
Lecturecise 9
Fixedpoints and Galois Connection in Abstract

Interpretation

Viktor Kuncak



Solution

1. Let (x t y) t z = a, then z v a and x t y v a and hence x v a and y v a.
From z v a and y v a it follows z t y v a and finally
x t (y t z) v a = (x t y) t z .
Symmetrically, we also get that (x t y) t z v x t (y t z) and hence
(x t y) t z = x t (y t z).

2. Let a = tA and b = uB. Then

a = tA⇔ ∀x ∈ A.x v a ∧ ∀a′.∀x ∈ A.x v a′ → a v a′

and
b = uB ⇔ ∀y ∈ B.b v y ∧ ∀b′.∀y ∈ B.b′ v y → b′ v b

⇒
Suppose a v b, then by transitivity it follows that ∀x ∈ A.∀y ∈ B.x v y .

⇐
Now suppose ∀x ∈ A.∀y ∈ B.x v y . This implies that the set A is a set of
lower bounds to B, and B is a set of upper bounds on A. Hence a v b
(intuitively).



Solution

3. Suppose we have some arbitrary set S ⊆ A, then we know that uS
exists.
Let U be the set of all its upper bounds, i.e. U = {x |∀y ∈ S .y v x}.
Since every subset of A has a greatest lower bound, we know that
a = uU exists. Now we want to show that a is an upper bound on S
and that it is the least one.
We want to show that ∀y ∈ S .y v a.
Let L be the set of lower bounds on U, i.e. L = {z |∀x ∈ U.z v x}.
Clearly, S ⊆ L, since U are the upper bounds on S .
Then a is the greatest element in L, and thus ∀y ∈ S .y v a and so a is
an upper bound on S .
Now take any upper bound x ∈ U. Since a = uU, we have a v x and
so a is the least upper bound.



Constructing Partial Orders using Maps

Example: Let A be the set of all propositional formulas containing only
variables p, q. For a formula F ∈ A define

[F ] = {(u, v). u, v ∈ {0, 1} ∧ F is true for p 7→ u, q 7→ v}

i.e. [F ] denotes the set of assignments for which F is true. Note that
F =⇒ G is a tautology iff [F ] ⊆ [G ]. Define ordering on formulas A by

F ≤ G ⇐⇒ [F ] ⊆ [G ]

Is ≤ a partial order? Which laws does ≤ satisfy?



Constructing Partial Orders using Maps

Lemma: Let (C ,≤) be an lattice and A a set. Let γ : A→ C be an
injective function. Define oder x v y on A by γ(x) ≤ γ(y). Then (A,v) is
a partial order.

Note: even if (C ,≤) had top and bottom element and was a lattice, the
constructed order need not have top and bottom or be a lattice. For
example, we take A to be a subset of A and define γ to be identity.



Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound (so, we have u and t as
well-defined binary operations).
Lemma: In every lattice, x t (x u y) = x .

Proof:
We trivially have x v x t (x u y).
Let’s prove that x t (x u y) v x :
x is an upper bound of x and x u y , x t (x u y) is the least upper bound of
x and x u y , thus x t (x u y) v x .
Definition: A lattice is distributive iff

x u (y t z) = (x u y) t (x u z)
x t (y u z) = (x t y) u (x t z)

Lattice of all subsets of a set is distributive. Linear order is a distributive
lattice.



Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound (so, we have u and t as
well-defined binary operations).
Lemma: In every lattice, x t (x u y) = x .

Proof:
We trivially have x v x t (x u y).
Let’s prove that x t (x u y) v x :
x is an upper bound of x and x u y , x t (x u y) is the least upper bound of
x and x u y , thus x t (x u y) v x .
Definition: A lattice is distributive iff

x u (y t z) = (x u y) t (x u z)
x t (y u z) = (x t y) u (x t z)

Lattice of all subsets of a set is distributive. Linear order is a distributive
lattice.



Products of Lattices

Note: for n = 2 a function f : {1, 2} → (L1 ∪ L2) with f (1) ∈ L1,
f (2) ∈ L2 is isomorphic to an ordered pair (f (1), f (2)). We denote the
product by (L1,≤1)× (L2,≤2).
Example: Let R = {a, b, c , d} denote set of values. Let A1 = A2 = 2R . Let

s1 ≤1 s2 ⇐⇒ s1 ⊆ s2

and let
t1 ≤2 t2 ⇐⇒ t1 ⊇ t2

Then we can define the product (A1,≤1)× (A2,≤2). In this product,
(s1, t1) ≤ (s2, t2) iff: s1 ⊆ s2 and t1 ⊇ t2. The original partial orders were
lattices, so the product is also a lattice. For example, we have

({a, b, c}, {a, b, d}) u ({b, c , d}, {c , d}) = ({b, c}, {a, b, c , d})



Products of Lattices

Lattice elements can be combined into finite or infinite-dimensional vectors,
and the result is again a lattice.
Lemma: Let (A1,≤1), . . . , (An,≤n) be partial orders. Define (L,≤) by

A = {f | f : {1, . . . , n} → (A1 ∪ . . . ∪ An) where ∀i .f (i) ∈ Ai}

For f , g ∈ A define
f ≤ g ⇐⇒ ∀i .f (i) ≤i g(i)

Then (A,≤) is a partial order. We denote (A,≤) by

n∏
i=1

(Li ,≤i )

Moreover, if for each i , (Ai ,≤i ) is a lattice, then (A,≤) is also a lattice.



Properties of uS and tS

Consider a partial order (A,v).

I Suppose S1 ⊆ S2 ⊆ A and tS1 and tS2 exist. In what relationship are
these two elements?

I Suppose S1 ⊆ S2 ⊆ A and uS1 and uS2 exist. In what relationship are
these two elements?

I Suppose t∅ exists. Describe this element.

I Suppose u∅ exists. Describe this element.

t∅ = ⊥ and u∅ = >. This is because every element is an upper bound and
a lower bound of ∅ : ∀x .∀y ∈ ∅.y v x is valid, as well as ∀x .∀y ∈ ∅.y w x .



Properties of uS and tS

Consider a partial order (A,v).

I Suppose S1 ⊆ S2 ⊆ A and tS1 and tS2 exist. In what relationship are
these two elements?

I Suppose S1 ⊆ S2 ⊆ A and uS1 and uS2 exist. In what relationship are
these two elements?

I Suppose t∅ exists. Describe this element.

I Suppose u∅ exists. Describe this element.

t∅ = ⊥ and u∅ = >. This is because every element is an upper bound and
a lower bound of ∅ : ∀x .∀y ∈ ∅.y v x is valid, as well as ∀x .∀y ∈ ∅.y w x .



Complete Semilattice is a Complete Lattice

If we have all u-s we then also have all t-s:
Theorem: Let (A,v) be a partial order such that every set S ⊆ A has the
greatest lower bound (u). Prove that then every set S ⊆ A has the least
upper bound (t).



Example: Application of the Previous Theorem

Let U be a set and A ⊆ U × U the set of all equivalence relations on this
set. Consider the partial order (A,⊆).

Lemma
If I ⊆ A is a set of equivalence relations, then ∩I is also an equivalence
relation.

Consequence: Given I ⊆ A there exists the least equivalence relation
containing every relation from I (equivalence closure of relations in I ).

Note: congruence is equivalence relation that agrees with some
operations. For example, x ∼ x ′ and y ∼ y ′ implies (x + y) ∼ (x ′ + y ′).
The analogous properties hold for congruence relations.



Complete Lattices

Definition: A complete lattice is a lattice where for every set S (including
empty set and infinite sets) there exist tS and uS .



Monotonic functions

Given two partial orders (C ,≤) and (A,v), we call a function α : C → A
monotonic iff for all x , y ∈ C ,

x ≤ y → α(x) v α(y)



Reminder: Fixpoints

Definition: Given a set A and a function f : A→ A we say that x ∈ A is a
fixed point (fixpoint) of f if f (x) = x .

Definition: Let (A,≤) be a partial order, let f : A→ A be a monotonic
function on (A,≤), and let the set of its fixpoints be S = {x | f (x) = x}. If
the least element of S exists, it is called the least fixpoint, if the greatest
element of S exists, it is called the greatest fixpoint.



Fixpoints

Let (A,v) be a complete lattice and G : A→ A a monotonic function.

Definition:
Post = {x | G (x) v x} - the set of postfix points of G
(e.g. > is a postfix point)
Pre = {x | x v G (x)} - the set of prefix points of G
Fix = {x | G (x) = x} - the set of fixed points of G .

Note that Fix ⊆ Post.



Tarski’s fixed point theorem

Theorem: Let a = uPost. Then a is the least element of Fix (dually, tPre
is the largest element of Fix).

Proof:
Let x range over elements of Post.

I applying monotonic G from a v x we get G (a) v G (x) v x

I so G (a) is a lower bound on Post, but a is the greatest lower bound,
so G (a) v a

I therefore a ∈ Post

I Post is closed under G , by monotonicity, so G (a) ∈ Post

I a is a lower bound on Post, so a v G (a)

I from a v G (a) and G (a) v a we have a = G (a), so a ∈ Fix

I a is a lower bound on Post so it is also a lower bound on a smaller set
Fix

In fact, the set of all fixpoints Fix is a lattice itself.



Tarski’s fixed point theorem

Tarski’s Fixed Point theorem shows that in a complete lattice with a
monotonic function G on this lattice, there is at least one fixed point of G ,
namely the least fixed point uPost.

I Tarski’s theorem guarantees fixpoints in complete lattices, but the
above proof does not say how to find them.

I How difficult it is to find fixpoints depends on the structure of the
lattice.

Let G be a monotonic function on a lattice. Let a0 = ⊥ and an+1 = G (an).
We obtain a sequence ⊥ v G (⊥) v G 2(⊥) v · · · . Let a∗ =

⊔
n≥0 an.

Lemma: The value a∗ is a prefix point.
Observation: a∗ need not be a fixpoint (e.g. on lattice [0,1] of real
numbers).



Omega continuity

Definition: A function G is ω-continuous if for every chain
x0 v x1 v . . . v xn v . . . we have

G (
⊔
i≥0

xi ) =
⊔
i≥0

G (xi )

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 Gn(⊥) is
the least fixpoint of G .



Iterating sequences and omega continuity

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 G n(⊥) is the least
fixpoint of G .

Proof:

I By definition of ω-continuous we have
G (

⊔
n≥0 G n(⊥)) =

⊔
n≥0 G n+1(⊥) =

⊔
n≥1 G n(⊥).

I But
⊔

n≥0 G n(⊥) =
⊔

n≥1 G n(⊥) t ⊥ =
⊔

n≥1 G n(⊥) because ⊥ is the least
element of the lattice.

I Thus G (
⊔

n≥0 G n(⊥)) =
⊔

n≥0 G n(⊥) and a∗ is a fixpoint.

Now let’s prove it is the least. Let c be such that G (c) = c . We want⊔
n≥0 G n(⊥) v c . This is equivalent to ∀n ∈ N.G n(⊥) v c .

We can prove this by induction : ⊥ v c and if G n(⊥) v c , then by monotonicity
of G and by definition of c we have G n+1(⊥) v G (c) v c .



Iterating sequences and omega continuity

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 Gn(⊥) is
the least fixpoint of G .

When the function is not ω-continuous, then we obtain a∗ as above (we
jump over a discontinuity) and then continue iterating. We then take the
limit of such sequence, and the limit of limits etc., ultimately we obtain the
fixpoint.



Exercise

Let C [0, 1] be the set of continuous functions from [0, 1] to the reals.
Define ≤ on C [0, 1] by f ≤ g if and only if f (a) ≤ g(a) for all a ∈ [0, 1].

i) Show that ≤ is a partial order and that C [0, 1] with this order forms a
lattice.

ii) Does an analogous statement hold if we consider the set of
differentiable functions from [0, 1] to the reals? That is, instead of
requiring the functions to be continuous, we require them to have a
derivative on the entire interval. (The order is defined in the same
way.)



Solution

i) To show C [0, 1] is a partial order, show it is reflexive, antisymmetric and
transitive (easy). To show that it is a lattice, we need to show that every two
elements f and g have a least upper bound and a greatest lower bound. If f
and g are comparable, one is the upper bound and the other is the lower
bound. If not, then we can always find a piece-wise defined continuous
function that is the upper bound. This function will be equal to f or g on
parts of the domain where f and g do not intersect, (which one depends on
which bound we want and whichever function has larger values on that part
of the domain.) On intersections, we switch to define the next piece by the
other function.



Solution

ii) If we consider differentiable functions on [0, 1], then ≤ is still a partial order.
Again, if f and g are comparable, the we choose one as the upper and the
other as a lower bound. For incomparable functions, i.e. when f and g
intersect, our construction from (i) fails, since at intersections the resulting
function may not be differentiable.
Differentiable functions are necessarily continuous and we know that
continuous functions on a closed interval are bounded, hence we can always
find some upper bound that is differentiable. However, it is not possible to
find a differentiable least upper bound, since no matter which upper bound
you pick, you can always find one that is closer to the functions f and g and
is still smooth.



Exercise
Let A = [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} be the interval of real numbers. Recall that,
by definition of real numbers and complete lattice, (A,≤) is a complete lattice
with least lattice element 0 and greatest lattice element 1. Here t is the least
upper bound operator on sets of real numbers, also called //supremum// and
denoted //sup// in real analysis.
Let function f : A→ A be given by

f (x) =


1
2 + 1

4x , if x ∈ [0, 23 )

3
5 + 1

5x , if x ∈ [ 23 , 1]

(It may help you to try to draw f .)

a) Prove that f is monotonic and injective (so it is strictly monotonic).

b) Compute the set of fixpoints of f .

c) Define iter(x) = t{f n(x) | n ∈ {0, 1, 2, . . .}}. (This is in fact equal to
limn→∞ f n(x) when f is a monotonic bounded function.)

Compute iter(0) (prove that the computed value is correct by definition of
iter , that is, that the value is indeed t of the set of values). Is iter(0) a
fixpoint of f ? Is iter(iter(0)) a fixpoint of f ?



Solution

The idea:
What this question is trying to show here is that Tarski’s fixed point theorem says
that a least fixed point alsways exists if the function is strictly mnotonic, but does
not give a way to compute it. This example shows how one can do this, even in
the case of discontinuities: iterate until your function converges, then either you
found a fixed point, or you did not because of a discontinuity. Then you apply f to
the fixed point, which makes you jump over it, and you repeat until you hit a true
fixed point.
Solution:

a) f is monotonic and injective on [0, 23 ) and ( 2
3 , 1], since those are linear

functions. limx→2/3( 1
2 + 1

4x) = 2
3 < f ( 2

3 ) = 11
15 , hence f remains strictly

monotonic also across the boundary.

b) For [0, 23 ), solving x = 1
2 + 1

4x , we get x = 2
3 , which is outside of the defined

domain for this piece.
For [ 23 , 1], solving x = 3

5 + 1
5x , we get x = 3

4 , hence f has one fixed point at 3
4 .



Solution

c) Compute iter(0):
f (0) = 1

2 ), f 2(0) = f ( 1
2 ) = 5

8 ) = 0.625, f 3(0) = f ( 5
8 ) = 21

32 ) = 0.65625,
f 4(0) = f ( 21

32 ) = 85
128 ) = 0.6640625, f 5(0) = f ( 85

128 ) = 341
512 ) = 0.666015625.

Since f is strictly monotonic and limx→2/3( 1
2 + 1

4x) = 2
3 , iter(0) = 2

3 .
2
3 is not a fixed point of f .
iter(iter(0)) = iter( 2

3 ) = 3
4 , which is a fixed point of f

Is f ω-continuous, i.e. does it hold for any chain x0 v x1 v x2... v xn v ...
that

f (
⊔
i≥0

xi ) =
⊔
i≥0

f (xi )

Consider the chain given by limx→2/3. For this chain the above property does
not hold, hence f is not ω-continuous.



Abstract Interpretation Big Picture



Galois Connection

Galois connection (named after Évariste Galois) is defined by two
monotonic functions α : C → A and γ : A→ C between partial orders ≤ on
C and v on A, such that

∀c , a. α(c) v a ⇐⇒ c ≤ γ(a) (∗)

(intuitively the condition means that c is approximated by a).

Lemma: The condition (∗) holds iff the conjunction of these two
conditions:

c ≤ γ(α(c))

α(γ(a)) v a

holds for all c and a.



Exercise
A Galois connection is defined by two monotonic functions α : C → A and
γ : A→ C between partial orders ≤ on C and v on A, such that

∀a, c . α(c) v a ⇐⇒ c ≤ γ(a) (∗)
(intuitively, the condition means that c is approximated by a).

a) Show that the condition (∗) is equivalent to the conjunction of these two
conditions:

∀c . c ≤ γ(α(c))

∀a. α(γ(a)) v a

b) Let α and γ satisfy the condition of a Galois connection. Show that the
following three conditions are equivalent:

1. α(γ(a)) = a for all a
2. α is a surjective function
3. γ is an injective function

c) State the condition for c = γ(α(c)) to hold for all c . When C is the set of
sets of concrete states and A is a domain of static analysis, is it more
reasonable to expect that c = γ(α(c)) or α(γ(a)) = a to be satisfied, and
why?



Abstract Interpretation Recipe: Setup

Given control-flow graph: (V ,E , r) where

I V = {v1, . . . , vn} is set of program points

I E ⊆ V × V are control-flow graph edges

I r : E → 2S×S , so each r(v , v ′) ⊆ S × S is relation describing the
meaning of command between v and v ′

Key steps:

I design abstract domain A that represents sets of program states

I define γ : A→ C giving meaning to elements of A

I define lattice ordering v on A such that a1 v a2 → γ(a1) ⊆ γ(a2)

I define sp# : A× 2S×S → A that maps an abstract element and a CFG
statement to new abstract element, such that
sp(γ(a), r) ⊆ γ(sp#(a, r))
For example, by defining function α so that (α, γ) becomes a Galois
Connection and defining sp#(a) = α(sp(γ(a), r)).



Running Abstract Interpretation

I Extend sp# to work on control-flow graphs, by defining
F# : (V → A)→ (V → A) as follows (below, g# : V → A)

F#(g#)(v ′) = Init(v ′) t
⊔

(v ,v ′)∈E

sp#(g#(v), r(v , v ′))

I Compute g#
∗ = lfp(F#) (this is easier than computing semantics

because lattice An is simpler than Cn):

g#
∗ =

⊔
n≥0

(F#)n(⊥#)

where ⊥#(v) = ⊥A for all v ∈ V .

The resulting fixpoint describes an inductive program invariant.



Concrete Domain: Sets of States

Because there is only one variable:

I state is an element of Z (value of x)

I sets of states are sets of integers, C = 2Z (concrete domain)

I for each command K , strongest postcondition function
sp(·,K ) : C → C

Strongest Postondition
Compute sp on example statements:

sp(P, x := 0) = {0}

sp(P, x := x + 3) = {x + 3 | x ∈ P}

sp(P, assume(x < 10)) = {x | x ∈ P ∧ x < 10}

sp(P, assume(¬(x < 10)) = {x | x ∈ P ∧ x ≥ 10}



Sets of States at Each Program Point

Collecting semantics computes with sets of states at each program point

g : {v0, v1, v2, v3} → C

We sometimes write gi as a shorthand for g(vi ), for i ∈ {0, 1, 2, 3}.
In the initial state the value of variable is arbitrary: I = Z

post Function for the Collecting Semantics
From here we can derive F that maps g to new value of g :

F (g0, g1, g2, g3) =
(Z,
sp(g0, x := 0) ∪ sp(g2, x := x + 3),
sp(g1, assume(x < 10)),
sp(g1, assume(¬(x < 10))))



Sets of States at Each Program Point

The fixpoint condition F (g) = g becomes a system of equations

g0 = Z
g1 = sp(g0, x := 0) ∪ sp(g2, x := x + 3)
g2 = sp(g1, assume(x < 10))
g3 = sp(g1, assume(¬(x < 10))))

whereas the postfix point (see Tarski’s fixpoint theorem) becomes

Z ⊆ g0
sp(g0, x := 0) ∪ sp(g2, x := x + 3) ⊆ g1
sp(g1, assume(x < 10)) ⊆ g2
sp(g1, assume(¬(x < 10))) ⊆ g3



Computing Fixpoint
To find the fixpoint, we compute the sequence F n(∅, ∅, ∅, ∅) for n ≥ 0:

(∅, ∅, ∅, ∅)
(Z, ∅, ∅, ∅)
(Z, {0}, ∅, ∅)
(Z, {0}, {0}, ∅)
(Z, {0, 3}, {0}, ∅)
(Z, {0, 3}, {0, 3}, ∅)
(Z, {0, 3, 6}, {0, 3}, ∅)
(Z, {0, 3, 6}, {0, 3, 6}, ∅)
(Z, {0, 3, 6, 9}, {0, 3, 6, 9}, ∅)
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, ∅)
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, {12})
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, {12})

Thus, all subsequent values remain the same and
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, {12}) is the fixpoint of collecting semantics
equations. In general we may need infinitely many iterations to converge.



Question

Suppose that we have a program that terminates for every possible initial
state. Can we always find a finite constant n such that

F n(∅, . . . , ∅) = F n+1(∅, . . . , ∅)

i.e. the sequence such as the one above is guaranteed to stabilize?

Example: Assume an arbitrary initial value and consider the loop.
Compute a sequence of sets of states at the point after the increment
statement in the loop, following the equations for collecting semantics.

if (y > 0) {
x = 0
while (x < y) {

x = x + 1
}
}



What always works from omega continuity:

lfp(F ) =
⋃
n≥0

F n(∅, . . . , ∅)

where
⋃

on a tuple above means taking union of each component
separately, so (A,B) ∪ (A′,B ′) = (A ∪ A′,B ∪ B ′).



Variable Range Analysis for Example Program

The general form of abstract interpretation of the collecting semantics is
analogous to collecting semantics, but replaces operations on sets with
operations on the lattice:

F# : (V → A)→ (V → A)

F (g#)(v ′) = g#
init(v ′) t

⊔
(v ,v ′)∈E

sp#(g#(v), r(v , v ′))

Here g#
init(v ′) will be ⊥ except at the entry into our control-flow graph,

where it approximates the set of initial states at the entry point.



Abstract Analysis Domain

Before we had representation for all possible sets of states:

C = 2Z

Here we have representation of only certain states, namely intervals:

A = {⊥} ∪
{(−∞, q] | q ∈ Z}∪
{[p,+∞) | p ∈ Z}∪
{[p, q] | p ≤ q}∪
{>}



Abstract Analysis Domain

The meaning of domain elements is given by a monotonic
concretization function γ : A→ C :

γ(⊥) = ∅
γ({(−∞, q]) = {x | x ≤ q}
γ({[p,+∞)) = {x | p ≤ x}

γ({[p, q]) = {x | p ≤ x ∧ x ≤ q}
γ(>) = Z

From monotonicity and a1 v a1 t a2 it follows

γ(a1) ⊆ γ(a1 t a2)

and thus
γ(a1) ∪ γ(a2) ⊆ γ(a1 t a2)

We try to define γ to be as small as possible while satisfying this condition.



Abstract Analysis Domain

Define abstraction function α : C → A such that

I α(s) = [min s,max s] if those values exist (set is bounded from below
and above)

I α(s) = [min s,+∞) if there is lower but no upper bound

I α(s) = (−∞,max s] if there is upper but no lower bound

I α(s) = > if there is no upper and no lower bound

I α(∅) = ⊥
Lemma: The pair (α, γ) form a Galois Connection.



Abstract Analysis Domain

By property of Galois Connection, the condition
γ(a1) ∪ γ(a2) ⊆ γ(a1 t a2) is equivalent to

α(γ(a1) ∪ γ(a2)) v a1 t a2

To make a1 t a2 as small as possible, we let the equality hold, defining

a1 t a2 = α(γ(a1) ∪ γ(a2))

For example,

[0, 2] t [5, 8] = α(γ([0, 2]) ∪ γ([5, 8]))
= α({0, 1, 2, 5, 6, 7, 8})
= [0, 8]



Abstract Postcondition

We had: sp(·, c) : C → C
Now we have: sp#(·, c) : A→ A
For correctness, we need that for each a ∈ A and each command r :

sp(γ(a), r) ⊆ γ(sp#(a, r))

We would like sp# to be as small as possible so that this condition holds.
By property of Galois Connection, the condition sp(γ(a), r) ⊆ γ(sp#(a, r)) is
equivalent to

α(sp(γ(a), r)) v sp#(a, r)

Because we want sp# to be as small as possible (to obtain correct result), we let
equality hold:

sp#(a, r) = α(sp(γ(a), r))

Because we know α, γ, sp, we can compute the value of sp#(a, r) by simplifying
certain expressions involving sets of states.



Example
For p ≤ q we have:

sp#([p, q], x := x + 3) = α(sp(γ([p, q]), x := x + 3))
= α(sp({x | p ≤ x ∧ x ≤ q}, x := x + 3))
= α({x + 3 | p ≤ x ∧ x ≤ q})
= α({y | p + 3 ≤ y ∧ y ≤ q + 3})
= [p + 3, q + 3]

For K an integer constant and a 6= ⊥, we have

sp#(a, x := K ) = [K ,K ]

Note that for every command given by relation r , we have

sp#(⊥, r) = α(sp(γ(⊥), r))
= α(sp(∅, r))
= α(∅)
= ⊥



Abstract Semantic Function for the Program

In Collecting Semantics for Example Program we had

F (g0, g1, g2, g3) =
(Z,
sp(g0, x := 0) ∪ sp(g2, x := x + 3),
sp(g1, assume(x < 10)),
sp(g1, assume(¬(x < 10))))

Here we have:

F#(g#
0 , g

#
1 , g

#
2 , g

#
3 ) =

(>,
sp#(g#

0 , x := 0) t sp#(g#
2 , x := x + 3),

sp#(g#
1 , assume(x < 10)),

sp#(g#
1 , assume(¬(x < 10))))



Solving Abstract Function
Doing the analysis means computing (F#)n(⊥,⊥,⊥,⊥) for n ≥ 0:

(⊥,⊥,⊥,⊥)
(>,⊥,⊥,⊥)
(>, [0, 0],⊥,⊥)
(>, [0, 0], [0, 0],⊥)
(>, [0, 3], [0, 3],⊥)
(>, [0, 3], [0, 3],⊥)
(>, [0, 6], [0, 3],⊥)
(>, [0, 6], [0, 6],⊥)
(>, [0, 9], [0, 9],⊥)
(>, [0, 12], [0, 9],⊥)
(>, [0, 12], [0, 9], [10, 12])
(>, [0, 12], [0, 9], [10, 12])
. . .

Note the approximation (especially in the last step) compared to the
collecting semantics we have computed before for our example program.



Exercises

Exercise 1:
Consider an analysis that has two integer variables, for which we track
intervals, and one boolean variable, whose value we track exactly.
Give the type of F# for such program.

Exercise 2:
Consider the program that manipulates two integer variables x , y .
Consider any assignment x = e, where e is a linear combination of integer
variables, for example,

x = 2 ∗ x − 5 ∗ y

Consider an interval analysis that maps each variable to its value.
Describe an algorithm that will, given a syntax tree of x = e and intervals
for x (denoted [ax , bx ]) and y (denoted [ay , by ]) find the new interval [a, b]
for x after the assignment statement.



Exercise 3

a)
For a program whose state is one integer variable and whose abstraction is
an interval, derive general transfer functions sp#(a, c) for the following
statements c, where K is an arbitrary compile-time constant known in the
program:

I x= K;

I x= x + K;

I assume(x ≤ K)

I assume(x ≥ K)

b)
Consider a program with two integer variables, x,y. Consider analysis that
stores one interval for each variable.

I Define the domain of lattice elements a that are computed for each
program point.

I Give the definition for statement sp#(a, y = x + y + K )



Exercise 3
c)

Draw the control-flow
graph for the following
program.

// v0
x := 0;
// v1
while (x < 10) {

// v2
x := x + 3;
}
// v3
if (x >= 0) {

if (x <= 15) {
a[x]=7; // made sure index is within range
} else {

// v4
error;
}
} else {

// v5
error;
}

Run abstract interpretation that maintains an interval for x at each
program point, until you reach a fixpoint.
What are the fixpoint values at program points v4 and v5?



Termination and Efficiency of Abstract Interpretation
Analysis

Definition: A chain of length n is a sequence s0, s1, . . . , sn such that

s0 < s1 < s2 < . . . < sn

where x < y means, as usual, x v y ∧ x 6= y

Definition: A partial order has a finite height n if it has a chain of length
n and every chain is of length at most n.

A finite lattice is of finite height.



Example

The constant propagation lattice Z ∪ {⊥,>} is an infinite lattice of
height 2. One example chain of length 2 is

⊥ < 42 < >

Here the γ function is given by

I γ(k) = . . . when k ∈ Z
I γ(>) = . . .

I γ(⊥) = . . .

The ordering is given by a1 ⊆ a2 iff γ(a1) ⊆ γ(a2)



Example

If a state of a (one-variable) program is given by an integer, then a concrete
lattice element is a set of integers. This lattice has infinite height. There is
a chain

{0} ⊂ {0, 1} ⊂ {0, 1, 2} ⊂ . . . ⊂ {0, 1, 2, . . . , n}

for every n.



Convergence in Lattices of Finite Heignth

Consider a finite-height lattice (L,v) of height n and function

F : L→ L

What is the maximum length of sequence ⊥,F (⊥),F 2(⊥), . . . ?
Give an effectively computable expression for lfp(F ).



Computing the Height when Combining Lattices

Let H(L,≤) denote the height of the lattice (L,≤).
Product
Given lattices (L1,v1) and (L2,v2), consider product lattice with set
L1 × L2 and potwise order

(x1, x2) v (x ′1, x
′
2)

iff . . .
What is the height of the product lattice?
Exponent
Given lattice (L,v) and set V , consider the lattice (LV ,v′) defined by

g <′ h

iff ∀v ∈ V .g(v) v h(v).
What is the height of the exponent lattice?
Answer: height of L times the cardinality of V .



Widening and Narrowing in Variable Range Analysis

Interval analysis domain, for each program point, maps each program
variable to an interval.
Analysis domain has elements g# : V → I where I denotes the set of such
intervals.

Height of lattice for unbounded integers: infinite.

Height of lattice of one interval for 64-bit integers: around 264

Moreover, if we have q variables in program and p program points, height
of lattice for the analysis domain is pq times larger.

How to guarantee (reasonably fast) termination?



Widening technique

If the iteration does not seem to be converging, take a ”jump” and make
the interval much wider (larger).
Finite set of jump points J (e.g. set of all integer constants in the program)
In fixpoint computation, compose Hi with function

w([a, b]) = [max{x ∈ J | x ≤ a},min{x ∈ J | b ≤ x}]

We require the condition:
x vW (x)

for all x .
The condition holds for the example above.



Approaches

I always apply widening (we will assume this)

I iterate a few times with Hi only (without using w), if we are not at a
fixpoint at this program point, then widen.

I this is not monotonic: if you start at fixpoint, it converges, if start
below, can jump over fixpoint!

Standard iteration: ⊥, . . . , (F#)n(⊥), . . .
Widening: ⊥, . . . , ((W ◦ F#)n(⊥), . . .



Example where widening works nicely

Consider program:

x = 0;
while (x < 1000) {

x = x + 1;
}

Interval analysis without widening will need around 1000 iterations to
converge to interval [1000, 1000] for x at the end of the program.
This may be too slow.

Let us derive the set J by taking all constants that appear in the program,
as well as −∞ and +∞:

J = {−∞, 0, 1, 1000,+∞}

After a few iterations, widening maps interval [0, 2] into [0, 1000]. This
gives [0, 999] for x at loop entry and again [1000, 1000] for x at the end of
the program, but in many fewer iterations.



Example showing problems with widening

Consider program:

x = 0;
y = 1;
while (x < 1000) {

x = x + 1;
y = 2∗x;
y = y + 1;
print(y);
}

Interval analysis without widening will need around 1000 iterations to
converge to

x 7→ [1000, 1000]; y 7→ [1, 2001]

This may be too slow.
Now apply widening with the same J as before. When within loop we
obtain x 7→ [0, 1000], applying widening function to the interval [0, 2000] for
y results in [0,+∞). We obtain y 7→ [1,+∞) at the end of the program:

x 7→ [1000, 1000]; y 7→ [1,+∞)



Narrowing

Observation
Consider a monotonic function, such as f (x) = 0.5x + 1 on the set of real
numbers.
If we consider a sequence x0, f (x0), . . . , this sequence is

I monotonically increasing iff x0 < x1 (e.g. for x0 = 0)

I monotonically decreasing iff x1 < x0 (e.g. for x0 = 3)

Informally, the sequence continues of the direction in which it starts in the
first step.

This is because x0 < x1 implies by monotonicity of f that x1 < x2 etc.,
whereas x1 < x0 implies x2 < x1.

The Idea
Let W : A→ A such that x vW (x).
After finding fixpoint of (W ◦ F )#, apply F# to improve precision.



Widen and Narrow

Lemma: Let F# and W be monotonic functions on a partial order v such
that x vW (x) for all x . Define the following:

I x∗ = tn≥0(F#)n(⊥)

I y∗ = tn≥0(W ◦ F#)n(⊥)

I z∗ = un≥0(F#)n(y∗)

where we also assume that the two t and one u exist. Then

I x∗ is the least fixpoint of F# and z∗, is the least fixpoint of W ◦ F#

(by Tarski’s Fixpoint Theorem), and

I x∗ v z∗ v y∗.



Proof

By induction, for each n we have

(F#)n(⊥) v (W ◦ F#)n(⊥)

Thus by Comparing Fixpoints of Sequences, we have x∗ v y∗.
Next, we have that

x∗ = F#(x∗) v F#(y∗) v (W ◦ F#)(y∗) v y∗

Thus, F#(y∗) v y∗. From there by induction and monotonicity of F# we obtain

(F#)n+1(y∗) v (F#)n(y∗)

i.e. the sequence (F#)n(y∗) is decreasing. Therefore, y∗ is its upper bound and
therefore z∗ v y∗.
On the other hand, we have by monotonicity of F#, the fact that x∗ is fixpoint,
and x∗ v y∗ that:

x∗ = (F#)n(x∗) v (F#)n(y∗)

Thus, x∗ is the lower bound on (F#)n(y∗), so x∗ v z∗.



Note

Even if z∗ does not exist, we can simply compute (F#)n(y∗) for any chosen
value of n, it is still a sound over-approximation, because it approximates
x∗, which approximates the concrete value:

x∗ v zn

so
s∗ ⊆ γ(x∗) ⊆ γ(zn)

Being able to stop at any point gives us an anytime algorithm.



Example showing how narrowing may improve result after
widening

In the above example for the program, the results obtained using widening

are:

x = 0;
y = 1;
// x −> [0,0], y −> [1,1]
// (merge point)
// x −> [0,1000], y −> [1,+infty)
while (x < 1000) {

// x −> [0,999], y −> [1,+infty)
x = x + 1;
// x −> [0,1000], y −> [1,+infty)
y = 2∗x;
// x −> [0,1000], y −> [0,+infty)
y = y + 1;
// x −> [0,1000], y −> [1,+infty)
print(y);
}
// x −> [1000,1000], y −> [1,+infty)



Example cont.
Let us now apply one ordinary iteration, without widening. We obtain:

x = 0;
y = 1;
// x −> [0,0], y −> [1,1]
// (merge point)
// x −> [0,1000], y −> [1,2001]
while (x < 1000) {

// x −> [0,999], y −> [1,+infty)
x = x + 1;
// x −> [0,1000], y −> [1,+infty)
y = 2∗x;
// x −> [0,1000], y −> [0,2000]
y = y + 1;
// x −> [0,1000], y −> [1,2001]
print(y);
}
// x −> [1000,1000], y −> [1,2001]

Thus, we obtained a good first approximation by a few iterations with
widening and then improved it with a single iteration without widening.


