
Lecturecise 15: Weak monadic second-order theory of
one successor (WS1S)



Reachability in the Heap

Many programs manipulate linked data structures (lists, trees). To express
many important properties of such programs we need a logic that supports
transitive closure.

Example: Consider a linked list

root

current

.next .next .next .next .next .next

As part of verifying code that manipulates linked lists, we need to say that
the object current is reachable from the root of the linked list. We can
write this reachability condition as follows:

(root, current) ∈ {(x , y) | x 6= null ∧ next(x) = y}∗



More Data Structure Correctness Properties

I Data structure has no cycles

I The set of objects in the data structure does not change when we
balance a binary search tree

I When we insert an object into a data structure, the set of reachable
objects is increased by the given object

I Correctness of removal from doubly linked list



A Related Use: Non-Interference

Prove that two parts of program will touch disjoint heap locations

I ensure that properties of an object on heap hold after a procedure call

I prove that the object is not reachable from procedure parameters and
globals

I prove that if an object is reachable in one procedure, it is not
reachable in another

Application in e.g. automated parallelization, Scala actor programs:

I to ensure absence of data races, actors should not access same region
of state

I again need to show that if an object is reachable in one actor, it is not
reachable in another actor



WS1S as a Logic for Reachability

Questions we aim to answer:

I What is the syntax and semantics of logics that we can use to express
such conditions?

I How do we prove verification conditions in such logic?

We look at one such logic: Weak Monadic Second-Order Logic of One
Successor (WS1S). We show its decidability by using automata to describe
the set of models of WS1S formulas.



Weak Monadic Logic of One Successor

Explanation of the name:

I second-order logic: we can quantify not only over elements but also
over sets and relations

I monadic: we cannot quantify over relations of arity two or more, just
over unary relations (sets)

I weak: the sets we quantify over are finite

I of one successor: the domain is an infinite chain, where each element
has one successor (we only have successor and equality)



Overview

expressiveness

decidability

Boolean Logic

Quantified
Boolean Logic

WS1S

FOL

SOL

NP-
complete

PSPACE-
complete

non-
elementary undecidable

regular



Syntax of WS1S0

Minimalistic syntax

F ::= v ⊆ v | succ(v , v) | F ∨ F | ¬F | ∃v .F

I only sets, no first-order variables

I quantification only over finite sets



Semantics

Let N = {0, 1, 2, . . .} denote non-negative integers and D the set of all
finite subsets of N (i.e. 2N).

We consider the set of interpretations (D, α) where

I for each variable v we have α(v) ∈ D

I ⊆ is the subset relation

α(⊆) = {(S1, S2) | S1 ⊆ S2}

I the relation succ(v1, v2) is the successor relation on integers lifted to
singleton sets:

α(succ) = {({k}, {k + 1}) | k ∈ N}

The meaning of formulas is given by standard First-order logic semantics.



Set operations (as an exercise)

Quantification over sets with ⊆ gives us the full Boolean algebra of sets.

I Two sets are equal: (S1 = S2) = (S1 ⊆ S2) ∧ (S2 ⊆ S1)

I Strict subset: (S1 ⊂ S2) = (S1 ⊆ S2) ∧ ¬(S2 ⊆ S1)

I Set is empty: (S = ∅) = ∀S1.S ⊆ S1

I Set S is singleton (has exactly 1 element): One(S) =

I Set membership, treating elements as singletons: (x ∈ S) =

I Intersection: (A = B ∩ C ) =

I Union: (A = B ∪ C ) =

I Set difference: (A = B \ C ) =

I If k is a fixed constant, properties card(A) ≥ k , card(A) ≤ k, card(A) = k



Set operations
The ideas is that quantification over sets with ⊆ gives us the full Boolean algebra
of sets.

I Two sets are equal: (S1 = S2) = (S1 ⊆ S2) ∧ (S2 ⊆ S1)

I Strict subset: (S1 ⊂ S2) = (S1 ⊆ S2) ∧ ¬(S2 ⊆ S1)

I Set is empty: (S = ∅) = ∀S1.S ⊆ S1

I Set S is singleton (has exactly 1 element):
One(S) = (¬(S = ∅)) ∧ (∀S1.S1 ⊂ S → S1 = ∅)

I Set membership, treating elements as singletons: (x ∈ S) = (x ⊆ S)

I Intersection:
(A = B ∩ C ) = (A ⊆ B ∧ A ⊆ C ) ∧ (∀A1.A1 ⊆ B ∧ A1 ⊆ C → A1 ⊆ A)

I Union:
(A = B ∪ C ) = (B ⊆ A ∧ C ⊆ A) ∧ (∀A1.B ⊆ A1 ∧ C ⊆ A1 → A ⊆ A1)

I Set difference: (A = B \ C ) = (A ∪ (B ∩ C ) = B ∧ A ∩ C = ∅) (or just use
element-wise definitions with singletons)

I If k is a fixed constant, properties card(A) ≥ k , card(A) ≤ k, card(A) = k



Transitive closure of a relation

The relation Closed becomes

Closed(S ,F ) = (∀x , y .One(x) ∧ One(y) ∧ x ∈ S ∧ F (x , y)→ y ∈ S)

If F (x , y) is a formula on singletons, we can define reflexive transitive
closure, (u, v) ∈ {(x , y) | F (x , y)}∗ as before by

∀S .u ∈ S ∧ Closed(S ,F )→ v ∈ S

Thus, we can express

(current, root) ∈ {(y , x) | x 6= null ∧ next(x) = y}∗

in WS1S.
(To express structures with multiple acyclic lists and ’null’, we introduce the
set ’Nulls’ denoting natural numbers that are considered null.)



Using transitive closure and successors

I Constant zero: (x = 0) = One(x) ∧ ¬(∃y .One(y) ∧ succ(y , x))

I Addition by constant: (x = y + c) =
(∃y1, . . . , yc−1.succ(y , y1) ∧ succ(y1, y2) ∧ . . . ∧ succ(yc−1, x))

I Ordering on positions in the string:
(u ≤ v) = ((u, v) ∈ {(x , y) | succ(x , y))}∗

I Reachability in k-increments, that is, ∃k ≥ 0.y = x + c · k:
Reachc(u, v) = ((u, v) ∈ {(x , y) | y = x + c}∗)

I Congruence modulo c :
(x ≡ y)(mod c) = Reachc(x , y) ∨ Reachc(y , x)



Representing integers

I although we interpret elements as sets of integers, we cannot even talk
about addition of two arbitrary integers x = y + z , only addition with
a constant

I although we can say Reachc(x , y) we cannot say in how many steps we
reach y from x .

However, if we view sets of integers digits of a binary representation of
another integer, then we can express much more. If S is a finite set, let
N(S) represent the number whose digits are S , that is:

N(S) =
∑
i∈S

2i



Representing integers

N(S) =
∑
i∈S

2i

Then we can define addition N(Z ) = N(X ) + N(Y ) by saying that there
exists a set of carry bits C such that the rules for binary addition hold:

∃C . 0 /∈ C ∧ ∀i .
(

((i ∈ Z ) ↔ ((i ∈ X )⊕ (i ∈ Y )⊕ (i ∈ C )) ∧
((i + 1 ∈ C ) ↔ atLeastTwo(i ∈ X , i ∈ Y , i ∈ C )

)
where

x ⊕ y = (x ∨ y) ∧ ¬(x ∧ y)

atLeastTwo(x , y , z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

This way we can represent entire Presburger arithmetic in MSOL over
strings.



Expressive power

I We can represent entire Presburger arithmetic in MSOL over strings

actually, more expressive power because X ⊆ Y means that the one bits
of N(X ) are included in the bits of N(Y ), that is, the bitwise or of
N(X ) and N(Y ) is equal to N(Y )

In fact, if we add the relation of bit inclusion into Presburger arithmetic,
we obtain precisely the expressive power of MSOL when sets are treated
as binary representations of integers. Indeed, taking the minimal syntax
of MSOL from the beginning, the bit inclusion gives us the subset,
whereas the successor relation s(x , y) is expressible using y = x + 1.



Definable Relations

We can define relations on N in two different ways.
Relations on singleton sets:

r sF = {(p, q) | F ({p}, {q})}

Relations on binary representations:

rbF = {(p, q) | F (N(p),N(q))}

Addition is not definable as some r sF , but it is definable as rbF .



Decision procedure

Theorem (Büchi theorem, [Büchi, 1960] and [Elgot, 1961])
A language L ⊆ Σ∗ is regular ⇔ it is expressible in weak monadic
second-order logic on words.

Given WS1S sentence φ, check for satisfiability:

I convert φ to WS1S0 formula φ′

I construct automaton Aφ′ such that L(Aφ′) = L(φ′) = L(φ)

I check whether L(Aφ′) = ∅
I if not, φ is satisfiable, else, φ is unsatisfiable.



Decision procedure

Theorem (Büchi theorem, [Büchi, 1960] and [Elgot, 1961])
A language L ⊆ Σ∗ is regular ⇔ it is expressible in weak monadic
second-order logic on words.

Given WS1S sentence φ, check for satisfiability:

I convert φ to WS1S0 formula φ′

I construct automaton Aφ′ such that L(Aφ′) = L(φ′) = L(φ)

I check whether L(Aφ′) = ∅
I if not, φ is satisfiable, else, φ is unsatisfiable.



MSOL on words

Given a formula φ(X1, . . . ,Xn), with free variables X1, . . . ,Xn,
an interpretation α is a finite string in ({0, 1})∗:

I X1 is given on the first row, X2 on the second, ...

I for a string c0, . . . , cp, ..., cn in row i

p ∈ Xi ⇔ ci = 1

Example:

φ(X ,Y ) : ∀P.One(P)→ (P ⊆ X ↔ (∃Q.One(Q) ∧ succ(P,Q) ∧ Q ⊆ Y ))

α(X ) = {0, 3, 4, 5} and α(Y ) = {1, 4, 5, 6} is given by

w =

∣∣∣∣ 1 0 0 1 1 1 0
0 1 0 0 1 1 1

∣∣∣∣



Using Automata to Decide WS1S

Consider a formula F of WS1S. Let V be a finite set of all variables in F .
We construct an automaton A(F ) in the finite alphabet

Σ = ΣV
1

for Σ1 = {0, 1} such that the following property holds:
for every w ∈ Σ∗,

w ∈ L(A(F )) ⇐⇒ w |= F



Automaton construction

We define the automaton by recursion on the structure of formula.

Case A(x ⊆ y): Automaton for regular expression [x → y ]∗

start

(
0
0

)
,

(
1
1

)
,

(
0
1

)



Automaton construction cont.

Case A(succ(x , y)): Automaton for regular expression
[¬x ∧ ¬y ]∗[x ∧ ¬y ][¬x ∧ y ][¬x ∧ ¬y ]∗

start

(
0
0

)
(

1
0

) (
0
1

)
(

0
0

)



Automaton construction cont.

Case A(F1 ∨ F2): Automaton for union of regular languages,
A(F1) ∨ A(F2)

Case A(¬F ): Complement ¬A(F ) (by flipping accepting and
non-accepting states).



Existential Quantification A(∃x .F )

w |= ∃x .F iff ∃b.patch(w , x , b) |= F

Let w = w1 . . .wn where wi ∈ Σ and b = b1 . . . bm where bj ∈ Σ1.
Let N = max(n,m). Define patch(w , x , b) = p1 . . . pN where pi ∈ Σ such
that

pi (v) =


wi (v), if v 6= x ∧ i ≤ n
0, if v 6= x ∧ i > n
bi , if v = x ∧ i ≤ m
0, if v = x ∧ i > m

.......

....... 0

.......

bbbbbbbbbbbbbb

.......

....... 0

.......

_______

w

______________

patch(w,x,b)



Existential Quantification A(∃x .F )

We need that for every word,

w ∈ L(A(∃x .F ))

iff
∃s ∈ Σ∗1. patch(w , x , s) ∈ L(A(F ))

Given a deterministic automaton A(F ), we can construct a deterministic
automaton accepting {w | ∃s ∈ Σ∗1. patch(w , x , s) ∈ L(A(F ))} in two
steps:

I take the same initial state

I for each transition δ(q,w) introduce transitions δ(q,w [x := b]) for all
b ∈ Σ1

I initially set final states as in the original automaton

I if q is a final state and zerox ∈ Σ is such that zerox(v) = 0 for all
x 6= v , and if δ(q′, zerox) = q, then set q′ also to be final



Examples

Implementation in the MONA tool: http://www.brics.dk/mona/

Example 1
Compute automaton for formula ∃X .¬(X ⊆ Y ).
MONA syntax:

var2 Y;

ex2 X: ~(X sub Y);

Example 2
Use the rules to compute (and minimize) the automaton for

¬((¬(X ⊆ Y )) ∧ (¬(Y ⊆ X )))

http://www.brics.dk/mona/


Complexity

The construction determinizes the automaton whenever it needs to perform
negation. Moreover, existential quantifier forces the automaton to be
non-deterministic. Therefore, with every alternation between ∃ and ∀ we
obtain an exponential blowup. For formula with n alternations we have

22
...2n

complexity with a stack of exponentials of height n. Is there a better
algorithm?

Lower Bound The following paper shows that, in the worst case such
behavior cannot be avoided, because of such high expressive power of
MSOL over strings.
Cosmological Lower Bound on the Circuit Complexity of a Small Problem in Logic,
L.Stockmeyer and A.R. Meyer, 2002. (See the introduction and the conclusion
sections)

http://theory.csail.mit.edu/~meyer/stock-circuit-jacm.pdf

http://theory.csail.mit.edu/~meyer/stock-circuit-jacm.pdf


Example

Compute the automaton for the formula ∃Y .(X < Y ) where < is
interpreted treating X ,Y as digits of natural numbers. Also compute the
automaton for the formula ∃X .(X < Y ).
Define the less-than relation in MONA and encode this example.


