
Lecture 7
More Recursion. Bounded Model Checking

Viktor Kuncak

Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation E (r) = r

We define the intended meaning as s =
⋃

i≥0 E (∅), which satisfies E (s) = s
and also is the least among all relations r such that E (r) ⊆ r (therefore,
also the least among r for which E (r) = r)

We picked least fixpoint, so if the execution cannot terminate on a state x ,
then there is no x ′ such that (x , x ′) ∈ s.
This model is simple (just relations on states) though it has some
limitations: let q be a program that never terminates, then

I ρ(q) = ∅ and ρ(c q) = ρ(c) ∪ ∅ = ρ(c)
(we cannot observe optional non-termination in this model)

I also, ρ(q) = ρ(∆∅) (assume(false)), so the absence of results due to
path conditions and infinite loop are represented in the same way

Alternative: error states for non-termination (we will not pursue)

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

What does it mean that E (r) ⊆ r ?

Plugging r instead of the recursive call results in something that conforms
to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r ,
show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

What does it mean that E (r) ⊆ r ?
Plugging r instead of the recursive call results in something that conforms
to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r ,
show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Prove E (q) ⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be q = {((x , y), (x ′, y ′)) | y ′ ≥ y}

Prove E (q) ⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Prove E (q) ⊆ q - given by a quantifier-free formula

Formula for Checking Specification

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

Specification: q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Formula to prove, generated by representing E (q) ⊆ q:[

(x > 0 ∧ x1 = x − 1 ∧ y1 = y ∧ y2 ≥ y1 ∧ y ′ = y2 + 2)
∨(¬(x > 0) ∧ x ′ = x ∧ y ′ = y)

)
→ y ′ ≥ y

I Because q appears as E (q) and q, the condition appears twice.

I Proving f ⊆ q by E (q) ⊆ q is always sound, whether or not function f
terminates; the meaning of f talks only about properties of terminating
executions (relations can be partial)

Multiple Procedures: Functions on Pairs of Relations

Two mutually recursive procedures r1 = E1(r1, r2), r2 = E2(r1, r2)
We extend the approach to work on pairs of relations:

(r1, r2) = (E1(r1, r2),E2(r1, r2))

Define Ē (r1, r2) = (E1(r1, r2),E2(r1, r2)), let r̄ = (r1, r2). We define
semantics of procedures as the least solution of

Ē (r̄) = r̄

where (r1, r2) v (r ′1, r
′
2) means r1 ⊆ r ′1 and r2 ⊆ r ′2

Even though pairs of relations are not sets but pairs of sets, we can define
set-like operations on them, e.g.

(r1, r2) t (r ′1, r
′
2) = (r1 ∪ r ′1, r2 ∪ r ′2)

The entire theory works when we have a partial order v with some “good
properties”. (Lattice elements are a generalization of sets.)

Multiple Procedures: Least Fixedpoint and Consequences

Two mutually recursive procedures r1 = E1(r1, r2), r2 = E2(r1, r2)
For E (r1, r2) = (E1(r1, r2),E2(r1, r2)), semantics is

(s1, s2) =
⊔
i≥0

Ē i (∅, ∅)

It follows that for any c1, c2 if

E1(c1, c2) ⊆ c1 and E2(c1, c2) ⊆ c2

then s1 ⊆ c1 and s2 ⊆ c2.

Induction-like principle: To prove that mutually recursive relations satisfy
two contracts, prove those contracts for the relation body definitions in
which recursive calls are replaced by those contracts.

Replacing Calls by Contracts: Example

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
r2
} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
r1
}
} ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
{ val x0 = x; y0 = y

havoc(x,y)
assume(y >= y0) }

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
val x0 = x; y0 = y
havoc(x,y)
assume(y > y0)
}
} ensuring(y >= old(y))

Replacing Calls by Contracts: Example

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
r2
} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
r1
}
} ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
{ val x0 = x; y0 = y

havoc(x,y)
assume(y >= y0) }

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
val x0 = x; y0 = y
havoc(x,y)
assume(y > y0)
}
} ensuring(y >= old(y))

Bounded Model Checking and k-Induction

Concrete program semantics and verification

For each program there is a (monotonic, ω-continuous) function
F : Cn → Cn such that

c̄∗ =
⋃
i≥0

F i (∅, . . . , ∅)

describes the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics remains
within the set of good states G , that is c∗ ⊆ G , or⋃

i≥0
F i (∅, . . . , ∅)

 ⊆ G

which is equivalent to
∀n. F n(∅, . . . , ∅) ⊆ G

Unfolding for Counterexamples: Bounded Model Checking

∀n. F n(∅, . . . , ∅) ⊆ G

The above condition is false iff there exists k and c̄ ∈ Cn such that

c̄ ∈ F k(∅, . . . , ∅) ∧ c̄ /∈ G

For a fixed k this can often be expressed as a quantifier-free formula.
Example: replace a loop ([c]s) ∗ [!c] with finite unrolding ([c]s)k [!c]
Specifically, for n = 1, S = Z2, C = 2S , and F : C → C describes the
program: x=0;while(*)x=x+y

F (B) = {(x , y) | x = 0} ∪ {(x + y , y) | (x , y) ∈ B}

We have F (∅) = {(x , y) | x = 0} = {(0, y) | y ∈ Z}

F 2(∅) = {(0, y) | y ∈ Z} ∪ {(y , y) | y ∈ Z}

F 3(∅) = {(x , y) | x = 0 ∨ x = y ∨ x = 2 ∗ y}

Formula for Bounded Model Checking

Let PB(x , y) be a formula in Presburger arithmetic such that
B = {(x , y) | PB(x , y)} then the formula

x = 0 ∨ (∃x0, y0.x = x0 + y0 ∧ y = y0 ∧ PB(x0, y0))

describes F (B). Suppose the set F k(B) can be described by a PA formula
Pk . If G is given by a formula PG then the program can reach error in k
steps iff

Pk ∧ ¬PG

is satisfiable.
Suppose PG is x ≤ y . For k = 3 we obtain

(x = 0 ∨ x = y ∨ x = 2 ∗ y) ∧ ¬(x ≤ y)

By checking satisfiability of the formula we obtain counterexample values
x = −1, y = −2.

Bounded Model Checking Algorithm

B = ∅
while (∗) {

checksat(!(B ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat =>
B ′ = F (B)
if (B ′ ⊆ B) return Valid
else B = B ′

}

Good properties

I subsumes testing up to given depth for all possible initial states

I for a buggy program k, can be small, tools can find many bugs fast

I a semi-decision procedure for finding all error inputs

Bounded Model Checking is Bounded

Bad properties

I can prove correctness only if F n+1(∅) = F n(∅) for a finite n

I errors after initializations of long arrays require unfolding for large n.
This program requires unfolding past all loop iterations, even if the
property does not depend on the loop:

i = 0
z = 0
while (i < 1000) {

a(i) = 0
}
y = 1/z

I For large k formula F k becomes large, so deep bugs are hard to find

Unfolding for Proving Correctness: k-Induction

Goal: ∀n. F n(∅, . . . , ∅) ⊆ G (1)

Suppose that, for some k ≥ 1

F k(G) ⊆ G (2)

By induction on p, for every p ≥ 1,

F pk(G) ⊆ G

By monotonicity of F , if n ≤ pk then

F n(∅̄) ⊆ F pk(∅̄) ⊆ F pk(G) ⊆ G

Therefore, (1) holds.
Algorithm: check (2) for increasing k ∈ {1, 2, . . .}

Summary: Using F k for Proofs and Counterexamples

Exact semantics is:
⋃

n≥0 F
n(∅̄)

Specification is G
If for some k :

I ¬(F k(∅̄) ⊆ G) then we prove that specification does not hold (and
there is a “k-step” execution in G ⊆ F k(∅̄) showing this)

I F k(G) ⊆ G , then we prove that specification holds by showing that it
holds in all base cases up to k and assuming it holds for all recursive
steps at depth k and deeper (k-induction)

Least fixedpoint of F k is the same as least fixedpoint of F : F i (∅̄) ⊆ F ki (∅̄),
so
⋃

gives same result as sequences are monotonic.
Each F k defines the program with the meaning same as F but syntactically
more obvious as k grows and we unfold more.

k-induction Algorithm

For monotonic F , prove or find counterexample for:

∀n. F n(∅, . . . , ∅) ⊆ G

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

F ′(c) can be F (c) or, thanks to previous checks, F (c) ∩ G
Save work: preserve solver state in checksats across different k
Lucky test: if (!(lfp(F)(initState(v0)) ⊆ G)) return Counterexample(v0)

Explanation for Sequences in k-Induction

∅̄ ⊆ F (∅̄), so F i (∅̄) ⊆ F i+1(∅̄). We have an ascending sequence:

∅̄ ⊆ F (∅̄) ⊆ F 2(∅̄) ⊆ . . . ⊆ F i (∅̄) ⊆ F i+1(∅̄) ⊆ . . .

In general, it need not be G ⊆ F (G) nor F (G) ⊆ G .
Define F ′(c) = F (c) ∩ G . Clearly F ′(c) ⊆ F (c). Moreover,

c1 ⊆ c2 → F ′(c1) ⊆ F ′(c2)

F ′(G) = F (G) ∩ G ⊆ G

So F ′ is monotonic and F ′(G) ⊆ G . We have descending sequence:

. . . ⊆ (F ′)i+1(G) ⊆ (F ′)i (G) ⊆ . . . ⊆ F ′(G) ⊆ G

Divergence in k-Induction

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
But, it often cannot find proofs when lfp(F) ⊆ G . G may be too weak to
be inductive, (F ′)n(G) may remain too weak:

F n(∅̄) ⊆ lfp(F) ⊆ (F ′)n(G) ⊆ F n(G)

Need weakening of F n(∅) or strengthening of (F ′)n(G)

Approximate Postconditions

Suppose we did not find counterexample yet and we have sequence

c0 ⊆ c1 ⊆ . . . ck ⊆ G

where ci = F i (∅̄), so F (ci) = ci+1

Instead of simply increasing k , we try to obtain larger values by finding
another sequence ai satisfying ai ⊆ ai+1 and

F (ai) ⊆ ai+1

for 0 ≤ i ≤ k , and with ak ⊆ G .
c0 ⊆ a0 and, by induction, ci ⊆ ai
If ai+1 = ai for some i , then F (ai) = ai so

lfp(F) ⊆ ai ⊆ ak ⊆ G

so we have proven lfp(F) ⊆ G , i.e., program satisfies spec.
We can also dually require ai−1 ⊆ F (ai), ensuring ai ⊆ F k−i (G).

Abstract Interpretation

A Method for Constructing Inductive Invariants

Basic idea of abstract interpretation

Abstract interpretation is a way to infer properties of program
computations.
Consider the assignment: z = x + y .

Interpreter:  x : 10
y : −2
z : 3

 z=x+y−−−−→

 x : 10
y : −2
z : 8


Abstract interpreter: x ∈ [0, 10]

y ∈ [−5, 5]
z ∈ [0, 10]

 z=x+y−−−−→

 x ∈ [0, 10]
y ∈ [−5, 5]
z ∈ [−5, 15]


Each abstract state represents a set of concrete states

Program Meaning is a Fixpoint. We Approximate It.

γ
maps abstract states to concrete states

Proving through Fixpoints of Approximate Functions

Meaning of a program (e.g. a relation) is a least fixpoint of F .
Given specification s, the goal is to prove lfp(F) ⊆ s

I if F (s) ⊆ s then lfp(F) ⊆ s and we are done

I lfp(F) =
⋃

k≥0 F
k(∅), but that is too hard to compute because it is infinite

union unless, by some luck, F n+1(∅) = F n for some n

Instead, we search for an inductive strengthening of s: find s ′ such that:

I F (s ′) ⊆ s ′ (s ′ is inductive). If so, theorem says lfp(F) ⊆ s ′

I s ′ ⊆ s (s ′ implies the desired specification). Then lfp(F) ⊆ s ′ ⊆ s

How to find s ′? Iterating F is hard, so we try some simpler function F#

I suppose F# is approximation: F (r) ⊆ F#(r) for all r

I we can find s ′ such that: F#(s ′) ⊆ s ′ (e.g. s ′ = F n+1
(∅) = F n

#(∅))

Then: F (s ′) ⊆ F#(s ′) ⊆ s ′ ⊆ s
Abstract interpretation: automatically construct F# from F (and sometimes s)

Programs as control-flow graphs

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

One possible corresponding control-flow graph is:

a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Programs as control-flow graphs

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

One possible corresponding control-flow graph is:
a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Sets of states at each program point
Suppose that

I program state is given by the value of the integer variable i

I initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Sets of states at each program point
Suppose that

I program state is given by the value of the integer variable i

I initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a Z

b

{0, 2, 5, 8, 11}
c {11}

d {0, 2, 5, 8}

e {2, 5, 8} f {0}

g {2, 5, 8, 11}

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Sets of states at each program point

Running the Program
One way to describe the set of states for each program point: for each
initial state, run the CFG with this state and insert the modified states at
appropriate points.

Reachable States as A Set of Recursive Equations
If c is the label on the edge of the graph, let ρ(c) denotes the relation
between initial and final state that describes the meaning of statement. For
example,

ρ(i = 0) = {(i , i ′) | i ′ = 0}
ρ(i = i + 2) = {(i , i ′) | i ′ = i + 2}
ρ(i = i + 3) = {(i , i ′) | i ′ = i + 3}
ρ([i < 10]) = {(i , i ′) | i ′ = i ∧ i < 10}

Sets of states at each program point

We will write T (S , c) (transfer function) for the image of set S under
relation ρ(c). For example,

T ({10, 15, 20}, i = i + 2) = {12, 17, 22}

General definition can be given using the notion of strongest postcondition

T (S , c) = sp(S , ρ(c))

If [p] is a condition (assume(p), coming from ’if’ or ’while’) then

T (S , [p]) = {x ∈ S | p}

If an edge has no label, we denote it skip. So, T (S , skip) = S .

Reachable States as A Set of Recursive Equations

Now we can describe the meaning of our program using recursive equations:

S(a) = {. . . ,−2,−1, 0, 1, 2, . . .}
S(b) = T (S(a), i = 0) ∪ T (S(g), skip)
S(c) = T (S(b), [¬(i < 10)])
S(d) = T (S(b), [i < 10])
S(e) = T (S(d), [i > 1])
S(f) = T (S(d), [¬(i > 1)])
S(g) = T (S(e), i = i + 3)

∪T (S(f), i = i + 2)

a Z

b

{0, 2, 5, 8, 11}
c {11}

d {0, 2, 5, 8}

e {2, 5, 8} f {0}

g {2, 5, 8, 11}

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Our solution is the unique least solution of these equations. Can be computed by
iterating starting from empty sets as initial solution.

The problem: These exact equations are as difficult to compute as running the

program on all possible input states. Instead, we consider approximate

descriptions of these sets of states.

A Large Analysis Domain: All Intervals of Integers

For every L,U ∈ Z interval:

{x | L ≤ x ∧ x ≤ U}

This domain has infinitely many elements, but is already an approximation
of all possible sets of integers.

Smaller Domain: Finitely Many Intervals

We continue with the same example but instead of allowing to denote all possible
sets, we will allow sets represented by expressions

[L,U]

which denote the set {x | L ≤ x ∧ x ≤ U}.
Example: [0, 127] denotes integers between 0 and 127.

I L is the lower bound and U is the upper bound, with L ≤ U.

I to ensure that we have only a few elements, we let

L,U ∈ {MININT,−128, 1, 0, 1, 127,MAXINT}

I [MININT,MAXINT] denotes all possible integers, denote it >
I instead of writing [1, 0] and other empty sets, we will always write ⊥

So, we only work with a finite number of sets 1 +
(
7
2

)
= 22.

Denote the family of these sets by D (domain).

New Set of Recursive Equations
We want to write the same set of equations as before, but because we have
only a finite number of sets, we must approximate. We approximate sets
with possibly larger sets.

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

I S1 t S2 denotes the approximation of S1 ∪ S2: it is the set that
contains both S1 and S2, that belongs to D, and is otherwise as small
as possible. Here [a, b] t [c , d] = [min(a, c),max(b, d)]

I We use approximate functions T#(S , c) that give a result in D.

Updating Sets

We solve the equations by starting in the initial state and repeatedly
applying them.

I in the ’entry’ point, we put >, in all others we put ⊥.

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

⊥
c ⊥

d ⊥

e ⊥ f ⊥

g ⊥

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Updating Sets

Sets after a few iterations:

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

[0, 0]

c ⊥

d [0, 0]

e ⊥ f [0, 0]

g [2, 2]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Updating Sets

Sets after a few more iterations:

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

[0, 2]

c ⊥

d [0, 2]

e [2, 2] f [0, 1]

g [2, 5]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Fixpoint Found

Final values of sets:

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

[0, 12]

c [10, 12]

d [0, 9]

e [2, 9] f [0, 1]

g [2, 12]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

If we map intervals to sets, this is also solution of the original constraints.

Automatically Constructed Hoare Logic Proof

Final values of sets:

//a: true
i = 0;

//b: 0 ≤ i ≤ 12
while (i < 10) {

//d: 0 ≤ i ≤ 9
if (i > 1)

//e: 2 ≤ i ≤ 9
i = i + 3;

else
//f: 0 ≤ i ≤ 1
i = i + 2;

//g: 2 ≤ i ≤ 12
}
//c: 10 ≤ i ≤ 12

a >

b

[0, 12]

c [10, 12]

d [0, 9]

e [2, 9] f [0, 1]

g [2, 12]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

This method constructed a sufficiently annotated program and ensured that
all Hoare triples that were constructed hold

