
Synthesizing Java Expressions from
Free-Form Queries

Tihomir Gvero
Viktor Kuncak

EPFL, Switzerland

new File(fname).createNewFile()
new File(fname).isFile()
new File(fname, fname).createNewFile()
new File(fname)
new File(fname, fname).isFile()

make file fname

new File(fname).createNewFile()

Synthesizing Java expressions from
free-form queries

Java Expressions
• query relevant
• type & scope correct
• statistically likely,

yet not copy-pasted

query
English + identifiers

public boolean log(String fname) {completion box

new File(fname).createNewFile()
new File(fname).isFile()
new File(fname, fname).createNewFile()
new File(fname)
new File(fname, fname).isFile()

make file fname

new File(fname).createNewFile()

Examples of results that anyCode gives

load class ”MyClass.class”
Thread.currentThread()

.getContextClassLoader()

.loadClass(”MyClass.class”)

write ”hello” to file ”text.txt” FileUtils.writeStringToFile(
new File(”text.txt”), ”hello”)

new buffered stream ”text.txt”
new BufferedReader(
new InputStreamReader(
new BufferedInputStream(
new FileInputStream(”text.txt”))))

set thread max priority Thread.currentThread()
.setPriority(Thread.MAX_PRIORITY)

Can also help correct “sloppy Java”

FileUtils.readFileToString(new File(name))
FileUtils.readFileToString(new File("UTF-8"))
FileUtils.readFileToString(new File(name), "UTF-8")FileUtils.readFileToString(new File(name), "UTF-8")

public String prepareMessage(String name, String protocol)
throws Exception {

if (!protocol.equals("file"))
return errorMessage(protocol);

else
return

}
readFile(name, "UTF-8")

How?

Translation problem

English queries:
• English phrase structures
• English dictionary words
• identifiers in scope
• literals, e.g. 42 or “Hello”

Java expressions:
• scoping and type rules of Java
• API method names camelCase
• identifiers in scope
• literals, e.g. 42 or “Hello”

make file fname new File(fname).createNewFile()

No readily available large-scale parallel corpus, unlike machine translation.

Key tasks in translation

parse English query generate Java expressions

make file fname new File(fname).createNewFile()

model of likely
Java expressions

modified
Stanford CoreNLP

map words to
Java methods

bias the generation using query

Which Java expressions do IDEs dream about?

Thread.currentThread()
.setPriority(Thread.MIN PRIORITY)

Distribution over all Java expressions

• Our prior work: declaration frequencies only (Gvero et al. PLDI’13)
• This work: computes additionally probabilistic context-free grammar

(PCFG) describing likely composition of declarations
• parse and type check 14’000 Java projects (~2M files)
• extract PCFG from expressions, built after copy propagation on the files
• splits Java types according to methods that return them

• Pr(expression) = product of Pr of rules used to build it
• Our model can be used for various program synthesis tasks
• avoids bizarre solutions for highly underspecified queries

• Here: it gives baseline expression probability, in absence of a query
• machine translation terminology: model for the target language

Key tasks in translation

parse English query generate Java expressions

make file fname new File(fname).createNewFile()

model of likely
Java expressions

modified
Stanford CoreNLP

map words to
Java methods

bias the generation using query
make file string

Parsing using modified CoreNLP toolkit

make file fname

make file string

make/Verb file/Noun string/Noun

make/Verb

file/Noun

string/Noun

(dobj)

(nn)

parse tree
generalize using
symbol table

custom POS tagging
parsing

Key tasks in translation

parse English query generate Java expressions

make file fname new File(fname).createNewFile()

model of likely
Java expressions

modified
Stanford CoreNLP

map words to
Java methods

bias the generation using query

Map groups from parse tree to declarations

make/Verb

file/Noun

string/Noun

(dobj)

(nn)

parse tree nodes+children

make; file

file; string

API: names and types

new File(String): File

copyFile(File, File) : Unit
[copy file]

new PrinterMakeAndModel(String,Locale)
[printer make and model]

createNewFile(File): Unit
[create new file]

match primary and secondary words;
unmatched words give penalty

Supporting related words

• Approach so far would not support e.g. synonyms
• We therefore use WordNet (https://wordnet.princeton.edu/)
• Groups words into sets of synonyms (synsets)
• Each word may belong to multiple synsets (meanings of a word)
• Relationships between synsets, such as “is-a”
• Synsets have English descriptions, as in a dictionary

• When computing if words are related, we favor those synsets whose
description uses API words – specialize to jargon of programming

make file fname new File(fname).createNewFile()

Related words through WordNet synsets

make

produce
make
create
- create or manufacture a man-made product

create

word senses less relevant to programming

make
do
- engage in

make
get
- give certain properties to something

Map groups from parse tree to declarations

make/Verb

file/Noun

string/Noun

(dobj)

(nn)

parse tree nodes+children

make: file

file: string

API

new File(String): File

copyFile(File, File) : Unit
[copy file]

new PrinterMakeAndModel(String,Locale)
[printer make and model]

createNewFile(File): Unit
[create new file]

fname: String

in scope:

WordNet

Combining declarations into expression

Find most likely word from a
new PCFG:
PCFG for Java
extended with bias from:
query and scope

public boolean log(String fname) {

new File(fname).createNewFile()
new File(fname).isFile()
new File(fname, fname).createNewFile()
new File(fname)
new File(fname, fname).isFile()

make file fname

new File(fname).createNewFile()

createNewFile

new File

fname

Parameters and tuning

Parameters determine relative strength of different criteria
• matching of words to declarations: primary vs secondary words
• weights derived from corpus vs identifiers in scope
• order of parameters in input vs output – penalize inversion
• repetition of input elements undesired

A small number of parameters, <10
• system works even with our “best guess” values of parameters
• tuning: make it work better, by finding locally optimal values
• use local search, cost function as black box (discretize space)

online
synthesis
plug-in

corpus

14 K Java projects
2 M source files

Java
API

WordNet
lexicon

offline
pre-process

& tune

Outline of our system

Java model

words to API

How well?

Evaluation

• We wrote a set of 90 (query, Java) pairs – all are shown in paper
• We split them in two parts:
• 45 used for tuning relative weights of different aspects of translation

45 used to evaluate the final system

• Results
• in 82% cases: the desired expression found and ranked in top 10
• in 20% of those cases: the expression ranked #1
• running times 0.001 to 0.219 seconds, average 0.06 s

• Turning off PCFG brings success rate from 82% down to only 27%

Selected related work

• G. Little and R. C. Miller: Keyword programming in Java (ASE ‘07)
• Translates small number of keywords into a valid expression (no corpus)

• D. Price, E. Riloff, J. L. Zachary, and B. Harvey: NaturalJava (IUI ‘00)
• Translation from a restricted form of NL description to Java edit statements

• V. Le, S. Gulwani, and Z. Su: SmartSynth (MobiSys ‘13)
• Generates smartphone automation scripts from NL descriptions (bag of w.)

• A. Cozzie and S. T. King: Macho (TR ‘12)
• Transforms NL descriptions into simple programs
• Uses input-output examples

• V. Raychev, M. T. Vechev, and E. Yahav: SLANG (PLDI ‘14)
• Uses N-gram language model to complete holes in the program

anyCode: a new point in the space

Java Expressions
• query relevant
• type & scope correct
• statistically likely,

yet not copy-pasted

query
English + identifiers

public boolean log(String fname) {
File f;

completion box

new File(fname).createNewFile()
new File(fname).isFile()
new File(fname, fname).createNewFile()
new File(fname)
new File(fname, fname).isFile()

make file fname

new File(fname).createNewFile()

Some limitations

• Source: analyzes English no better than Stanford CoreNLP toolkit
• no semantic analysis (like most NLP tools)
• question of ontologies for programming tasks is wide open

• Translation
• uses only one source syntax parse trees
• only extracts sub-trees of height one, ignoring deeper nesting structure
• relies on names in program being in English, as for API

• Target: use primarily the PCFG to guide synthesis
• no use of input-output examples
• no static analysis of e.g. method sequences

wish
compilation 11011001 01011101

11011001 01011101
11011001 01011101
11011001 01011101

Command

Agenda: “Your wish is my command”

Java,Scala

Synthesis from:
• Examples, contracts

http://leon.epfl.ch
• Natural language & corpus
• this line of work

Two unsolvable problems put together?

Is it methodologically reasonable to try to solve at once both
• processing of natural language
• synthesis from specifications that have multiple solutions

We claim: yes, they work well together
• natural language introduces multiple interpretations;

synthesis can handle this ambiguity
• range of applications for synthesis is greater if we can avoid formal

specifications in favor of English

Mapping English to code is feasible.

We need more research in this area!

Questions…

Corpus and Ranking

• Corpus:
• Over 14’000 Java projects from GitHub (near 2 million source files)

• Declaration score
+ Frequency
+ Number of hit words
− Number of missed words

• Expression score
+ PCFG score
+ Declaration scores
+ Input coverage score
− Repetition score

