

2 Specifying Distributed Systems

2.1 Introduction

Distributed algorithms are often very complex and some details of their structure and be-

havior are notoriously easy to overlook. To avoid mistakes, one can writing precise specifi-

cations of an algorithm and its properties in a formal specification language. Tools such as

model checkers can then be used to test whether the algorithm satisfies its properties. In gen-

eral, only a subset of all the behaviors of the algorithm can be explored by model checking.

However, fully automatic model checkers can be easily used as debuggers of specifications.

Writing a detailed formal proof can raise our confidence in the correctness of an algorithm

beyond what is possible with a model-checker. However, only when a formal proof is me-

chanically checked by a computer can we reach the assurance that a distributed algorithm is

correct.

This chapter is an introduction to the basic concepts of the theory of I/O automataand of

the TLA+ language. In the rest of the thesis, we use the theory of I/O automata [13] for in-

formal discussions and the TLA+ [11] language for formal specifications. In chapter 8, which

we describe the formalization and mechanical proof of one of our results in the Isabelle/HOL

[21] interactive theorem prover.

Distributed algorithms can be concisely represented as the composition of several I/O au-

tomata because the components of a distributed system interact by performing discrete joint

actions and otherwise evolve completely asynchronously. Composing two components rep-

resented as I/O automata results exactly in a system in which the two components, which are

otherwise completely asynchronous, interact through specific discrete joint actions. There-

fore, I/O automata composition accurately models the interaction between components of a

distributed system.

In an effort to provide a trustworthy theory of adaptive distributed systems, we have for-

malized our work in the TLA+ language and we have checked the correctness of our results

with the TLC model checker [24]. In section 2.4.6, we describe how to translate I/O automata

7

Chapter 2. Specifying Distributed Systems

specifications in TLA+ in order to use the TLC model checker.

There are many other specification frameworks targeting the description of distributed sys-

tems and their properties. Some frameworks are well-known as frameworks while others are

better known by the name of their main component. Let us cite the BIP framework (Behav-

ior, Interaction, and Priority) [2], the I/O-automata framework [10], TLA+ [11] (the Temporal

Logic of Actions), Reactive Modules [1], Promela and the SPIN model checker [9], the NuSMV

model checker [4], Bigraphical Reactive Systems [16], Abstract State Machines [3], and pro-

cess calculi like CSP [8], the π-calculus [17, 18], and Petri nets [22].

In the rest of this chapter we present the theory of I/O automata, restricted to finite traces,

TLA+, and we show how to express I/O automata specifications in TLA+, with the aim of

checking them with the TLC model-checker.

Apart from section 2.4.6, which explains how to express I/O automata specifications in

TLA+ the material presented in this chapter is well-known.

2.2 Notation

We now present the basic mathematical notions and notations that we will used throughout

the thesis.

We will make use of basic mathematical expressions that should be familiar to the reader:

quantified formulas, for example ∀x ∈ S : P or ∃x ∈ S : P , set comprehensions, for exam-

ple {x :P } or {x ∈ S :P }, literal set expressions, as {e1, . . . ,en }, and sequences, for examples

〈e1, . . . ,en〉.

If es = 〈e1, . . . ,en〉 is a sequence and i ∈ 1..n , we write es [i] for ei and Last (e) for en . We

use ◦ for sequence concatenation, 〈e1, . . . ,en〉 ◦ 〈f1, . . . , fm〉 = 〈e1, . . . ,en , f1, . . . , fm〉. Appending

an element e to a sequence es is noted Append (es ,e). The set of all sequences of elements of

a set E is noted Seq (E).

Arrays are multi-dimensional sequences. The elements at positoin i , j of a two-dimensional

array A is noted A
[
i , j

]
. Functions F are the more general case of sequences and arrays, as-

sociating elements of their domain, Dom (F), set to elements of their image set, Image (F).

We will often talk about the states s of an automaton and about the components of s . We

write aComponent (s) for the component named aComponent of the state s , and we omit the

argument s entirely when it is clear from the context.

8

2.3. I/O Automata

2.3 I/O Automata

In this section we present the theory of I/O automata, restricted to finite executions. We use

I/O automata as our main modeling framework throughout the entire thesis. Moreover, we

have formalized a small part of the theory of I/O automata, restricted to finite executions, in

Isabelle/HOL and we have used it to formalize some of our results. Our Isabelle/HOL theories

can be found in appendix A.4.

I/O automata were first introduced by Lynch and Tuttle [13] to model asynchronous dis-

tributed systems. The theory of I/O automata is also described in details in chapter 8 of

Lynch’s book [12] , which contains many examples. In this section we give our own version of

the theory of I/O automata, with some minor differences compared to Lynch and Tuttle. For

example, the I/O automata of Lynch and Tuttle must be input-enable whereas, to simplify

specifications, ours do not.

An I/O automaton can be though of as a state-machine plus an interface. First, and I/O

automaton represent a system that has a state which is updated by taking discrete labeled

actions. In this respect an I/O automaton is similar to what is often called a state machine or a

traditional automata. Second, I/O automata have a signature which describes their interface

and determines how two I/O automata synchronize when they are composed. Crucially, by

using appropriate signatures, certain actions can be made internal to a component, in which

case they will be executed completely asynchronously from the other components, and other

actions, common to multiple components, can be matched and will be executed jointly, in a

common discrete action, by all the components involved.

I/O automata conveniently describe distributed systems. A distributed system is usually

composed of several processes, or components, which interact through discrete transac-

tions, or joint actions, and otherwise evolve independently. Given the characteristic of I/O

automata composition, it is convenient to described distributed systems as the composition

of several I/O automata representing the processes of the system.

I/O automata can be used to describe a distributed system but also to specify at a high level

of abstraction what a system should do. In other words, I/O automata can be used both for

describing implementations and specifications.

In the rest of our work we will often need to prove that an implementation I/O automaton

satisfies a specification I/O automaton. This means that the set of traces denoted by the

implementation is a subset of the traces of the specification. We prove implementation using

refinement mappings and history variables, which are instances of the more general class of

simulation proofs.

Informally, proving by refinement that and I/O automaton A implements and I/O automa-

ton B amounts to finding, for every step of A, a corresponding step of B which has the same

label. A refinement proof allows one to reason about the individual transitions of an I/O

9

Chapter 2. Specifying Distributed Systems

automaton and deduce a property of all its executions. Simulation proof techniques are re-

viewed in detail by Lynch and Vaandrager in [14].

To simplify implementation proofs, one often introduces a sequence of intermediate I/O

automata between the specification and the implementation and one shows using simula-

tion proofs that, starting from the implementation, each I/O automaton implements the next

in the sequence, up to the specification. For example, in section 3.4, we prove that the I/O au-

tomaton NDLin (∆) implements the I/O automaton Lin (D) in two steps, first showing that

the I/O automaton Lin ′ (∆) implements the Lin (∆) I/O automaton, and then showing that

NDLin (∆) implements Lin ′ (∆).

Finally, it is worth noting that there are some tools that help devise and reason about dis-

tributed algorithms described using I/O automata. First, there is the Isabelle/HOLCF formal-

ization of I/O automata theory developed by Müller and Nipkow [20, 19], parts of which are

still maintained in the Archive of Formal Proofs. Second, there is the IOA Toolkit [10], which

is composed of a formal specification of the IOA language, a simulator [23], a verifier based

on the LP theorem prover [6], and a tool for generating Java programs from IOA specifications

[7]. Unfortunately, many of those tools have not been maintained and there does not seem to

be an active user community at the time of writing.

Because many of the existing tools are about a decade old and have not been maintained,

we chose to implement our own theory of I/O automata in Isabelle/HOL. The advantage is

that we formalized only what we need, leading to a very simple theory, and we do not de-

pend on unmaintained infrastructure. Our formalization in Isabelle/HOL is presented in

section 8.2.

We will use the theory of I/O automata throughout the whole thesis, therefore we now

formally define I/O automata and their related notions such as composition and simulations.

Note that we deviate from the presentation of Lynch [12] on some details.

2.3.1 Definition of I/O Automata and their Traces

Signatures

A signature sig is a triple consisting of three disjoint sets of actions, Inputs
(
sig

)
, the set of

input actions of Sig , Outputs
(
sig

)
, the set of output actions, and Internals

(
sig

)
, the set of

internal actions. The set of actions of a signature, noted Acts
(
sig

)
, is the union of all three

components, whereas the set of external actions, noted Ext
(
sig

)
, is the union of the inputs

and outputs.

State machines

A state machine Σ is a tuple 〈S ,C ,S0,δ〉 where

10

2.3. I/O Automata

• S is the set of states of Σ;

• C is the set of actions of Σ;

• S0 ⊆ S is the set of initial states of Σ;

• δ is the transition relation of Σ, which is a set of transitions
〈
s ,a ,s ′

〉
where s ,s ′ ∈ S and

a ∈ C .

The state machine Σ is deterministic when it has a unique initial state and for every state

s and action a, there is a unique transition
〈
s ,a ,s ′

〉 ∈ δ (Σ). When
〈
s ,a ,s ′

〉
is a transitoin, we

write s a−→Σ s ′.

I/O Automata

An I/O automaton A consists of a signature and a state machine. The set of actions of the

state machine must be equal to the set of actions of the signature. We now consider an I/O

automaton A= 〈Sig ,Σ〉.

As shorthands, we write Inputs(A) for Inputs
(
Sig

)
,Outputs(A) forOutputs

(
Sig

)
, Internals(A)

for Internals
(
Sig

)
, Ext(A) for Ext

(
Sig

)
, Acts(A) for Acts(A.sig), Start (A) for Start (Σ), δ (A)

for δ (Σ), and States (A) for States (Σ).

Note that we do not require I/O automata to be input-enabled.

Execution and schedules

We now define the notions of execution fragment, execution, and schedule of a state machine.

The execution fragments, schedules, and traces of an I/O automaton are simply the ones of

its state machine.

The execution fragments of a state machine M are the sequences

〈s0,a1,s1, . . . ,an ,sn〉 (2.1)

where, for every i ∈ 1..n , 〈si−1,ai ,si 〉 is a transition.

The executions are defined as the execution fragments whose first state is an initial state,

s0 ∈ S0.

We say that an action a is enabled in a state s if there exists a transition,
〈
s ,a ,s ′

〉
, whose

first state if s . We say that a state is reachable if there exists an execution of Σwhose last state

is s .

We define the schedule obtained from an execution e as the projection of e onto the actions,

removing all states. The schedules of the state machine are the sequences s such that there

11

Chapter 2. Specifying Distributed Systems

exists an execution e whose schedule is s .

Traces

The trace obtained from a schedule s is the projection of s onto the external actions. The

traces of A are the sequences t such that there exists a schedule s of whose trace is t . We

write Traces(A) for the set of traces of A. When e is an execution fragment, we define the

trace of e , Trace(e), as the trace of the schedule of e . Note that the trace of e depends on the

signature, whereas the schedule of e does not.

We write s
t=⇒A s ′ when there exists an execution fragment e = 〈s ,ps〉 such that last-state(e) =

s ′ and Trace (e) = t .

Implementation relation

We say that an I/O automaton B implements an I/O automaton A, noted B ≤A, when A and

B have the same input actions, the same output actions, and the set of traces of B is a subset

of the set of traces of A.

2.3.2 Composition

Signature composition

An sequence of signatures Sigs is said compatible when, for every two different indices i , j ,

the outputs of Sigs [i] and Sigs
[
j
]

are disjoint and the internal actions of Sigs [i] and Sigs
[
j
]

are disjoint. Note that, in consequence, one cannot compose two identical signatures whose

outputs are nonempty.

The composition of a sequence of signatures 〈Sig1, . . . ,Sign〉, ∏
i ∈ 1..n Sigi , is such that

• The set of inputs of
∏
Sigs is the union of the set of inputs of the members ofSigs minus

the union of their sets of outputs,

Inputs
(∏

Sigs
)= ⋃

i ∈ 1..n
Inputs

(
Sigs[i]

)
\

⋃
i ∈ 1..n

Outputs
(
Sigs[i]

)
(2.2)

• The set of outputs of
∏
Sigs is the union of the set of outputs of the members of Sig .

Outputs
(∏

Sigs
)= ⋃

i ∈ 1..n
Outputs

(
Sigs[i]

)
(2.3)

• The set of internal actions of
∏
Sigs is the union of the set of internal actions of the

12

2.3. I/O Automata

members of Sig .

Internals
(∏

Sigs
)= ⋃

i ∈ 1..n
Internals

(
Sigs[i]

)
(2.4)

I/O Automata composition

We say that a sequence of I/O automata is compatible when the corresponding sequence of

signatures is compatible.

The composition of a sequence of I/O automata 〈A1, . . . ,An〉, ∏
i ∈ 1..n Ai , is defined as fol-

lows.

• The signature of the composition is the product of the signatures 〈Sig (A1) , . . . ,Sig (An)〉.

• The states of the composition are the sequences 〈s1, . . . ,sn〉 where si ∈ States (Ai) for

every i ∈ 1..n .

• The initial states of the composition are the sequences 〈s1, . . . ,sn〉 where si is an initial

state of Ai for every i ∈ 1..n .

• The transition relation of the composition is the set of transitions〈〈s1, . . . ,sn〉,a ,
〈
s ′1, . . . ,s ′n

〉〉
(2.5)

where if a is an action of Ai , then
〈
si ,a ,s ′i

〉
is a transition of Ai .

We see that actions which belong to several components must be taken by all those compo-

nents at once. Other actions are taken by their respective component while the other com-

ponents remain unchanged.

Note that the traces of the composition of a compatible sequence only depends on content

of the sequence and not on the ordering. If As and Bs are two sequences of compatible

I/O automata whose members are the same except for their ordering, then
∏
As and

∏
Bs

have the same set of traces. Therefore, we will often talk about the composition of a set of

I/O automata when we mean the composition of a sequences which contains exactly all the

members of the set. Moreover, we write A×B for
∏〈A,B〉.

We can also refactor nested composition of I/O automata.

Lemma 2.3.1. Consider a two-dimensional array of I/O automataAss
[
i , j

]
where i ∈ 1..n and

j ∈ 1..m . Suppose that the members of Ass are pairwise compatible, i.e., for every i , j ∈ 1..n
and k , l ∈ 1..m where i 6= j or k 6= l , Ai ,k and Aj ,l are compatible. Then, as far as traces are

concerned, composing all the I/O automata ofAss along the rows first is the same as composing

13

Chapter 2. Specifying Distributed Systems

along the columns first,

Traces

(∏
i ∈ 1..n

(∏
j ∈ 1..m

Ai ,j

))
=Traces

(∏
j ∈ 1..m

(∏
i ∈ 1..n

Ai ,j

))
(2.6)

Monotonicity of composition

We can now state the first reduction theorem, which says that composition is monotonic with

respect to the implementation relation: if A1 ≤B1 and A2 ≤B2 then A1 ×A2 ≤B1 ×B2.

Theorem 2.3.1 (Monotonicity of Composition). If 〈A1, . . . ,An〉 and 〈B1, . . . ,Bn〉 are two com-

patible sequences of I/O automata and, for every i ∈ 1..n , Ai ≤Bi , then∏〈A1, . . . ,An〉 ≤
∏〈B1, . . . ,Bn〉. (2.7)

This reduction theorem allows to reason about each component of a sequence indepen-

dently and draw a conclusion about the composition of all the components.

2.3.3 Hiding and Projection

The Hide (A,Acts) operators modifies the signature of the I/O automaton A by removing all

the actions of Acts from the external signature of A and transferring them to the internal

actions of A. If Sig is a signature, define

Hide(Sig ,Acts) = 〈
Inputs

(
Sig

)
\Acts ,Outputs

(
Sig

)
\Acts ,Internals

(
Sig

)∪Acts
〉

(2.8)

Then we defineHide (A,Acts) as the I/O automatonA except that the signature ofHide (A,Acts)

is Hide
(
Sig (A) ,Acts

)
.

Theorem 2.3.2. If A≤B , then hide (A,S) ≤ hide (B ,S)

The projection operator proj (A,S) is defined in terms of hiding as

proj (A,S) = hide (A,Acts (A) \S) (2.9)

Theorem 2.3.3. If A≤B , then proj (A,S) ≤ proj (B ,S)

2.3.4 Simulation Proofs

In this section we show how to prove that an I/O automaton A implements and I/O automa-

ton B by using a refinement mapping in conjunction with history variables or by using a

forward simulation. There are other types of simulation proofs, using prophecy variables or

14

2.3. I/O Automata

backward simulations. However we only use history history variables an forward simulations

in this thesis. For a thorough explanation of simulation proofs methods, we refer the reader

to Lynch and Vaandrager [14].

We say that the I/O automaton AH is obtained by adding a history variable to the I/O au-

tomatonA= 〈Sig ,〈S ,S0,C ,δ〉〉 when there exists two nonempty setsH andH0 ⊆H such that

AH = 〈Sig ,〈S ×H ,S0 ×H0,C ,δH 〉〉 (2.10)

where δH is such that

1. if
〈〈s ,h〉,a ,

〈
s ′,h ′〉〉 is a transition of δH , then

〈
s ,a ,s ′

〉
is a transition of δ;

2. if
〈
s ,a ,s ′

〉
is a transition ofδ, then, for every h ∈ H , there exists h ′ ∈ H such that

〈〈s ,h〉,a ,
〈
s ′,h ′〉〉

is a transition of δH .

Theorem 2.3.4. If the I/O automaton AH is obtained from A by adding a history variable then

Traces (AH) =Traces (A).

A refinement mapping from A to B is a function f such that:

• if s ∈ Start (A) then f [s] ∈ Start (B);

• if s is a reachable state of A and s a−→A s ′, then

– if a ∈ Ext (B), then f [s]
〈a〉=⇒B f

[
s ′

]
;

– if a ∉ Ext (B), then f [s]
〈〉=⇒B f

[
s ′

]
.

Theorem 2.3.5. Consider two I/O automata A and B which have the same external signature.

If f is a refinement mapping from A to B , then A implements B .

Corollary 2.3.1. If the I/O automaton AH is obtained from A by adding a history variable and

there exists a refinement mapping f from AH to B , then A implements B .

A forward simulation from A to B is a relation r such that:

• if s ∈ Start (A) then r [s] ⊆ Start (B);

• if s is a reachable state of A, s a−→A s ′, and t ∈ r [s], then there exists a state t ′ ∈ r
[
s ′

]
such that

– if a ∈ Ext (B), then t
〈a〉=⇒B t ′;

– if a ∉ Ext (B), then t
〈〉=⇒B t ′.

15

Chapter 2. Specifying Distributed Systems

Theorem 2.3.6. Consider two I/O automata A and B which have the same external signature.

If r is a forward simulation from A to B , then A implements B .

Forward simulations have the same power as the combination of a history variable and re-

finement mapping: one can prove that A implements B using a forward simulation if and

only if one can prove it using a refinement mapping in conjunction with a history variable.

A proof of this result appears in [14]. However, in practice, a proof may be easier with one

or the other method. We will use theorem 2.3.6 and corollary 2.3.1 throughout the thesis

to prove implementation relations between I/O automata. Backward simulations, not pre-

sented here, are formalized in the Isabelle/HOL theory called “Simulations” which can be

found in appendix A.4.

2.4 TLA+

In this section we introduce TLA+ informally and we show how to translate I/O automata

specification in TLA+. Although we use the theory of I/O automata in the rest of the thesis, we

have translated most of our specifications in TLA+ and we have used the TLC model checker

to gain confidence in their correctness. Moreover, formal versions of the specifications found

in the thesis are only given in TLA+, in appendix A.

There are already very good descriptions of TLA+, see for example the book Specifying Sys-

tems [11] or the article of Merz [15], and we would be unable to better explain TLA+. There-

fore, instead of explaining TLA+ in details, we will only highlight its main features and give

a few examples that we hope will suffice for the reader to understand our discussion. Note

that the TLA+ examples are typeset with the TLA+ typesetter and do not follow the notation

introduced earlier.

We have used TLC within the TLA Toolbox, which offers a user-friendly Integrated Develop-

ment Environment for TLA+ specifications. The TLA Toolbox provides a graphical interface

to edit, check, and prove specifications correct and the TLC model checker is integrated in

the toolbox and allows fast and visual debugging of specifications. All the parameters of TLC

can be control with the GUI and the graphical trace explorer simplifies the analysis of er-

ror traces. All our TLA+ specification can be found in appendix A. TLA+ specifications can be

also be proved correct and mechanically checked in the TLA Toolbox with TLAPS [5]. However

TLAPS is still in development at the time of writing and we have preferred using Isabelle/HOL

for writing mechanically-checked proofs.

2.4.1 A Basic Example

TLA+ is a logic in which formulas denote sequences of states, called behaviors, in which each

state is a function mapping every possible variable name (i.e. a string) to a value. A specifica-

tion is just a formula.

16

2.4. TLA+

Consider the following specification Spec1, where x is a variable:

Next1
∆= x ′ = x +1

Init1
∆= x = 0

Spec1
∆= Init1∧2Next1

Given a state s , we say that s ["x"] is the valuation of the variable x in s . We say that s is

an initial state of Spec1 when s satisfies Init1. We say that
〈
s ,s ′

〉
is a step or transition of

Spec1 when the states s and s ′ satisfy Next1. Note that Init1 has no primed variable and that

the second conjunct of Spec1 is of the form �F , where � is the “always” operator of linear

temporal logic and F contains primed and unprimed versions of the variable x .

The formula Spec1 denotes the set of all behaviors where

• the valuation of x in the initial state is equal to 0, as described by Init1;

• for every step
〈
s ,s ′

〉
, s ′ ["x"] = s ["x"]+ 1 and all other variables change arbitrarily, as

described by Next1. For example we could have s ["z"] = 42 and s ′ ["z"] = "hello".

The formula Spec1 could specify a simple counter whose count is represented by the vari-

able x .

2.4.2 The Implementation Relation

Consider the following specification Spec2.

Init2
∆= x = 0∧y = TRUE

Next2
∆= ∧y ′ =¬y

∧ IF y THEN x ′ = x +1 ELSE x ′ = x

Spec2
∆= Init2∧2Next2

The formula Spec2 also specifies behaviors where x is repeatedly increased by one. How-

ever, between two increments of x , there is one step in which only y changes. Therefore, a

behavior satisfying Spec2 does not satisfy Spec1. This is a problem because Spec1 and Spec2

could be descriptions of the same system, but at different levels of abstraction. In this case

we would like to have a way of saying that Spec2 implement Spec1. As we have observed, one

cannot define implementation as inclusion of the set of behaviours.

To define implementation in terms of trace inclusion we need to allow the specification

Spec1 to “stutter”, i.e., take steps where x does not change while the other variables are up-

dated arbitrarily. Therefore, in TLA+, specifications must be of the form Init ∧� [Next]vars ,

17

Chapter 2. Specifying Distributed Systems

where Init constrains the initial state, vars = 〈v1, . . . ,vn〉 is the list of all the variables appear-

ing in the Init or Next formulas, and [Next]vars is defined as Next ∨ (
v ′

1 = v1 ∧·· ·∧v ′
n = vn

)
.

Now reconsider our two examples, written in the form Init ∧� [Next]vars :

Init1
∆= x = 0

Next1
∆= x ′ = x +1

Spec1
∆= Init1∧2[Next1]〈x 〉

Init2
∆= x = 0∧y = TRUE

Next2
∆= ∧y ′ =¬y

∧ IF y THEN x ′ = x +1 ELSE x ′ = x

Spec2
∆= Init2∧2[Next2]〈x ,y〉

In the new versions of Spec1 and Spec2, the behaviors satisfying Spec2 also satisfy Spec1.

In TLA+, we can write this fact as the implication Spec2 ⇒ Spec1. Thus we can equivalently

define the implementation relation as inclusion of behaviors, at the semantic level, or as

implication, in the logic.

2.4.3 Refinement Mappings

We can prove that the specification Spec2 implements the specification Spec1 as follows.

First, we prove that in all behaviors of Spec2, x is a natural number and y is a boolean. In

TLA+, we state those properties as follows:

Inv2
∆= x ∈ Nat ∧y ∈ Bool

THEOREM Spec2 ⇒2Inv2

The formula Inv2 is called an invariant of the specification Spec2. The proof of the theorem

is done by proving that the initial states of the specification satisfy the invariant and that if

the invariant holds and one step is taken then the invariant holds again. In TLA+, we state it

as follows, where priming a formula is like priming all its variables:

LEMMA Init2 ⇒ Inv2

LEMMA Inv2∧Next2 ⇒ Inv2′

Second, we prove that the initial states of Spec2 are initial states of Spec1 and that if the

invariant Inv2 holds of the first state of a step of Spec2, then this step is also a step of Spec1.

This is called an refinement proof. In TLA+, it is formalized as follows.

18

2.4. TLA+

THEOREM Init2 ⇒ Init1

THEOREM Inv2∧Next2 ⇒Next1

The two theorems above imply that Spec2 ⇒ Spec1.

2.4.4 Hiding Internal State

Observe that if we look only at the x variable, Spec2 and Spec1 behave the same. To make the

observation formal we can hide the y variable of Spec2, which we consider internal, using

temporal quantification.

The specification Spec2 becomes

Spec2
∆= ∃∃∃∃∃∃y : Init2∧2[Next2]〈x ,y〉

The meaning of Spec2 is the set of all behaviors b in which the valuation of y of each state

can be modified, obtaining b ′, in order for b ′ to satisfy Init2∧2[Next2]〈x ,y〉.

We now have Spec2 ⇒ Spec1, as before, but also Spec1 ⇒ Spec2, formalizing the fact that

Spec1 and Spec2 describe exactly the same behaviors when y is hidden. Without hiding y ,

Spec1 ⇒ Spec2 does not hold because y is unconstrained in Spec1.

2.4.5 Composing Specifications

Consider two specifications F1 and F2 of the form F1 = Init1∧2[Next1]vars1 and F2 =
Init2∧2[Next2]vars2, where vars1 is the set of all the variables appearing in F1 and vars2 is

the set of all the variables appearing in F2. The formula F1∧F2 describes behaviors which

satisfy both F1 and F2.

Suppose that vars1 and vars2 are disjoint. In this case the behaviors satisfying F1∧F2

are composed of four kinds of steps: steps satisfying Next1∧Next2, called joint steps, steps

satisfying Next1∧vars2′ = vars2, steps satisfying Next2∧vars1′ = vars1, and steps satisfying

vars1′ = vars1∧vars2′ = vars2. If vars1 and vars2 intersect, then every step modifying a vari-

able of vars1∩vars2 must be a joint step. The specification of two communicating systems

can therefore be obtained by conjoining two specifications that change common variables

representing the interface between the two specifications. Note that, in the resulting spec-

ification, the two communicating components may take joint steps even when they do not

communicate (when both only update variables not in vars1∩ vars2). In contrast, two I/O

automata in a composite I/O automaton take joint steps only when communicating.

This concludes our brief presentation of TLA+. We have not addressed many important

topics, like using history and prophecy variables in refinement proofs, proving temporal

properties, etc.. We refer the reader to the works of Lamport [11] and Merz [15].

19

Chapter 2. Specifying Distributed Systems

2.4.6 Expressing I/O Automata Specifications in TLA+

The TLC model checker allows to quickly debug specifications written in TLA+. Since we are

primarily working with I/O automata, we needed to translate I/O automata specifications to

TLA+ if we are to use the TLC model checker.

In this section we sketch a method for translating I/O automata specifications in TLA+.

We have not followed this method strictly when producing the TLA+ counterparts to the I/O

automata specification described in later sections, however the method exemplifies the basic

ideas.

We have mainly used TLC to check that an I/O automaton A implements a I/O automaton

B. To do so, we must specify both A and B in TLA+, as formulas noted �A� and �B�, making

sure that the transformation is sound, i.e., that �A� ⇒ �B�, in TLA+, implies that the I/O

automaton A implements the I/O automaton B . We assume that A and B have the same

external signature; otherwise we already know that A≤B does not hold.

For simplicity, we assume that the components of the I/O automata that we consider, i.e.,

actions, states, initial states, and transition relation are expressed using the constant opera-

tors of TLA+, i.e., in a subset of TLA+ that excludes all temporal operators. Hence we assume

�Sig (A)� = Sig (A),�Ext (
Sig (A)

)� = Ext
(
Sig (A)

)
, �Internals (

Sig (A)
)� = Internals

(
Sig (A)

)
,

�States (A)� = States (A), �Start (A)� = Start (A), and �δ (A)� = δ (A) are given.

The TLA+ specification �A� uses three variables sA, ext , and intA. The variable sA repre-

sents the state of A, the variable

ext ∈ [flag : BOOLEAN,act :
�
Ext

(
Sig (A)

)�
] (2.11)

is used to represent emitting an external action, and the variable

intA ∈ [flag : BOOLEAN,act :
�
Internals

(
Sig (A)

)�
] (2.12)

is used to represent emitting an internal action. Similarly, the specification �B� uses the vari-

ables sB , ext , and intB , where ext is shared with �A�.

We use the operator

Emit(A,a),

IF a ∈ �
Ext

(
Sig (A)

)�
THEN ext ′ = [flag 7→ ¬ext .flag ,act 7→ a]∧ int ′A = intA
ELSE int ′A = [flag 7→ ¬intA.flag ,act 7→ a]∧ext ′ = ext

(2.13)

to update the variables ext and intA, representing the I/O automaton A emitting the action

a. We use the flag to distinguish between stuttering and emitting the same action twice.

20

2.4. TLA+

Finally, we define

�A�,∧ sa ∈ �Start (A)�
∧2

[∃a ∈ Acts (A) :Emit (A,a)∧〈
sA,a ,s ′A

〉 ∈ �δ (A)�]〈sA,ext ,intA〉
(2.14)

and, similarly, we define

�B�,∧ sa ∈ �Start (B)�
∧2

[∃a ∈ Acts (B) :Emit (B ,a)∧〈
sB ,a ,s ′B

〉 ∈ �δ (B)�]〈sB ,ext ,intB 〉
(2.15)

The statement A ≤ B , in the theory of I/O automata, is equivalent to the following state-

ment in TLA+:

(∃∃∃∃∃∃sA, intA : �A�) ⇒ (∃∃∃∃∃∃sB , intB : �B�) (2.16)

Note how the state and internal actions of A and B are hidden, leaving only the variable ext ,

whose updates represent emitting external actions.

The transformation is simple but it is does not work well for I/O automata obtained as

the composition of other I/O automata: we would like to define �A×B� in terms of �A� and

�B�, for example as �A� ∧ �B�. This does not work because I/O automata take joint steps

only when emitting an action that is common to both I/O automatonand otherwise evolve

independently, whereas in �A�∧ �B� joint steps can occur even when no common action is

emitted.

We can prevent unwanted joint actions by conjoining to the specification formulas stat-

ing that joint steps must represent a common action. Therefore in �A� we separate the ext
variable in two variables common and extA and in �B� we separate the ext variable in two

variables common and extB .

The three new variables allow A or B to take a step unilaterally, which represents emitting

an internal action or an external action that is not common to both A and B, or to take a joint

step, which represent emitting an action common to A and B.

When translating A, separating the variable ext in the two variables common and extA re-

quires knowing that A will be composed with B. Therefore, we define the translation of the

transition relation of A in the context B, noted Next(A)B , as follows.

21

Chapter 2. Specifying Distributed Systems

The formula Next(A)B uses the variables extA, common , intA, and sA. Define

Emit(A,a),

IF a ∈ �Ext (A)�
THEN ∧ int ′A = intA

∧ IF a ∈ Ext (A)∩Ext (B)

THEN common ′ = [flag 7→ ¬common .flag ,act 7→ a]∧ext ′A = extA
ELSE ext ′A = [flag 7→ ¬extA.flag ,act 7→ a]∧common ′ = common

ELSE int ′A = [flag 7→ ¬intA.flag ,act 7→ a]∧UNCHANGED〈common ,extA〉.

(2.17)

The operator Emit (A,a) is used to update the variables extA, whose updates represent emit-

ting an external action that is not common to A and B, and the variable common , whose

updates represent emitting an external action common to A and B, and int , whose updates

represent emitting internal actions of A.

Finally, define

Next(A)B , ∃a ∈ Acts (A) :

∧Emit(A,a)

∧a ∉ Ext (B) ⇒ UNCHANGED〈sB , intB ,extB 〉
∧〈

sA,a ,s ′A
〉 ∈ �δ (A)�

(2.18)

Next(B)A, ∃a ∈ Acts (B) :

∧Emit(B ,a)

∧a ∉ Ext (A) ⇒ UNCHANGED〈sA, intA,extA〉
∧〈

sB ,a ,s ′B
〉 ∈ �δ (B)�

(2.19)

vars , 〈sA, intA,extA,sB , intB ,extB ,common〉 (2.20)

�A×B�,
∧ sA ∈ �Start (A)�∧ sB ∈ �Start (B)�
∧2

[
Next (A)B ∧Next (B)A

]
vars

(2.21)

Note that we made sure that A and B cannot take a joint step except when they emit a com-

mon action.

If one want to check that A×B ≤C , then the external variables of C needs to be split so as

to match extA, extB , and common .

Our method for translating composite I/O automata could be generalized to an arbitrary

sequence of I/O automata but, as for the case of A×B , the translation of each member of the

sequence would depend on the signature of the other members of the sequence.

22

2.5. Conclusion

2.5 Conclusion

In this chapter we have presented the theory of I/O automata and the TLA+ language.

We have seen that I/O automata can describe distributed systems concisely thanks to a

notion of composition which closely matches the behavior of distributed systems. Therefore

we use I/O automaton in our informal discussion throughout the thesis.

In appendix A, we also precisely specify our results in the TLA+ language. The TLA+ speci-

fications have been thoroughly model checked with the TLC model checker. The TLA+ spec-

ifications were obtained by translating our I/O automata specifications as described in sec-

tion 2.4.6.

23

Bibliography

[1] Rajeev Alur and Thomas A. Henzinger. “Reactive Modules”. In: Formal Methods in Sys-

tem Design 15.1 (1999), pp. 7–48. DOI: 10.1023/A:1008739929481.

[2] Ananda Basu et al. “Rigorous Component-Based System Design Using the BIP Frame-

work”. In: IEEE Software 28.3 (2011), pp. 41–48. DOI: 10.1109/MS.2011.27.

[3] Egon Börger and Robert F Stärk. Abstract state machines: a method for high-level system

design and analysis. Vol. 14. Springer Heidelberg, 2003.

[4] A. Cimatti et al. “NuSMV Version 2: An OpenSource Tool for Symbolic Model Check-

ing”. In: Proc. International Conference on Computer-Aided Verification (CAV 2002).

Vol. 2404. LNCS. Copenhagen, Denmark: Springer, 2002.

[5] Denis Cousineau et al. “TLA+ Proofs”. In: CoRR. LNCS abs/1208.5933 (2012). Ed. by

Dimitra Giannakopoulou and Dominique Méry, pp. 147–154. DOI: 10.1007/978-3-642-

32759-9_14.

[6] Stephen J. Garland and John V. Guttag. “LP: The Larch Prover”. In: CADE. Ed. by Ewing

L. Lusk and Ross A. Overbeek. Vol. 310. LNCS. Springer, 1988, pp. 748–749. DOI: 10 .

1007/BFb0012879.

[7] Chryssis Georgiou et al. “Automated implementation of complex distributed algorithms

specified in the IOA language”. In: STTT 11.2 (2009), pp. 153–171. DOI: 10.1007/s10009-

008-0097-7.

[8] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM 21.8 (1978),

pp. 666–677. DOI: 10.1145/359576.359585.

[9] Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual. Addison-

Wesley, 2004, pp. I–XII, 1–596. ISBN: 978-0-321-22862-8.

[10] IOA Language and Toolset (web page). https://groups.csail.mit.edu/tds/ioa/. Accessed:

2013-10-18. 2003.

[11] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley, 2002. ISBN: 0-3211-4306-X.

[12] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. ISBN: 1-55860-348-

4.

105

Bibliography

[13] Nancy A. Lynch and Mark R. Tuttle. “An introduction to input/output automata”. In:

CWI Quarterly 2 (1989), pp. 219–246.

[14] Nancy A. Lynch and Frits W. Vaandrager. “Forward and Backward Simulations: I. Un-

timed Systems”. In: Inf. Comput. 121.2 (1995), pp. 214–233. DOI: 10.1006/inco.1995.

1134.

[15] Stephan Merz. “The specification language TLA+”. In: Logics of specification languages.

Springer, 2008, pp. 401–451.

[16] Robin Milner. “Bigraphical Reactive Systems”. In: CONCUR. Ed. by Kim Guldstrand

Larsen and Mogens Nielsen. Vol. 2154. LNCS. Springer, 2001, pp. 16–35. DOI: 10.1007/

3-540-44685-0_2.

[17] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile Processes, I”.

In: Inf. Comput. 100.1 (1992), pp. 1–40.

[18] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile Processes, II”.

In: Inf. Comput. 100.1 (1992), pp. 41–77.

[19] Olaf Müller. “I/O Automata and Beyond: Temporal Logic and Abstraction in Isabelle”.

In: TPHOLs. 1998, pp. 331–348.

[20] Olaf Müller and Tobias Nipkow. “Combining Model Checking and Deduction for I/O-

Automata”. In: TACAS. Ed. by Ed Brinksma et al. Vol. 1019. LNCS. Springer, 1995, pp. 1–

16. DOI: 10.1007/3-540-60630-0_1.

[21] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof As-

sistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer,

2002. ISBN: 3-540-43376-7.

[22] C. A. Petri. “Fundamentals of a Theory of Asynchronous Information Flow”. In: IFIP

Congress. 1962, pp. 386–390.

[23] Toh Ne Win et al. “Using simulated execution in verifying distributed algorithms”. In:

STTT 6.1 (2004), pp. 67–76. DOI: 10.1007/s10009-003-0126-5.

[24] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. “Model Checking TLA+ Specifi-

cations”. In: CHARME. Ed. by Laurence Pierre and Thomas Kropf. Vol. 1703. LNCS.

Springer, 1999, pp. 54–66. DOI: 10.1007/3-540-48153-2_6.

106

