias Nipkow, and Lawrence Paulson. Formal proof de-
velopment. http://afp.sf.net/entries/Abortable_Linearizable_
Modules.shtml, 2012.

173



Dan Alistarh et al. “On the cost of composing shared-memory algo-
rithms”. In: SPAA. Ed. by Guy E. Blelloch and Maurice Herlihy. ACM,
2012, pp. 298–307. DOI: 10.1145/2312005.2312057

Giuliano Losa et al. “CAPSULE: language and system support for
efficient state sharing in distributed stream processing systems”.
In: DEBS. Ed. by François Bry et al. ACM, 2012, pp. 268–277. DOI:
10.1145/2335484.2335514

Martin Hirzel et al. SPL Stream Processing Language Specification,
IBM Research report RC24897. Tech. rep. IBM, 2009

Languages

French: native speaker.

English: excellent.

Italian: fluent.

German: basic.

Extra-curricular activities

2006-2007 President of “Supélec Rézo”, the student association in charge of the
computer network of Supélec’s campus in Gif-Sur-Yvette.


