
Software Verification Tools Overview

Clément Beffa, Vincent Pazeller & Olivier Gobet
Swiss Federal Institute of Technology

{firstname.lastname}@epfl.ch

Abstract

Bugs are becoming a bigger concern nowadays as we
are seeing their huge cost. Academics are building numer-
ous tools to get rid of them with more or less success. In
this paper, we make an overview of bug finding tools and
focus deeper on those targeting Java code. We explain the
purpose of each of them and test automatic tools on a spe-
cially built Java test case in order to see their accuracy. Fi-
nally, we develop our vision of a theoretical meta-tool which
would be able to combine the best of them.

1. Introduction

Software Analysis and Verification is a growing open re-
search area, because software is becoming omnipresent and
bugs start to cost a fortune. As they were estimated to cost
the U.S. Economy $59.5 Billion Annually[1]. Software er-
rors can be as costly as the crash of the Ariane rocket in
1996 which was estimated to a loss of US$370 million[2]
or, even worst, it could involve human deaths.

Nowadays, many academics and open source projects
are building tools to get rid of as many bugs as possi-
ble. They are using many different techniques and each
tool serves different purposes. Our study tries to have an
overview of what is available and how it can serve us to
improve software quality.

2. Overview of Tools

There are many available tools on the internet. We
looked at 37 non-commercial and downloadable tools. A
list of them and their characteristics is available in the ap-
pendix. We found that there is huge disparity among them.
For example, some tools like ARMC are alpha versions,
coming from a publication concept, whereas tools like Find-
Bugs are stable versions, used by tens or hundreds of thou-
sands of people and are sponsored by big corporations like
Google and Sun Microsystems. Each tool tries to find some
set of bugs, but does not necessarily effectively found them

Figure 1. Languages repartition

as advertised. Bugs that can be detected are, for instance,
null-pointer dereferences, divisions by zero, inconsisten-
cies, deadlocks, memory leaks, security flaws or array out
of bounds. As the figure 1 shows, most tools try to focus on
popular languages like C,C++ and Java, but some other, like
armc or pale, apply to homemade languages, for the purpose
of proving validity of personal projects, thus making them
unusable on real project.

3. Details of Tools Supporting Java

3.1. Jahob

Jahob is a verification system that supports a subset of
Java. It is not designed to automatically analyze production
code but only to prove dynamically allocated data struc-
tures and arrays. Thus, it requires the Java code to be anno-
tated with pre-conditions, invariants and post-conditions as
shown in the code example below.

private static void
checkingWithdraw(int amount)

/*:
requires "amount > 0 &
checkingBalance >= amount"

modifies checkingBalance
ensures "checkingBalance =
old checkingBalance - amount"

*/
{

checkingBalance =
checkingBalance - amount;

}

There is no GUI and the CVC package is required. The
output is easy to read and allows unproved methods to be
pinpointed.

3.2. F-Rex

F-Rex is composed of two tools : Jreg and Jfree. Its
purpose is to provide compile-time memory management
by analyzing lifetime of objects and deallocation in order to
verify that program are memory safe. As we can see in the
example below, the output is very detailed thus making it
unpractical to analyze large project.

.method public static
main([Ljava/lang/String;)V

.limit stack 1

.limit locals 1
create_ru 1 ;o3062:[]:r2b |
new_in_r 1 A
astore_0
push_r 0
aload_0
; jreg added-> to attach
; attribute at call opcode

label1:
invokespecial A/<init>()V
aload_0
astore_0
push_r 1

...

3.3. Daikon

Daikon is a dynamic detector of likely invariants. It does
not detect bugs directly but helps to have a better under-
standing of the program which could help to find bugs. In
addition to support Java, it also supports C, C++ and Perl.
The most useful functionality of Daikon is that it allows to
automatically annotate programs with the found invariants,
which could be very helpful when checking bugs with tools
that require annotation like ESC/Java for example.

3.4. Purity Analysis Kit

The purity analysis kit allows to check for purity of Java
methods. Pure method is defined as method that does not
mutate any object that existed before the method was in-
voked (i.e. border effects). As shown in output sample,
every method is analyzed and labeled as PURE or not and

why. Such tools do not find bugs but they can help to un-
derstand the program and by knowing that a method is pure
it proves that this method do not interfere with other com-
putations.

void swapValRight(Value n)
NOT HEAP PURE
"this": mutation on this.(right|value)
"n": mutation on n.(value|right)

3.5. ESCJava2

ESC/Java2 is a static analyzer of the program code with
formal annotations. It consists of parsing, type and static
checking. It can be used directly on production code but
produces many warnings in this case, as it reasons about
each methods individually. Thus it is better to annotate pro-
grams to reduce the number of warning as shown below.

class A{
byte[] b;
//@ ensures b != null && b.length = 20;
public void n() { a = new byte[20]; }
public void m() { n();
b[0] = 2;

}
}

This tool is platform independent and has a GUI which
unfortunately is not that intuitive. The main issue is that
ESC/Java2 only supports Java 1.4 which restraints his us-
ability.

Figure 2. ESCJava2 GUI, colorful but not so
intuitive

2

3.6. Findbugs

Findbugs is a bug finder tool based on static analysis
of Java bytecode, looking for occurrences of bug patterns.
Thus, it only requires compiled class files to work but al-
lows to specify source files in order to see directly the re-
lated suspicious code. It has a command line interface and
a good graphical user interface (see figure 3) which groups
bugs by categories and allows to browse buggy source code.

Figure 3. FindBugs GUI, groups bug together
by categories

The bugs are divided into three categories:

• Correctness bug : Those which are probable bug

• Bad Practice: Those which violate recommended cod-
ing practice

• Dodgy: Those which are confusing and prone to errors

Findbugs tries to avoid false positive as much as possi-
ble, especially on correctness bugs. Findbugs is also very
flexible as it has a plug-in architecture which allows anyone
to add new bug detectors.

3.7. JLint

JLint is a full automated Java verification tool. It takes
Java bytecode (.class) as input and prints error/warning
messages accordingly. It discovers several bugs notably by
performing data flow analysis, like for instance Nullpointer
exceptions, arithmetic exceptions, array out of bounds or
deadlocks. It is also able to detect some bad programming
habits like variable shadowing, zero operands or weak com-
parisons. Unfortunately, JLint does not provide any GUI.
Nevertheless, its shell commands are user friendly, leading
in a comfortable usage.

3.8. PMD

PMD includes many detectors for bugs that depends on
programming syntax. PMD scans Java source code and
looks for potential problems like empty statements, unused
local variables or duplicated code. It offers the possibility
to suppress warnings for classes, methods or lines by anno-
tating the source code. The analysis is made using abstract
syntax tree built on the source code by a JavaCC generated
parser.

Figure 4. PMD GUI as Eclipse plugin

PMD could be used via command line or integrated into
IDEs like JDeveloper, Eclipse, JEdit, JBuilder or Emacs.
PMD is based on rulesets which are provided or could also
be home made. The creation of rulesets could be done
in two ways: either write a rule using Java or write an
XPath expression. The recommanded rulesets are unused-
code.xml, basic.xml, import.xml, favorites.xml.

Moreover, PMD’s Copy/Paste Detector is an additional
tool, used at command line or with a GUI, to find dupli-
cated code in languages such as Java, JSP, C, C++, and PHP.
There is also another GUI tool, PMD Rule Designer, that al-
lows to generate AST’s and to test out XPath expressions.

3.9. jCUTE

jCUTE for java (Concolic Unit Testing Engine) is a tool
designed to systematically and automatically test concur-
rent Java programs. The algorithm in CUTE uses a tech-
nique called concolic execution whose strategy is to explore
all distinct execution paths of a program with data inputs. It
allows random testing and smart fuzz testing in addition to
concolic testing.

It can automatically generate optimal JUnit test cases
for sequential Java programs and optimal number of test
inputs for path coverage, branch coverage, erroneous exe-
cution. About concurrent Java programs, jCute can catch
actual data-races and deadlocks without any false warning.

3

Moreover it can be used directly in the source code by writ-
ing assertions. jCUTE can either be executed at command
line or with a GUI.

Figure 5. jCUTE gui

As jCUTE actually runs the java program, it catches java
runtime exceptions in order to detect bugs. For instance,
it discovers infinite recursions by StackOverFlow, infinite
loops by OutOfMemory. However we found a special case,
when it tests while(true) statement, it loops infinitly with-
out giving any errors or throwing any exceptions. This is
due to the fact that neither the stack nor the memory are
used,thus, no exception is thrown.

A big drawback of jCUTE is that it does actually run
the potentially bugged code. Therefore, if a malicious bug
is writing on the hard drive (deleting or modifying files),
the bug we wanted to avoid is released by the verification
tool and can lead in the loss of data, potentially followed by
other injuries. As a result, jCute seams to be unsafe!

4. Experiment on test case

We tested automatic tools on a homemade test case con-
taining 32 bugs. There were different ways to achieve the
same bug type, like for example five kind of division by
zero. As shown in figure 6, tools do not found the same
bugs and do not always found all bugs in the same cate-
gory. We can see that jCUTE gets the best mark but it is
a bit unfair to compare to the others as it does found error
on runtime and not by static analysis. The dash in jCUTE
is for the while(true) loop as it does not find the bug but
the tool effectively loops for ever. The dash in ESC/Java2
means the bug could not be tested because ESC/Java2 sup-
ports only Java 1.4.

5. Theorical meta-tool

As it was mentioned in [3], creating a meta-tool that re-
groups automatic bug-finders is a good solution to provide

powerful bug detection. This is possible since each tool uses
different approaches and, therefore, detects different bugs.
Some studies have even showed that different tools using
similar approaches do not completely overlap each other.
The major problem with meta-tools is that they should not
blindly forward errors provided by underlying verification
tools. Otherwise, each incorporated tool will potentially
generate the warning for one original bug. This leads in
many duplicated errors, thus flooding the user with thou-
sands of errors. Such a system is clearly not usable.

In order to avoid repeating warnings, some groups pro-
pose to filter the output of underlying tools. Unfortunately,
this is far from trivial since each tool uses different con-
ventions and this leads in filtering inaccuracies. We pro-
pose here to standardize verification tools warnings. For in-
stance, before incorporating a specific tool to the meta-tool,
one should either modify its warnings system (when sources
are available) or write a wrapper. It would then be easier to
detect similar warnings among tools, thus allowing a more
accurate filtering. Moreover, this approach allows the meta-
tool to determine the category and the severity of a bug.
This could then enable an interesting feature: it would be
possible to the user to specify the kind and/or the severity
of researched bugs. This is very important to programmers
who tends to debug their program in a bottom-up1 fashion.
Ranking warnings also allows the design of new strategies,
as described below.

The idea is to organize the meta-tool in layers. In fact,
tools detect different kinds of bugs. For instance, PMD
concentrates on syntax patterns while JLint performs intra-
procedural data flow analysis. As mentioned before, de-
velopers usually begin to search syntax mistakes, continue
with intra-procedural bugs, then, inter-procedural bugs and
finally check for global-scope mistakes. Therefore, at first,
the meta-tool would run a selection of tools specialized in
syntax analysis. Note that those tools may not only provide
syntax analysis. In that case, since errors have been stan-
dardized (see above), the meta-tool should be able to mask
errors not related to the current layer. PMD seems to be a
good candidate to be part of the syntax layer since it focuses
on syntax patterns. Note that in order to get an efficient
meta-tool, more than one tool should be selected for each
layer. For the intra-procedural layer, JLint could be incor-
porated. Unfortunately, there are currently not many tools
providing inter-procedural and global-scope bugs detection.
Related problems seem to be harder to solve.

Another advantage of the meta-tool approach is its main-
tenance. As verification theory advances, new tools are de-
ployed and lots of work must be redone (to incorporate older
techniques). If the designers know that the new tool will be
incorporated in a meta-tool, older techniques do not need
to be re-implemented since they are likely included in tools

1From the most specific to the most general.

4

Type DIV 0 Null ptr Bounds Inf L Inf R
Bug 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3
JLint x x x x x x x x x x
jCUTE x x x x x x x x x x x x x x - x x x x x x
ESC / Java 2 x x x x x x x x x x x x
FindBugs x x x x x x
PMD
Type Type Ov Cast String Cmp Stream Close Store Deadlock Score
Bug 1 2 1 1 2 1 2 1 1 2
JLint 10 / 31
jCUTE x x 23 / 31
Esc / Java 2 - - x - - - - x 14 / 31
FindBugs x x 8 / 31
PMD 0 / 31

Figure 6. Experiment results

already available in the meta-tool.
Finally a GUI seems to provide an efficient usage. A

GUI has the advantage of providing a general view of
the tested program by regrouping bugs in categories and
proposing links from bugs to source code. With a GUI it
is also more practical to customize the soft via options.

6. Conclusion

During our study, we have found that many different
tools exist, used in different contexts, for different kinds of
bugs. Each of them is designed and have to be used i its own
way, there does not exist a standard or a main one. After
scratching a bit deeper, we found that most bug-finders are
unsound. By example finding null pointers could be really
easy when it is limited to a function scope, indeed an intra-
procedural analysis is sufficient, but when it is due to side
effects it will require an inter-procedural analysis which is
much more complex and not usual in bug finding tools.

By the serial of tests that we elaborated, we also noticed
that the creation of bugs is not as simple as we could think.
Writing pertinent bugs could be somehow harder than doing
a bug-free code. Moreover, installing and using bug finding
tools on our test case is not as intuitive as it should be.

By our own analysis we confirm what was concluded
in [3]. That is, a meta-tool which regroups different bug-
finders is a more secure and complete way to detect bugs.
Therefore we defined how it could be possible to implement
such a meta-tool without entombing the user under a huge
heap of warnings and errors.

As we saw in the tools list, many more tools would be
interesting to test deeper. Focusing on the C++ bug tools
would be challenging or to look at new upcoming tools like
Chord. Software analysis and verification research are still
going strong and bugs are probably not on an extinction

way.

References

[1] Software Errors Cost, http://www.nist.gov/
public_affairs/releases/n02-10.htm

[2] Ariane 5 Flight 501, http://en.wikipedia.
org/wiki/Ariane_5_Flight_501

[3] Nick Rutar, Christian B. Almazan, and Jeffrey S. Fos-
ter. A Comparison of Bug Finding Tools for Java 15th
IEEE International Symposium on Software Reliabil-
ity Engineering (ISSRE’04), pages 245-256, 2004.

5

Nom version last version
date languages os dependency requirement type of bugs description / remarque

Jahob system preview 04 / 08 / 2007 subset of Java Linux, Mac,
Win Ocaml, CVC3 annotated code in Isabelle

syntax
- high-level data structure
consistency

- static analysis and verification system for modular analysis of imperative
computer

FindBugs 1.2.1 04 / 25 / 2007 Java Linux, Mac,
Win Java 1.4.0 or above at least 512 MB of memory

- Correctness bug
- Bad Practice
- Dodgy

- static analysis to look for bugs in Java code

PMD 3.9 12 / 19 / 2006 Java Linux, Mac,
Win Java java source code

-Possible bugs
-Dead code
-Suboptimal code
-Overcomplicated expressions
-Duplicate code

- PMD scans Java source code and looks for potential problems

F-Rex 1.1.0 04 / 15 / 2007 Java Linux, Mac,
Win

Java, Soot, Kaffe,
JikesRVM - - memory management - explicit free and region support for Java

Purity Analysis Kit 0.09 07 / 31 / 2006 Java (.class) Linux JDK 1.5 ??? - detects pure methods à la JML - pointer and purity analysis tool for Java programs

ESC/Java2 2.0b0 - / 10 / 2006 Java Any Java Java JML-annotated
program - common run-time errors - static analyzer

Daikon 4.2.16 01 / 05 / 2007 C, C++, Java,
Perl, IOA Any Java 5.0 or above,

JVM ??? - invariant detector
- easy to extend to other applications (e.g., an interface exists to the Java
PathFinder model checker)
- front end for Java (Chicory), for C/C++(Kvasir, mangel-wurzel)

CUTE 1.0.1 29 / 06 / 2006 C, Java Linux, Win
Java 1.4 or above,
bash shell (optional)
optional: Win: Cygwin

??? - concolic execution

- CUTE (a Concolic Unit Testing Engine for C and Java) is a tool to
systematically and automatically test sequential C programs (including
pointers) and concurrent Java programs.
- Automatic testing of C and Java programs, there is no need to write test
cases, test cases are generated by dynamic analysis of source code.

Jlint 3.0 21 / 06 / 2004 Java Linux, Win Java ???
- bugs
- inconsistencies
- synchronization problems

- check your Java code and find bugs, inconsistencies and synchronization
problems by doing data flow analysis and building the lock graph.

KeY 1.0.0 - / 04 / 2007 Java Card Linux, Solaris,
Win JDK1.4.1 ocl/uml, jml - invariants unconsistency - static analyzer

Comfort 2.0 02 / 01 / 2006
Construction and
Composition
Language (CCL)

Any Copper CCL

Assertion-based:
- Counterexample-Guided
Abstraction
- State/Event-based Software Model
Checking
- SAT-based Predicate Abstraction
- Automated Assume-Guarantee
Reasoning
- Compositional Deadlock Detection
- Software Certification
- Component Substitutability

- the Component Formal Reasoning Technology (ComFoRT) is a reasoning
framework for predicting whether a system will satisfy its safety, reliability,
and security requirements. In ComFoRT, these requirements are encoded
as behavioral assertions that are verified automatically.

Berkeley Lazy Astraction
Software Verification Tool 2.0 - / 12 / 2005 C Linux, Win

Ocaml, cygwin,
Symplify Theorem
Prover

annotated preprocessed C
code - safety - safety assertion check of C programs

ARMC 1.0 ? 04 / 12 / 2007 armc Linux / ??? - verification of reachability
- termination properties - it is a tool for the verification of reachability and termination properties

Hob system 0.1.0 12 / 09 / 2005 homemade Linux Ocaml
write code for abstraction,
implementation and
specification

- data structure consistency - verify sophisticated properties of programs that manipulate complex,
heterogenous data structures

Leak contradictor 1.0 - / 11 / 2006 C Any Java 1.5, Apache Ant,
Crystal Framework C preprocessed code - memory leaks - memory leak detection tool for C programs

TVLA 2(alpha) - / 08 / 2004 tvp Any Java 1.4.2, Graphviz tvp file - data Structures - properties checker of heap allocated data

PALE 1.0-9 03 / 08 / 2007 pale Linux, Win MONA annotated program

- null-pointer dereferences
- memory leaks
- violations of assertions
- graph type errors

- expressing assertions about the heap structure of imperative languages

UCLID 1.0 06 / 02 / 2003 ucl Linux ??? writing model

- model checking
- correspondence checking
- deductive verification
- predicate abstraction-based
verification

- verification tool for Infinite-State Systems

Spec# 1.0.7301 - / 05 / 2007 spec# Win - spec# program - invariants unconsistency - static verifier

KIV ??? 06 / 04 / 1996 - Any - making your own code ?!?! - formal specification and
verification

- The KIV system, as a tool for interactive proof engineering, has turned out
to be very successful in verification tasks which cannot be tackled fully
automatically.

Spin 4.2 01 / 05 / 2007 C Any
gcc, Tcl/Tk Wish
optional: Yacc, Dot,
JSpin, Ltl2Ba

???
- search algorithm
- verification option
- complete language

- in April 2002 the tool was awarded the prestigious System Software Award
for 2001 by the ACM.

CBMB 2.5 - / 08 / 2006 ANSI-C Linux, Win Win: CL C
- bounds checking
- dynamic memory allocation
- ...

- uses Bounded Module Checking

MAGIC 1.0 05 / 06 / 2004 C Linux, Win Win: Cygwin FSP notation to specify
state machines

- verify that an implementation
conforms to its specification

- implementations could be concurrent
- command line base tool

Saturn 1.0 - / - / 2004 C Linux - - - SAT-based

- the goal of the Saturn project is to statically and automatically verify
properties of large (meaning multi-million line) software systems.
- the release includes a sound alias analysis and an unsound (bug-finding)
null dereference analysis for C programs

CAsCaDE 1.0 ? - / 01 / 2006 C Linux CVC Lite, EDG
control file specifies the
assertion(s) to be checked
(XML format)

???
- tool to check assertions in C programs as part of multi-stage verification
strategy
- it takes as input a C program and a control file

SatAbs 1.8 - / - / 2005 ANSI-C Linux, Win

Win: CL (comes with
Microsoft Visual
Studio) or Visual C++
Express
Linux: gcc/g++

Model Checker for
SATABS (recommend
either Cadence SMV or
BOPPO)

- verifying array bounds (buffer
overflows)
- pointer safety
- exceptions
- user-specified assertions

- it allows verifying array bounds (buffer overflows), pointer safety,
exceptions and user-specified assertions
- furthermore, it can check ANSI-C for consistency with other languages,
such as Verilog. SATABS computes an abstraction of the program in order
to handle large amounts of code.
- eclipse plugin

ObjectCheck ??? - / 05 / 2006 code OO via
xUML ???

xUML
COSPAN
OOA

construct xUML schema - verification of liveness and safety
specification of xUML system

- the key approach of the project is to couple design techniques with system
verification. The design techniques propose software systems as executable
object-oriented models specified using high-level design description
languages (e.g., UML statecharts, etc.). Verification is conducted by direct
application of model checking-based analysis to program designs.
- PROGRAM NOT FOUND

B-toolkit 5.7 - / 02 / 2002 Win - -
- it provides full support the B-Method, is a mature, integrated suite of tools,
built partly on the B-Tool interpreter, and covering many aspects of software
engineering

Code Surfer 2.0 - / - / 2007 C, C++ Linux, Solaris,
Sparc, Win Code Sonar -

- null-pointer dereference
- divide-by-zero
- resource leak
- buffer overflow
- and many others

- code analysis tool

Why 2.0.3 - / 04 / 2007 - Linux, Win -

annoted
programs(imperative
language), OCaml-like
syntax

-
- verification conditions generator.generates proof obligations for many
systems: the proof assistants Coq, PVS, Isabelle/HOL, HOL 4, HOL Light,
Mizar

Calysto 1.7 - / 05 / 2007 - Linux, Mac - - ??? - bug hunting companion rather than a formal verification tool

Flawfinder 1.27 17 / 01 / 2007 C, C++ Linux Python ??? - security flaws - program that examines source code and reports possible security
weaknesses (``flaws'') sorted by risk level.

Splint 3.1.1 30 / 10 / 2003 C Linux ??? - security vulnerabilities
- coding mistakes

- tool for statically checking C programs for security vulnerabilities and
coding mistakes

RATS 2.1 24 / 09 / 2002 C, C++, Perl,
PHP and Python Linux, Win Expat ???

- buffer overflows
- TOCTOU (Time Of Check, Time
Of Use) race conditions

- RATS scanning tool provides a security analyst with a list of potential
trouble spots on which to focus, along with describing the problem, and
potentially suggest remedies

FxCop 1.35 06 / 23 / 2006 .NET Win .NET 2.0 ???

- Defects in Library design
- Localization
- Naming conventions
- Performance
- Security

- code analysis tool that checks .NET managed code assemblies for
conformance to the Microsoft .NET Framework Design Guidelines.

BOON 1.0 03 / 07 / 2002 C Linux ??? - buffer overrun - automatically finding buffer overrun vulnerabilities in C source code

C Code Analyzer - CCA 0.8 30 / 04 / 2005 C Linux Ocaml, Perl ???

- memory leak detection
- multiple/dangling free detection
- array out of bound accesses
- potential bufferoverflow detection

- static analysis tool for detecting potential security problems in C source
code.

testcase.java 2007-06-26

/* Bugs Test Case */
import java.io.FileInputStream;

class A{}

class TestSuite{

public static void main(String[] args){

div0_1();
div0_2();
div0_3();
div0_4();
div0_5(0);

nullPtr1();
nullPtr2();
nullPtr3();
nullPtr4(null);

outOfBounds1();
outOfBounds2();
outOfBounds3();
outOfBounds4();
int[] array = {};
outOfBounds5(array);

infiniteLoop1();
infiniteLoop2();
infiniteLoop3();
infiniteLoop4();

infiniteRecursion1();
infiniteRecursion2(2);
infiniteRecursion3();

typeOverFlow1();
typeOverFlow2();

InvalidCast1();

BadStringCmp1();
BadStringCmp2();

BadStreamClose1();
BadStreamClose2();

DeadLock1.startThread();
DeadLock2.startThread();

}

/***********
 ****BUGS****
 ************/

private static void div0_1(){
int x = 0;
int y = 3/x;

}

private static void div0_2(){
int x = 1;
int y = x - x;
int z = 3/y;

}

private static void div0_3(){
String[] array = {};
int x = 2/array.length;

Page 1

testcase.java 2007-06-26

}

private static void div0_4(){
String s = "";
int x = 2/s.length();

}

private static void div0_5(int x){
int y = 2/x;

}

private static void nullPtr1(){
String[] s = null;
System.out.println(s.length);

}

private static void nullPtr2(){
String s = null;
System.out.println(s.length());

}

private static void nullPtr3(){
String[] strs = {"test", null};
System.out.println(strs[1].length());

}

private static void nullPtr4(String s){
System.out.println(s.length());

}

private static void outOfBounds1(){
int[] array = {};
int y = array[0];

}

private static void outOfBounds2(){
int[] array = {1,2};
int[] ids = {-1};
int y = array[ids[0]];

}

private static void outOfBounds3(){
int[] array = {1,2};
int x = 0;
int y = array[x - 1];

}

private static void outOfBounds4(){
int[] array = {1,2};
int y = array[array.length];

}

private static void outOfBounds5(int[] array){
int y = array[array.length-1];

}

private static void infiniteLoop1(){
while(true){}

}

private static void infiniteLoop2(){
for(int i = 0 ; i < 1 ; i--){}

}

private static void infiniteLoop3(){
int x = 1;
for(int i = 0 ; i < x ; i++){

x++;
}

}

Page 2

testcase.java 2007-06-26

private static void infiniteLoop4(){
int x = 2;
for(int i = 0 ; i < x ;){}

}

private static void infiniteRecursion1(){
infiniteRecursion1();

}

private static void infiniteRecursion2(int x){
if(x > 0){

infiniteRecursion2(x + 1);
}
else{

System.out.println(x);
}

}

private static void infiniteRecursion3(){
infiniteRecursion3b();

}

private static void infiniteRecursion3b(){
infiniteRecursion3();

}

private static void typeOverFlow1(){
int x = Integer.MAX_VALUE;
x++;

}

private static void typeOverFlow2(){
int x = Integer.MAX_VALUE;
int y = x + 1;

}

private static void InvalidCast1(){
Object o = new Object();
String s = (String)o;

}

private static void BadStringCmp1(){
int x = 0;
if("test1" == "test2"){

x = 1;
}
else{

x = 2;
}

}

private static void BadStringCmp2(){
int x = 0;
String s1 = new String("test1");

if(s1 == "test2"){
x = 1;

}
else{

x = 2;
}

}

private static void BadStreamClose1(){
try {

FileInputStream x = new FileInputStream("z");
x.close();

}
catch(Exception e){}

}

Page 3

testcase.java 2007-06-26

private static void BadStreamClose2(){

FileInputStream x;

try{
x = new FileInputStream("z");

}catch(Exception e){}
if(2 > 3){

try{
x.close();

}catch(Exception e){}
}

}

private static void arrayStoreException1(){
Object x[] = new String[3];
x[0] = new Integer(0);

}

}

class DeadLock1{

private static Object lock = new Object();
private static Thread th1 = new Thread(){public void run(){f1(1);}};
private static Thread th2 = new Thread(){public void run(){f2(2);}};

public static void startThread(){
th1.start();
th2.start();

}

private static void f1(int num){
synchronized (lock) {

try {Thread.yield();} catch (Exception e) {}
f2(num);

}
}

private static synchronized void f2(int num){
synchronized (lock) {f1(num);}

}
}

class DeadLock2{
private static Object lock1 = new Object();
private static Object lock2 = new Object();
private static Thread th1 = new Thread(){public void run(){f1();}};
private static Thread th2 = new Thread(){public void run(){f2();}};

public static void startThread(){
th1.start();
th2.start();

}

private static void f1(){
synchronized (lock1) {

try {Thread.yield();} catch (Exception e) {}
synchronized (lock2) {f2();}

}
}
private static synchronized void f2(){

synchronized (lock2) {
synchronized (lock1) {f1();}

}
}

}

Page 4

	sav.pdf
	list.pdf
	testcasecode.pdf

