Lecture 12
Synthesis from Relations and Types

Viktor Kuncak



Synthesis of Functions from Relations

» We previously saw: how to convert programs into formulas

» verification-condition generation
» formulas describe relation between inputs and outputs

» Now: convert formulas into programs (opposite direction)

Example domain: Presburger arithmetic



Programs and Specs are Relations

program: x=x4+2;y=x+10
relation: {(x,y,z,x,y,Z) | X' =x+2ANy =x+12NZ =z}
formula: X =x+2N Ny =x+12NZ =z

Specification:
Z=zA(x>0—=(xX>0Ay >0)

Adhering to specification is relation subset:

{(y 2.1,y 2) | X =X+2/\y —x+12A2 =2}
C {(xy,z,x,y2)|Z =2zA(x>0— (X >0Ay >0))}

Non-deterministic programs are a way of writing specifications



Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0

Corresponding program:
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Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 =x; y0 =y;
havoc(x,y);
assume(x > x0 && y > y0)

}
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Writing Specs Using Havoc and Assume

Global variables V = {x1,...,xp}
Specification
F(X15 ey Xy Xes o5 X0)

Becomes

{ var yi,...,¥Yn

havoc(xi, ..., Xn);
assume(F(y1, ...y Yny X1, -+, %n)) }



Program Refinement and Equivalence
For two programs, define refinement P; C P iff

is a valid formula.
(Some books use the opposite meaning of C.)
As USU3|, P2 4 Pl iff Pl C P2.

» Py C Py iff p(P1) C p(P2)

Define equivalence P, = P, ift PP C P, AP, C P
> Py = Py iff p(P1) = p(P2)

Example for V = {x, y}

{var x0; x0 = x; havoc(x); assume(x > x0)} J (x = x + 1)

Proof: Use R to compute formulas for both sides and simplify.



Program Refinement and Equivalence
For two programs, define refinement P; C P iff

is a valid formula.
(Some books use the opposite meaning of C.)
As USU3|, P2 4 Pl iff Pl C P2.

» Py C Py iff p(P1) C p(P2)

Define equivalence P, = P, ift PP C P, AP, C P
> Py = Py iff p(P1) = p(P2)

Example for V = {x, y}

{var x0; x0 = x; havoc(x); assume(x > x0)} J (x = x + 1)
Proof: Use R to compute formulas for both sides and simplify.

X =x+1Ay =y = X' >xANy =y



Stepwise Refinement Methodology

Start form a possibly non-deterministic specification Py
Refine the program until it becomes deterministic and efficiently
executable.

Po3d P 3...3P,

Example:

havoc(x); assume(x > 0); havoc(y); assume(x < y)
havoc(x); assume(x > 0);y = x + 1

x=42;y =x+1

x=42;y =43

I

In the last step program equivalence holds as well



Preserving Domain in Refinement



What is the domain of a relation?

Given relation r C A x B for any sets A, B, we define domain of r
as
dom(r)={a|3b. (a,b) € r}
when r is a total function, then dom(r) = A
» a typical case if r is an entire program
Let r = {(x,X') | F}, FV(F) C Varu Var', Var' = {x' | x € Var}.
Then, dom(r) = {x | 3x".F}

» computing domain = existentially quantifying over primed vars

Example: for Var = {x,y}, Rix=x+1)=x'=x+1Ay =y.
The formula for the domain is: 3x",y’. X' =x+ 1Ay =y,
which, after one-pint rule, reduces to true.

> All assignments have true as domain.



Preserving Domain

It is not interesting program development step P 3 P is P’ is
false, or is false for most inputs.
Example (Var = {x,y})

(havoc(x); assume(x + x = y)) 2 (assume(y = 6); x = 3)

Refinement P J Q, ensures R(Q) — R(P). A consequence is
(3x".R(Q)) — (3X'.R(P)).

We additionally wish to preserve the domain of the relation
between X, X’

» if P has some execution from X ending in X’

» then Q should also have some execution, ending in some
(possibly different) X" (even if it has fewer choices)

(3%.R(P)) > (37.R(Q))

So, we want relations to be smaller or equal, but domains equal.
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Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6);x =

» RP)=x"+xX"=y' Ny =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P 3 P’ really hold? yes

Now consider the right hand side:
» domainof Pis Ix',y/ X'+ x' =y Ay =y
» equivalent to: y%2 =10
» domainof Pis: 3x',y/x =3 Ay =6Ay =y
> equivalent to: y =6

Does domain formula of P’ imply the domain formula of P?



Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 2 (assume(y = 6); x = 3)

» RP)=x"+xX"=y' Ny =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P 3 P’ really hold? yes

Now consider the right hand side:
» domainof Pis Ix',y/ X'+ x' =y Ay =y
» equivalent to: y%2 =10
» domainof Pis: 3x',y/x =3 Ay =6Ay =y
> equivalent to: y =6

Does domain formula of P’ imply the domain formula of P? no



Preserving Domain: Exercise

Given P:
havoc(x); assume(x + x = y)
Find P; and P> such that
» PO P3P
» no two programs among P, P;, P, are equivalent
» programs P, P; and P, have equivalent domains

» the relation described by P, is a partial function



Complete Functional Synthesis

Synthesis from Relations

Software Synthesis Procedures

Viktor Kuncak, Mikaél Mayer, Ruzica Piskac, Philippe Suter
Communications of the ACM, Vol. 55 No. 2, Pages 103-111
http://doi.org/10.1145/2076450.2076472


http://doi.org/10.1145/2076450.2076472

Example of Synthesis

Input:

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) => (
h x 3600 + m * 60 + s == totsec
&& 0 <=m && m < 60
&& 0 <=5 && s < 60))

Output:

val (hours, minutes, seconds) = {

val locl = totsec div 3600

val num2 = totsec + ((—3600) * locl)

val loc2 = min(num2 div 60, 59)

val loc3 = totsec + ((—3600) * locl) + (—60 * loc2)
(locl, loc2, loc3)

}



Complete Functional Synthesis

Domain-preserving refinement algorithm that produces a partial
function

» assignment: res = choose x. F
» corresponds to: {var x; assume(F); res = x}

» we refine it preserving domain into: assume(D);res =t
(where t does not have 'choose’)

More abstractly, given formula F and variable x find
> formula D
» term t not containing x
such that, for all free variables:
» D — F[x:=1t] (tisa term such that refinement holds)
» D <= 3Ix.F (D is the domain, says when t is correct)
Consequence of the definition: D <= F[x := t]



From Quantifier Elimination to Synthesis

Quantifier Elimination

If ¥ is a tuple of variables not containing x, then

Ix.(x = t(y) AF(x,7) <= F(t(y),y)

Synthesis

choose x.(x = t(y) A F(x,¥))

gives:
» precondition F(t(y),¥), as before, but also

» program that realizes x, in this case, t(¥)



Handling Disjunctions

We had
Ix.(F1(x) V F2(x))

is equivalent to

(3x.F1(x)) V (3x.F2(x))
Now:

choose x.(F1(x) V Fa(x))

becomes:
if (D1) (choose x.F1(x)) else (choose x.Fa(x))

where Dj is the domain, equivalent to 3x.F;(x) and computed
while computing choose x.Fi(x).



Framework for Synthesis Procedures

We define the framework as a transformation
» from specification formula F to

» the maximal domain D where the result x can be found, and
the program t that computes the result

(D | t) denotes: the domain (formula) D and program (term) t
Main transformation relation

choose x.F + (D | t)

means
» D — F[x:=1t] (tisa term such that refinement holds)
» D < dx.F (D is the domain, says when t is correct)

Because F[x := t] implies 3x.F, the above definition implies that
D, F[x := t] and 3x.F are all equivalent.



Rule for Synthesizing Conditionals

choose x.F1 (D1 | t1)  choose x.Fp F (Dy | tp)
choose x.(F1 V Fy) + (Dy Vv Dy | if (D) t1 else tp)

To synthesize the thing below the — , synthesize the things above
and put the pieces together.



Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N

choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1

Then apply:
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Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N
choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1
Then apply:
> rule for conditionals

> one-point rule



Synthesis using Test Terms

L N

choose x. \/ \/(x =ak+iNF)
k=1i=1

produces the same precondition as the result of QE, and the
generated term is:

if (Fl[X =a; + 1]) a+1
elseif (Fi[x :=a1+2]) a1 +2

elseif (Fi[x :=ax+1i]) ax +i
elseif (Fi[x:=aL+ N])a.+ N
Linear search over the possible values, taking the first one that

works.
This could be optimized in many cases.



Synthesizing a Tuple of Outputs

choose x.F + (Di | t1) choose y.D1 F (D5 | to)
choose (x,y).F F (Dy | (t1]y := ta], t2))

Note that y can appear inside D; and ty, but not in D, or t;



Substitution of Variables

In quantifier elimination, we used a step where we replace M - x
with y. Let F be a formula in which x occurs only in the form
M - x.

What is the corresponding rule?



Substitution of Variables

In quantifier elimination, we used a step where we replace M - x
with y. Let F be a formula in which x occurs only in the form
M - x.

What is the corresponding rule?

choose y.(F[(M - x) :=y] A (Ml|y)) + (D |t)
choose x.F & (D | t[y := t/M])




Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by z and consider the
synthesis problem:
choose x. F

What is the verification condition that checks whether the solution
for x is unique?
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Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by z and consider the
synthesis problem:
choose x. F

What is the verification condition that checks whether the solution
for x is unique?
Solution is not unique if this PA formula is satisfiable:

FAFx:=y|]Ax#y

If we find such x, y,z we report z as an example input for which
there are two possible outputs, x and y.



Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution
does not exist.

Let the variables in scope be denoted by z and consider the
synthesis problem:
choose x. F

What is the verification condition that checks if there are cases
when no solution x exists?



Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution
does not exist.

Let the variables in scope be denoted by z and consider the
synthesis problem:
choose x. F

What is the verification condition that checks if there are cases
when no solution x exists?
Check satisfiability of this PA formula:

—dx.F

If there is a satisfying value for this formula, z, report it as an
example for which no solution for x exists.



Synthesis of Functions of a Given Type



Type Judgments and Questions

In environment [, expression e has type T:

N-e: T

After defining this relation inductively using type rules, we can ask
different types of questions:

given | task
type checking lFe: T |T,e, T check if T'Fe: T
type inference MN-e:? MNe |find Tst.ITFe: T
type inhabitation | 7.7 | I, T findest.TFe: T

Inhabitation can be used for type-directed completion: in a given
program context, can we construct the expression of a given type?

Also, type T can be viewed as a proposition, program e as a proof.
Inhabitation asks if the proposition T has some proof e
(if it is a theorem, usually in some constructive logic).



Simply Typed Lambda Calculus (Church Style)

ee; means e applied to ep; in Scala: e(ep)

Ax : Ty.e is anonymous function, in Scala: (x: T1) = e

(x, T)yeTl i
—_ |
Ty T variable
FFe:T1—>T2, FFelle 3 .
application

[Hee: T

Mx:=T1] Fe: Ty

bst ti
T (O Ti.e): T T, ooracton




Type Checking is Easy and Types Unique

(x, T)eTl

W variable

rl—e:T1—>T2, r|—61:T1

application
Fee: 1o PP

Mx:=T1] Fe: T

bst ti
T (O Tr e): Th s T, oooracton




Which Cases of Inhabitation are Difficult?

T)erl
(I'X’I—X):ET variable
FI—e:T1—>T2, r|—61:T1 ) i
application

Fl—ee1:T2

F[x = Tl] F (S T2

bst ti
TFOw: T e): Tio T, cooracton

Suppose that we are equally happy with any of the possible terms
of a given type.



Which Cases of Inhabitation are Difficult?

T)erl
(I'X’I—X):GT variable
FI—e:T1—>T2, r|—61:T1 ) i
application

Fl—ee1:T2

F[x = Tl] [ (S T2
r|—()\X2 Tl. 62)2T1—> T2

abstraction
Suppose that we are equally happy with any of the possible terms
of a given type.

Challenge: in application rule, T; can be arbitrarily complex type;
we would need to guess it.



Approaches to Solve the Difficulty

For more complex type systems, the problem is undecidable

» we can choose to restrict our search to expressions e of some
bounded size

> the problem becomes decidable if type checking is decidable:
can try all terms up to given size

In our simple case of simply typed lambda calculus: there is a
terminating algorithm that solves type inhabitation problem (in
deterministic singly exponential time and polynomial space),
without requiring any bound on the size of e.



Key ldea: Long Normal Form of Lambda Terms

Reductions preserve types of terms. Apply them to get normal
form.

Beta reduction: (\x.e;)e; — subst(ey, x, €2)
If applied exhaustively ensures that left side of application is never
a lambda.

This process can blow up, but terminates ( “strong normalization”).

Result: applications have the form fe; ... e, where f is a variable.



Key ldea: Long Normal Form of Lambda Terms

Eta expansion: when e has type T; — T then:

e—>()\x: T1.e1x)

Strategy: replace partially applied type variables by adding missing
arguments.

Given
f-Ti—=(Th—...(Th—T))

where T is not a function type, if k < n then replace
fel I
that is not of the form fe; ... exexy1 by
)\Xk+1./\Xk+2. PN )\X,,. fe1 v Ck Xkl - - Xn

As a result, application is always to a variable and applies all of its
arguments that the type permits.



Type Rules for Long Normal Form Terms
full variable application (n > 0), if T is non-function type:

(f—,T1*>...*>T,,—)T)€r, NlFe: Ty, ... THFe,: Ty

M-fer...ep: T
abstraction:

Fw{(x, T1),...,(xn, Tp) Fe: T
FrE(\xa: T oo cxp: Tpe): Ti = ... Tp— T

> if there is a term of given type, this calculus derives some
equivalent term of this type
» applying rules backwards generates queries with types that
appear somewhere in environment or the query (possibly
inside the syntactically larger types)
> there is no need to explore query ' =7 : T if a query
I+ 7?: T was already asked for dom(I") C dom(I")
There is a finite number of extensions of the original I', so the
search can stop after a finite amount of steps.



Using Inhabitation to Generate Suggestions

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac.
Complete completion using types and weights. In ACM SIGPLAN
PLDI, 2013. https://doi.org/10.1145/2499370.2462192

>

optimize representation to ignore duplicate arguments of the
same type to check inhabitation (succinct terms)

extend the algorithm to enumerate terms of given type

instead of ordering terms by size, assign cost for each variable
(cost of term is sum of its variables)

map synthesis of Scala and Java code to lambda calculus

statistically estimate the cost of variables from code corpus


https://doi.org/10.1145/2499370.2462192

