
Exercises 1 - Solutions

1 PL validity

For each of the following propositional logic formulae determine whether it is valid or not. If it is
valid prove it, otherwise give a counterexample. Note that A→ B → C is parsed as A→ (B → C).

(i) (P ∧Q)→ P → Q

(ii) (P → Q) ∨ (P ∧ ¬Q)

(iii) (P → Q→ R)→ P → R

(iv) (P → Q ∨R)→ P → R

(v) ¬(P ∨Q)→ R→ ¬R→ Q

Solution: We can construct a truth table that lists all possible assignments of values of
propositional variables. For n variables a truth table has 2n rows. We can evaluate the formula for
variable assignment and check whether it is true or false. If the result is true for every assignment,
then the formula is valid. Otherwise, there is an assignment where the formula evaluates to false.
This is the counterexample. We obtain the following results:

(i) valid

(ii) valid

(iii) counterexample: P = >, Q = ⊥, R = ⊥

(iv) counterexample: P = >, Q = >, R = ⊥

(v) valid

2 FOL validity

For each of the following predicate logic formulae determine whether it is valid or not. If it is valid
prove it, otherwise give a counterexample.

(i) (∀x, y.p(x, y)→ p(y, x))→ ∀z.p(z, z)

(ii) ∀x, y.p(x, y)→ p(y, x)→ ∀z.p(z, z)

(iii) (∃x.p(x))→ ∀y.p(y)

(iv) (∀x.p(x))→ ∃y.p(y)

(v) ∃x, y.(p(x, y)→ (p(y, x)→ ∀z.p(z, z)))

1

Solution: A FOL formula is valid if it is true for all possible interpretations of function and
predicate symbols. To show that a formula is not valid, we typically find an interpretation where
the formula does not hold. To show that a formula is valid, we need to consider an arbitrary
interpretation of function and predicate symbols and show that in such arbitrary interpretation it
is true. We can do that using any sound mathematical reasoning, for example in set theory, or
using a proof system which we have agreed that contains valid reasoning steps.

(i) Not valid. Counterexample: D = Z, p = {(x, y)|x 6= y}

(ii) Not valid. Counterexample: D = {a, b}, p = {(a, b), (b, a)}

(iii) Not valid. Counterexample: D = {a, b}, p = {a}

(iv) Valid. Note that this property holds because we consider only interpretations with a non-
empty domain of quantifiers.

(v) Valid. To show this, consider an arbitrary interpretation of the binary predicate symbol p, in
some domain of elements D. We need to show that there exist two elements to interpret x and
y such that the nested implication holds. Note that the conclusion is of the form ∀z.p(z, z).
This is a property of the structure that we have chosen (saying that p is interpreted as a
reflexive relation). This property either holds or not.

a) Suppose first that the property holds (p is reflexive). Then the nested implication will
be true by setting x and y to be arbitrary elements. This is always possible, because D
is non-empty.

b) Suppose now that the property does not hold. That means that there exists an
element a such that ¬p(a, a). We interpret x and y to be a. This makes the assumption
of the implication false, so the formula holds.

3 FOL Normal forms

Put the following formulae into prenex normal form:

(i) (∀x.∃y.p(x, y))→ ∀x.p(x, x)

(ii) ∃z.(∀x.∃y.p(x, y))→ ∀x.p(x, z)

(iii) ∀w.¬(∃x, y.∀z.p(x, z)→ q(y, z)) ∧ ∃z.p(w, z)

Solution:

(i) ∃x.∀y.∀z.¬p(x, y) ∨ p(z, z)

(ii) ∃z, x.∀y, w.¬p(x, y) ∨ p(w, z)

(iii) ∀w, x, y.∃z, v.p(x, z) ∧ ¬q(y, z) ∧ p(w, v)

2

4 Redundant logical connectives

a) Given >,∧ and ¬, prove that ⊥,∨,→ and ↔ are redundant logical connectives. That is,
show that each of ⊥, F1 ∨F2, F1 → F2 and F1 ↔ F2 is equivalent to a formula that uses only
F1, F2,>,∧ and ¬.

b) Now extend propositional formulas with a NAND operator, denoted Z and defined by

x Z y = ¬(x ∧ y)

Show that for each propositional formula F there exists an equivalent formula that uses Z as
the only operator.

Solution a):

⊥: ¬>

F1 ∨ F2: ¬(¬F1 ∧ ¬F2)

F1 → F2: ¬(F1 ∧ ¬F2)

F1 ↔ F2: ¬
(
¬(¬F1 ∧ ¬F2) ∧ ¬(F2 ∧ F1)

)
Solution b)

⊥: >∧̄>

¬F1: >∧̄F1

F1∧: >∧̄(F1∧̄F2)

F1 ∨ F2: (>∧̄F1)∧̄(>∧̄F2)

F1 → F2: F1∧̄(>∧̄F2)

F1 ↔ F2:
(

(>∧̄F1)∧̄(>∧̄F2)
)
∧̄(F2∧̄F1)

5 Complexity of normal forms

a) We define the size of a formula as the number of nodes in its syntax tree. For example,
size(P ∧ ¬R) = 4, where P and R are propositional variables.

Now consider propositional formulas containing only ∧,∨,→,¬ and the recursive definition
of NNF for propositional logic.

Find an integer constant K such that, for every such formula G we have:

size(NNF (G)) ≤ K · size(G)

Once you guess the value K, prove that the above inequation holds for this K, using mathe-
matical induction.

3

b) Prove that there is no polynomial-time algorithm for transforming a propositional formula
into an equivalent formula in conjunctive normal form. You do not need to use any deep
results of complexity theory.

Specifically, prove that there exists an infinite family of formulas F1, F2, . . . such that for each
n, every algorithm that transforms Fn into an equivalent CNF formula with the same set of
variables needs exponential time. (Note that it is not enough to prove that one particular
algorithm will take exponential time, you need to prove that every algorithm would need
exponential time.)

Solution a):
We will prove that K = 2, i.e. size(NNF (G)) ≤ 2 · size(G). For the base cases >,⊥,¬>,¬⊥ the
inequality clearly holds, as the size is actually getting smaller. Now assume that F1 and F2 have
size <= n and that the inductive hypothesis holds. We will now show that it holds for expressions
of size > n.

¬¬F1 ↔ F1: satisfies inequality as the sizes decreases

¬F1 ↔ ¬F1:

size(NNF (G)) = size(NNF (F1)) + 1

≤ 2 ∗ size(F1) + 1

≤ 2 ∗ size(G) = 2 ∗ (size(F1) + 1)

¬(F1 ∧ F2)↔ ¬F1 ∨ ¬F2:

size(NNF (G)) = size(NNF (F1)) + size(NNF (F2)) + 3

≤ 2 ∗ size(F1) + 2 ∗ size(F2) + 3

≤ 2 ∗ size(F1) + 2 ∗ size(F2) + 4 = 2 ∗ size(G)

¬(F1 ∨ F2)↔ ¬F1 ∧ ¬F2: analogous to previous case

F1 → F2 ↔ ¬F1 ∨ F2

size(NNF (G)) = size(NNF (F1)) + size(NNF (F2)) + 2

≤ 2 ∗ size(F1) + 2 ∗ size(F2) + 2

≤ 2 ∗ size(G)

F1 ∧ F2 ↔ F1 ∧ F2

size(NNF (G)) = size(NNF (F1)) + size(NNF (F2)) + 1

≤ 2 ∗ size(F1) + 2 ∗ size(F2) + 1

≤ 2 ∗ size(G)

F1 ∨ F2 ↔ F1 ∨ F2: analogous to previous case

Solution b)
Consider formulae in disjunctive normal form with 2 atoms per conjunction, i.e.

(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn)

4

Note that the size of the formula is linear in n, i.e. the formula has n conjuncts.
If we take a concrete algorithm, we can obtain a particular conjunctive normal form, which is

of the size exponential in n. However, what we need to show is that no matter how clever CNF
we choose, it will need to be exponential, because it is in CNF, and is equivalent to the original
formula. Therefore, fix n, denote the original formula by F . Consider the set of all CNF formulas
equivalent to F , and take one of those that have minimum length, that is, there does not exists a
shorter one in terms of the number of symbols. Denote it by F ′. Note that F is true precisely in
those assignments for which there exists i with 1 ≤ i ≤ n such that both ai and bi are true, so this
property must hold for F ′ as well.

F ′ is of the form C1∧ . . .∧Cm where each Cj is a disjunction of literals, i.e. either propositional
variables or their negations. Due to associativity, commutativity, and idempotence (A ∨ A is
equivalent to A) of disjunction, we consider clauses to be sets of literals: duplicate literals can
be eliminated, reducing the size of the formula, which would contradict its minimality. Moreover,
p∨¬p is always true, so a clause Cj containing it can be eliminated, reducing the size of the CNF,
and F ′ would again not be minimal. Therefore, each Ci in F ′, for each propositional variable p,
contains at most one of p or ¬p.

Consider the space S all functions f : {1, . . . , n} → {A,B} where {A,B} is just a two-element
set. S contains precisely 2n elements. For each such function consider the clause, viewed as a set
of positive literals:

C(f) = {ai | f(i) = A} ∪ {bi | f(i) = B}

Define also C̄(f) = C(f)∪{¬p | p /∈ C(f)}. Note that C̄(f) contains p or ¬p for each propositional
variable p. Note also that for f, f ′ ∈ S we have

C(f) ⊆ C̄(f ′) → f = f ′ (∗)

The next lemma follows from the fact that F ′ cannot be too strong.
Lemma 1: for each Cj , there exists fj ∈ S such that C(fj) ⊆ Cj , that is, for each i where

1 ≤ i ≤ n, Cj contains ai or bi. Proof. Fix Cj and i suppose that, on the contrary, Cj contains
neither ai nor bi. Consider the assignment where ai and bi are true, and all other propositional
variables are assigned to be opposite of the way they occur in Cj . Then Cj is false in this assignment,
so F ′ is false, contradicting equivalence with F .

Now we derive consequences from the fact that F ′ cannot be too weak:

∀f ∈ S.∃Cj . Cj ⊆ C̄(f)

To show this by contradiction, suppose that for some f0 ∈ S no clause Cj is contained in C̄(f0),
that is ∧

0≤j≤m
Cj \ C̄(f0) 6= ∅

Define a propositional assignment

(α(p) = true) ⇐⇒ (p /∈ C(f0))

Then for each 1 ≤ i ≤ n exactly one of the two cases holds:

1. f0(i) = A, ai ∈ C(f0), ¬ai /∈ C̄(f0), bi /∈ C(f0), ¬bi ∈ C̄(f0), α(ai) = false, α(bi) = true

2. f0(i) = B, ai /∈ C(f0), ¬ai ∈ C̄(f0), bi ∈ C(f0), ¬bi /∈ C̄(f0), α(ai) = true, α(bi) = false

5

F is false for α, because for each i either ai or bi is false. We claim that F ′ is true in α by
showing that each Cj is true. Take any Cj . By Lemma 1, C(fj) ⊆ Cj . If fj 6= f0 then for some k
we have fj(k) 6= f0(k), so C(fj) is true in α, which implies that Cj is also true. Now consider the
case

C(f0) ⊆ Cj (C̄(f0)

Let the literal l ∈ Cj be such that l /∈ C̄(f0), so also l /∈ C(f0). We show α(l) = true. If l is a
positive literal p then α(p) = true by the definition of α. Let l be ¬ai, so ¬ai /∈ C̄(f0). Therefore
the case 1 above applies and α(ai) = false, which means that α(l) = true. Analogously, if l is ¬bi
then from ¬bi /∈ C̄(f0) case 2 above applies so again α(l) = true.

By contradiction we have shown that for each f ∈ S, there exists Cj such that Cj ⊆ C̄(f). This
establishes a map from an exponentially larger set S into the set of clauses Cj of the formula F ′.
We next argue that this map is, in fact, injective, so there are at least |S| clauses in F ′. Suppose
that for f, f ′ ∈ S. Then

Cj ⊆ C̄(f) ∧ Cj ⊆ C̄(f ′)

Then both C(fj) ⊆ C̄(f) and C(fj) ⊆ C̄(f ′), so by (∗) we have f ′ = f , proving injectivity. Thus,
F ′ has exponentially many clauses, completing the proof.

6 Relations

Prove the following or give a counterexample.

(i) (r ∪ s) ◦ t = (r ◦ t) ∪ (s ◦ t)

(ii) (r ∩ s) ◦ t = (r ◦ t) ∩ (s ◦ t)

(iii) (r1 ◦ r2)−1 = (r−12 ◦ r
−1
1)

(iv) S • r = ran(4S ◦ r)

(v) If r1 ⊆ r′1 then r1 ◦ r2 ⊆ r′1 ◦ r2 and r2 ◦ r1 ⊆ r2 ◦ r′1.

(vi) If r1 ⊆ r′1 then r1 ∪ r2 ⊆ r′1 ∪ r2 and r2 ∪ r1 ⊆ r2 ∪ r′1.

Solution:

(i)

(r ∪ s) ◦ t ⇔ {(x, z)|∃y.((x, y) ∈ r ∨ (x, y) ∈ s) ∧ (y, z) ∈ t} (1)

⇔ {(x, z)|(∃y.(x, y) ∈ r ∧ (y, z) ∈ t) ∨ (∃y.(x, y) ∈ s ∧ (y, z) ∈ t)} (2)

⇔ (r ◦ t) ∪ (s ◦ t) (3)

(ii) This is not true, one possible counterexample is:
r = {(a, b), (b, c), (c, d)} s = {(b, c), (a, a), (a, d)} and t = {(d, d), (b, c), (c, b), (a, c)}

(iii)

(r1 ◦ r2)−1 ⇔ {(x, z)|∃y.(x, y) ∈ r1 ∧ (y, z) ∈ r2}−1 (4)

⇔ {(z, x)|(∃y.(x, y) ∈ r1 ∧ (y, z) ∈ r2} (5)

⇔ {(z, x)|(∃y.(y, x) ∈ r−11 ∧ (z, y) ∈ r−12 } (6)

⇔ r−12 ◦ r
−1
1 (7)

6

(iv)

e ∈ ran(4S ◦ r) (8)

⇔ e ∈ ran({(p, q)|∃w.(p, w) ∈ 4S ∧ (w, q) ∈ r} (9)

⇔ e ∈ {q|∃p.∃w.(p, w) ∈ 4S ∧ (w, q) ∈ r} (10)

⇔ e ∈ {q|∃p.p ∈ S ∧ (p, q) ∈ r} (11)

⇔ ∃p.p ∈ S ∧ (p, e) ∈ r (12)

Now, e ∈ S • r ⇔ ∃p.p ∈ S ∧ (p, e) ∈ r, so the two expressions are equivalent, which
proves set equality.

(v)

(x, y) ∈ r1 ◦ r2 ↔ ∃w.(x,w) ∈ r1 ∧ (w, y) ∈ r2 (13)

→ ∃w.(x,w) ∈ r′1 ∧ (w, y) ∈ r2 (14)

↔ (x, y) ∈ r′1 ◦ r2 (15)

The other statement is analogous.

(vi)

(x, y) ∈ r1 ∪ r2 ↔ (x, y) ∈ r1 ∨ (x, y) ∈ r2 (16)

→ (x, y) ∈ r′1 ∨ (x, y) ∈ r2 (17)

↔ (x, y) ∈ r′1 ∪ r2 (18)

7 Composition of partial functions

Given two partial functions r1 and r2, show that r = r1 ◦ r2 is also a partial function.
Solution:

Suppose r1 and r2 are partial functions. Hence, ∀x, y, z.(x, y) ∈ r1 ∧ (x, z) ∈ r1 → y = z and
similarly for r2. To show that r1 ◦ r2 is a partial function, we have to show the following:

∀x, y, z.(x, y) ∈ r1 ◦ r2 ∧ (x, z) ∈ r1 ◦ r2 → y = z

Let x, y, z be such that (x, y), (x, z) ∈ r1 ◦ r2. Then there exist y1 such that (x, y1) ∈ r1 and
(y1, y) ∈ r2 and, analogously, z1 such that (x, z1) ∈ r1 and (z1, z) ∈ r2. Because r1 is a partial
function, y1 = z1. Thus we have (y1, y), (y1, z) ∈ r2. Because r2 is partial function, we have y = z,
as desired.

8 Transitive relations

Given a relation r ⊆ A×A, prove that r is transitive if and only if r ◦ r ⊆ r.
Solution:

r ◦ r ⊆ r ⇔ ∀x, y.(∃w.(x,w) ∈ r ∧ (w, y) ∈ r)→ (x, y) ∈ r (19)

⇔ ∀x, y.¬(∃w.(x,w) ∈ r ∧ (w, y) ∈ r) ∨ (x, y) ∈ r (20)

⇔ ∀x, y.∀w.¬((x,w) ∈ r ∧ (w, y) ∈ r) ∨ (x, y) ∈ r (21)

⇔ ∀x, y, w.((x,w) ∈ r ∧ (w, y) ∈ r)→ (x, y) ∈ r (22)

⇔ r is transitive (23)

7

9 Symmetric relations

Recall that a relation r ⊆ A×A is symmetric if ∀x, y ∈ A. (x, y) ∈ r → (y, x) ∈ r.
Now let r be an arbitrary relation. Prove that r−1 ◦ (r ∪ r−1)∗ ◦ r is symmetric.

Solution:

r ∪ r−1 is symmetric

(x, y) ∈ r ∪ r−1 ↔ (x, y) ∈ r ∨ (x, y) ∈ r−1 (24)

↔ (x, y) ∈ r ∨ (y, x) ∈ r (25)

↔ (y, x) ∈ r ∪ r−1 (26)

if r is symmetric, so is r ◦ r

(x, y) ∈ r ◦ r → ∃z.(x, z) ∈ r ∧ (z, y) ∈ r (27)

→ ∃z.(y, z) ∈ r ∧ (z, x) ∈ r (28)

→ (y, x) ∈ r ◦ r (29)

Hence it follows that (r ∪ r−1)m is symmetric.

Now let (x, y) ∈ r−1◦(r∪r−1)∗◦r. Then there exists a, b such that (x, a) ∈ r−1 and (a, b) ∈ (r∪r−1)m
and (b, y) ∈ r. By symmetry and definition of inverse, (a, x) ∈ r, (b, a) ∈ (r∪r−1)m and (y, b) ∈ r−1.
Hence, (y, x) ∈ r−1 ◦ (r ∪ r−1)∗ ◦ r, i.e. the relation is symmetric.

10 Transitive closure

Recall that we define the powers of a relation r ⊆ A×A as follows:

r0 = 4A, r1 = r, and rn+1 = rn ◦ r

We showed that the reflexive and transitive closure r∗ =
⋃

n≥0 r
n is the smallest reflexive and

transitive relation on A containing r. Show that for any relation r on a set A, (r ∪ r−1)∗ is the
least equivalence relation containing r. Precisely, show that

(i) (r ∪ r−1)∗ is an equivalence relation, and

(ii) if t is an equivalence relation containing r, then (r ∪ r−1)∗ ⊆ t.

Solution:
Let s = (r ∪ r−1)∗ =

⋃
n≥0(r ∪ r−1)n.

(i) To show s is an equivalence relation, show that it is reflexive (4A ⊆ s), symmetric s−1 ⊆ s and
transitive s ◦ s ⊆ s.

• Since 4A = (r ∪ r−1)0 ⊆ s, s is reflexive.

• s−1 ⇔ [(r ∪ r−1)∗]−1 ⇔ [(r ∪ r−1)−1]∗ ⇔ [r ∪ r−1]∗ Since s−1 = s we have s−1 ⊆ s.

8

•

s ◦ s⇔ (r ∪ r−1)∗ ◦ (r ∪ r−1)∗ (30)

=
⋃
n≥0

(r ∪ r−1)n ◦
⋃
m≥0

(r ∪ r−1)m (31)

=
⋃

n,m≥0
(r ∪ r−1)n+m (32)

=
⋃
k≥0

(r ∪ r−1)k (33)

= s (34)

Since s ◦ s = s then also s ◦ s ⊆ s.

(ii) Let t be an arbitrary equivalence relation containing r, hence t satisfies 4A∪r∪(t◦t)∪t−1 ⊆ t.
We show that for every n, (r ∪ r−1)n ⊆ t by induction on n.

n = 0 (r ∪ r−1)0 = 4A ⊆ t holds by reflexivity of t

n = 1 r ∪ r−1 ⊆ t holds since every t contains r and is symmetric.

Inductive step. Suppose (r ∪ r−1)n ⊆ t. From (r ∪ r−1) ⊆ t then by monotonicity of
composition (r ∪ r−1)n+1 ⊆ t ◦ t ⊆ t.

Hence s = (r ∪ r−1)∗ ⊆ t.

11 Monotonicity of relation composition

Let E(r1, r2, ..., rn) be a relation composed of relations ri with an arbitrary combination of relation
composition and union, e.g. one possible expression could be (r1◦r2)∪r3. Show that this operation
is monotone, that is show that for any i ri ⊆ r′i → E(r1, r2, ..., ri, ..., rn) ⊆ E(r1, r2, ..., r

′
i, ..., rn)

Solution:
We will show this by structural induction on the expression trees. Suppose we have ri ⊆ r′i for
some fixed i. Note that when writing E(r1, ..., ri, ..., rn) ⊆ E(r1, ..., r

′
i, ..., rn), we mean the subset

on relations represented by the expressions.

base case The expression E is just a leaf, i.e. E(r1, ..., ri, ..., rn) = rj for some j. Then either
i = j and E(r1, ..., ri, ..., rn) ⊆ E(r1, ..., r

′
i, ..., rn) follows directly from ri ⊆ r′i. Otherwise,

i 6= j, but in this case rj ⊆ rj as well, so the result follows.

inductive case Now suppose monotonicity holds for two expressions E1 and E2. Hence, denoting
the relations represented by these expressions by s1 and s2 respectively, s1 ⊆ s′1 and s2 ⊆ s′2,
where the primed version come from replacing ri by r′i in E1 and E2. Let E = E1 ◦ E2. By

(x, y) ∈ s1 ◦ s2 ↔ ∃w.(x,w) ∈ s1 ∧ (w, y) ∈ s2 (35)

→ ∃w.(x,w) ∈ s′1 ∧ (w, y) ∈ s2 (36)

↔ (x, y) ∈ s′1 ◦ s2 (37)

sequential composition preserves monotonicity and so E(r1, ..., ri, ..., rn) ⊆ E(r1, ..., r
′
i, ..., rn).

9

Now let E = E1 ∪ E2. Since

(x, y) ∈ s1 ∪ s2 ↔ (x, y) ∈ s1 ∨ (x, y) ∈ s2 (38)

→ (x, y) ∈ s′1 ∨ (x, y) ∈ s2 (39)

↔ (x, y) ∈ s′1 ∪ s2 (40)

union preserves monotonicity and so E(r1, ..., ri, ..., rn) ⊆ E(r1, ..., r
′
i, ..., rn).

10

