Lecture 7
More Recursion. Bounded Model Checking

Viktor Kuncak

Summary: Least Fixpoint as Meaning of Recursion
A recursive program is a recursive definition of a relation E(r) = r

We define the intended meaning as s = [J;5¢ £(0), which satisfies E(s) = s
and also is the least among all relations r such that E(r) C r (therefore,
also the least among r for which E(r) = r)

We picked least fixpoint, so if the execution cannot terminate on a state x,
then there is no x’ such that (x, x’) € s.
This model is simple (just relations on states) though it has some
limitations: let g be a program that never terminates, then
> p(q) =0 and p(c q) = p(c) U = p(c)
(we cannot observe optional non-termination in this model)
» also, p(q) = p(Ap) (assume(false)), so the absence of results due to
path conditions and infinite loop are represented in the same way

Alternative: error states for non-termination (we will not pursue)

Procedure Meaning is the Least Relation

def f =
if (x > 0) { E(rr) = (Agsoe
x=x—1 p(x =x—1)o
f reo
}y:y+2 ply =y +2))
)UAxéo

What does it mean that E(r) Cr ?

Procedure Meaning is the Least Relation

def f =
if (x > 0) { E(r)) = (Byzo0 (
x=x—1 p(x =x—1)o
f reo
}y:y+2 ply =y +2))
)UAxio

What does it mean that E(r) Cr ?
Plugging r instead of the recursive call results in something that conforms
to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r,
show

» E(r)Cr

» then because procedure meaning s is least, s C r

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

(C6y), (s y))es—y =y

def f =

if (x> 0) { E(rr) = (Bgsoo (
x=x—1 p(x =x—1)o
f reo
y=y+2 ply =y +2)

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

(C6y), (s y))es—y =y

def f =
if (x > 0) { E(r)) = (Ayzo0 (
x=x—1 p(x =x—1)o
f reo
}y:Y+2 ply =y +2))
)UAxéo

Solution: let specification relation be g = {((x,y), (x',¥")) | ¥’ > y}

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

(C6y), (s y))es—y =y

def f =
if (x > 0) { E(r)) = (Ayzo0 (
x=x—1 p(x =x—1)o
f reo
}y:Y+2 ply =y +2))
)UAxio

Solution: let specification relation be g = {((x,y),(x',¥')) | ¥’ > y}
Prove E(q) C q - given by a quantifier-free formula

Formula for Checking Specification

def f =

if (x >0) {
x=x-—1
f
y=y+2
}

Specification: g = {((x,y),(xX,¥')) | v > v}
Formula to prove, generated by representing E(q) C g:

[(x>0Ax=x—1Ay=yAy>yAy =y+2)
V(m(x >0)AX =xAy =y)) = y >y

» Because g appears as E(q) and g, the condition appears twice.

» Proving f C g by E(q) C q is always sound, whether or not function
terminates; the meaning of f talks only about properties of terminating
executions (relations can be partial)

Multiple Procedures: Functions on Pairs of Relations

Two mutually recursive procedures rn = Ei(ri,r2), rn = Ex(rn,n)
We extend the approach to work on pairs of relations:

(r1,r) = (Ei(r, r), Ex(r1, r2))

Define I:=(r1, r) = (Ei(n, r), Ex(r1, n)), let 7 = (1, rn). We define
semantics of procedures as the least solution of

E(F)=r

where (ri,) C (r{,r5) means ri C r{ and r» C r}
Even though pairs of relations are not sets but pairs of sets, we can define
set-like operations on them, e.g.

(n,R)U(rn,n)=(nUn, nUr)

The entire theory works when we have a partial order C with some “good
properties”. (Lattice elements are a generalization of sets.)

Multiple Procedures: Least Fixedpoint and Consequences

Two mutually recursive procedures rn = E1(r1,r2), rn = Ex(rn,n)
For E(r, r2) = (E1(n, r2), Ex(r1, r2)), semantics is

51,52 UE @,@

i>0
It follows that for any ci, ¢ if
El(Cl, 62) - (5] and E2(C1, C2) - ()]
then s; C ¢ and s C o.

Induction-like principle: To prove that mutually recursive relations satisfy
two contracts, prove those contracts for the relation body definitions in
which recursive calls are replaced by those contracts.

Replacing Calls by Contracts: Example

defrl = {

if (x%2==1){ de.ffr(i !::{0){
X:X—]. X:X/2
}) rl
=y+
0 :

} ensuring(y > old(y)) } ensuring(y >= old(y))

Replacing Calls by Contracts: Example

def rl = {
1 df2:
Fx %2 ==1)1 i (x !:{0){
x=x—1 Nex)2
$:y+2 rl
r2 }

} ensuring(y > old(y)) } ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:

def rl = {

i def r2 =

T2 =m ot if (x !:{0) {

} x=xod x=x/2
= val x0 = x; y0 =y

{val 0 g0~ havoc(x,y)

AR assume(y > y0)

havoc(x,y))

assume(y >=y0) }

} ensuring(y > old(y)) } ensuring(y >= old(y))

Bounded Model Checking and k-Induction

Concrete program semantics and verification

For each program there is a (monotonic, w-continuous) function
F: C" — C" such that

a=JF@©,....0
i>0

describes the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics remains
within the set of good states G, that is ¢, C G, or

UF@©....0|ce
i>0

which is equivalent to
Vn. F"(@,...,0) C G

Unfolding for Counterexamples: Bounded Model Checking
Vn. F"(,...,0) C G
The above condition is false iff there exists k and ¢ € C” such that
ceFk®,....0)nE¢ G
For a fixed k this can often be expressed as a quantifier-free formula.
Example: replace a loop ([c]s) * [!c] with finite unrolding ([c]s)*[!c]

Specifically, for n =1, S =72 C =2% and F : C — C describes the
program: x=0;while(*)x=x+y

F(B) ={(x,y) | x=0}U{(x+y,y) | (x,y) € B}
We have F(0) = {(x,y) | x =0} = {(0,y) | y € Z}
20)={0,y) |y € Z}U{(y,y) |y € Z}

F
F30)={(x,y) [x=0Vx=yVx=2xy}

Formula for Bounded Model Checking

Let Pg(x,y) be a formula in Presburger arithmetic such that
B = {(x,y) | Pa(x,y)} then the formula

x =0V (Ixo, y0.x = X0+ Yo Ay = yo A Pa(x0, ¥0))

describes F(B). Suppose the set F¥(B) can be described by a PA formula
Pk. If G is given by a formula Pg then the program can reach error in k
steps iff

P N =Pg

is satisfiable.
Suppose P¢ is x < y. For k = 3 we obtain

(x=0Vx=yVx=2xy)A-(x<y)

By checking satisfiability of the formula we obtain counterexample values
x=-1ly=-2

Bounded Model Checking Algorithm

B=10
while (x) {
checksat(!(B C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat =>
B' = F(B)
if (B’ C B) return Valid
else B=FB
}

Good properties
» subsumes testing up to given depth for all possible initial states
» for a buggy program k, can be small, tools can find many bugs fast

» a semi-decision procedure for finding all error inputs

Bounded Model Checking is Bounded

Bad properties
> can prove correctness only if F™1(()) = F"(}) for a finite n

» errors after initializations of long arrays require unfolding for large n.
This program requires unfolding past all loop iterations, even if the
property does not depend on the loop:
i=0
z=10
while (i < 1000) {

a(i) =0

y=1/z

» For large k formula FX becomes large, so deep bugs are hard to find

Unfolding for Proving Correctness: k-Induction

Goal: Vn. F"(0,...,0) C G (1)
Suppose that, for some k > 1
FiG)cG (2)
By induction on p, for every p > 1,
FPE(G)C G
By monotonicity of F, if n < pk then

F(0) € FP4(@) € FP(6) € G

Therefore, (1) holds.
Algorithm: check (2) for increasing k € {1,2,...}

Summary: Using F¥ for Proofs and Counterexamples

Exact semantics is: (>0 F(0)
Specification is G
If for some k:

> —(FK(0) C G) then we prove that specification does not hold (and
there is a “k-step” execution in G C FX(()) showing this)

» FK(G) C G, then we prove that specification holds by showing that it
holds in all base cases up to k and assuming it holds for all recursive
steps at depth k and deeper (k-induction)

Least fixedpoint of F is the same as least fixedpoint of F: F/() C F¥((),
so | J gives same result as sequences are monotonic.

Each F¥ defines the program with the meaning same as F but syntactically
more obvious as k grows and we unfold more.

k-induction Algorithm

For monotonic F, prove or find counterexample for:

V. F(0,....0) C G

Fk=F
while (x) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =>
checksat(!(Fk(0) C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fko F’ // unfold one more

}

F’(c) can be F(c) or, thanks to previous checks, F(c) N G
Save work: preserve solver state in checksats across different k
Lucky test: if (1(/fp(F)(initState(v0)) C G)) return Counterexample(v0)

Explanation for Sequences in k-Induction

0 C F(0), so FI(#) C F*1((). We have an ascending sequence:
0 C F(@) C F2@)C...C Fi(h) C FITY@) C ...

In general, it need not be G C F(G) nor F(G) C G.
Define F'(c) = F(c) N G. Clearly F'(c) C F(c). Moreover,

caCo— FI(Cl) - F/(Cg)

F'(G)=F(G)NGCG

So F’ is monotonic and F/(G) C G. We have descending sequence:

L C(FYTHG)C(F)(G)C...CF(G)CG

Divergence in k-Induction

Fk=F
while (x) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =>
checksat(!(Fk(0) C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fko F’ // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
But, it often cannot find proofs when Ifp(F) C G. G may be too weak to
be inductive, (F’)"(G) may remain too weak:

F"(0) C p(F) € (F')"(G) € F"(G)

Need weakening of F"()) or strengthening of (F')"(G)

Approximate Postconditions

Suppose we did not find counterexample yet and we have sequence
cogclg...ckg G

where ¢; = F(0), so F(¢j) = ¢it1
Instead of simply increasing k, we try to obtain larger values by finding
another sequence a; satisfying a; C a;4+1 and

F(ai) € ait1

for 0 < j < k, and with a, C G.
co C ag and, by induction, ¢; C a;
If a;11 = a; for some i, then F(a;) = a; so

Ifp(F)CaiCacC G

so we have proven Ifp(F) C G, i.e., program satisfies spec.
We can also dually require a;_1 C F(a;), ensuring a; C F*~/(G).

Abstract Interpretation

A Method for Constructing Inductive Invariants

Basic idea of abstract interpretation

Abstract interpretation is a way to infer properties of program
computations.
Consider the assignment: z = x + y.

Interpreter:
x:10 3 x 10
y:=2 =y, y:—=2
z:3 z:8
Abstract interpreter:
x € [0,10] x € [0,10]
Z=x-+y
y€ [-55]| ——=| ye€ [-575]
ze [0,10] ze [-5,15]

Each abstract state represents a set of concrete states

Program Meaning is a Fixpoint. We Approximate It.

C: Concrete domain A: Abstract domain

approx. of

Fixpoi.nt fixpoint

monotonic
function

approx. of

. []
Initial state initial state

maps abstract states to concrete states

Proving through Fixpoints of Approximate Functions

Meaning of a program (e.g. a relation) is a least fixpoint of F.
Given specification s, the goal is to prove Ifp(F) C s

> if F(s) C s then Ifp(F) C s and we are done

> Ifp(F) = Uiso Fk((), but that is too hard to compute because it is infinite
union unless, by some luck, F"*1(()) = F" for some n

Instead, we search for an inductive strengthening of s: find s’ such that:
> F(s')Cs’ (s isinductive). If so, theorem says Ifp(F) C s’
> s’ Cs (s’ implies the desired specification). Then Ifp(F) C s’ C's
How to find s'? Iterating F is hard, so we try some simpler function Fy
> suppose Fy is approximation: F(r) C Fu(r) for all r
> we can find s’ such that: Fu(s') C s’ (eg. s’ = F;H((Z)) = F(0))

Then: F(s') C Fu(s') C s’ Cs
Abstract interpretation: automatically construct Fy from F (and sometimes s)

Programs as control-flow graphs

/ One possible corresponding control-flow graph is:
a
i=0;
//b
while (i < 10) {
//d
if (i >1)
/e
i=i+3
else
//f
i=i+2
//8
}
//c

Programs as control-flow graphs

/ One possible corresponding control-flow graph is:
a
i=0;
//b
while (i < 10) {
//d
if (i >1)
/e
i=i+3
else
//f
i=i+2
//g
}
//c

Sets of states at each program point

Suppose that
> program state is given by the value of the integer variable i
> initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.
//a
i=0;
//b
while (i < 10) {
//d
if i >1)
//e
i=i+3
else
//f
=i+ 2
//g
}
//e

Sets of states at each program point

Suppose that
> program state is given by the value of the integer variable i
> initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a @Z\
i =0; i=0
//b [i > 10]

(o)

while (i < 10) { {0,2,5,8,11}
//d =
if (i>1)
//e
i=i+3 G
else
/8 /@ ©
=i+ 2;
Ii=i+2
) //8 {2,578,1+1}

//e

Sets of states at each program point

Running the Program

One way to describe the set of states for each program point: for each
initial state, run the CFG with this state and insert the modified states at
appropriate points.

Reachable States as A Set of Recursive Equations
If ¢ is the label on the edge of the graph, let p(c) denotes the relation
between initial and final state that describes the meaning of statement. For

example,
p(i=0)={(i,i") | =0}
pli=i+2) ={(i7) | =i+2}
p(i=i+3)={(i,")|i"=i+3}
p([i <10)) ={(i, ") | " =iNni<10}

Sets of states at each program point

We will write T(S, ¢) (transfer function) for the image of set S under
relation p(c). For example,

T({10,15,20},i =i+ 2) = {12,17,22}
General definition can be given using the notion of strongest postcondition
T(S,¢) =sp(S, p(c))
If [p] is a condition (assume(p), coming from 'if" or 'while’) then
T(S,[pl) ={x€S|p}

If an edge has no label, we denote it skip. So, T(S, skip) = S.

Reachable States as A Set of Recursive Equations

Now we can describe the meaning of our program using recursive equations:

S i=0

S(a)={...,-2,-1,0,1,2,...} Uzlo]@{u}
S(b)=T(S(a),i =0)U T(5(g), skip) {0.2,5,8,11}
5(c) = T(S(b), [(i < 10))) =4
S(d) = T(S(b),[i < 10]) _ {0.2,5,8}
S(e) = T(S(d), i > 1) N
5(f) = T(5(d), [-(i > 1)]) {0}
S(g) = T(S(e).i=i+3) .

UT(S(f),i=i+2) oM

Our solution is the unique least solution of these equations. Can be computed by
iterating starting from empty sets as initial solution.

The problem: These exact equations are as difficult to compute as running the
program on all possible input states. Instead, we consider approximate
descriptions of these sets of states.

A Large Analysis Domain: All Intervals of Integers

For every L, U € Z interval:
{x|L<xAx<U}

This domain has infinitely many elements, but is already an approximation
of all possible sets of integers.

Smaller Domain: Finitely Many Intervals

We continue with the same example but instead of allowing to denote all possible
sets, we will allow sets represented by expressions

[L, U]

which denote the set {x | L < x A x < U}.
Example: [0,127] denotes integers between 0 and 127,

» L is the lower bound and U is the upper bound, with L < U.

> to ensure that we have only a few elements, we let
L, U e {MININT,—-128,1,0,1,127, MAXINT}
> [MININT, MAXINT] denotes all possible integers, denote it T
> instead of writing [1, 0] and other empty sets, we will always write L

So, we only work with a finite number of sets 1 + (;) = 22.
Denote the family of these sets by D (domain).

New Set of Recursive Equations
We want to write the same set of equations as before, but because we have
only a finite number of sets, we must approximate. We approximate sets

with possibly larger sets.

S#(a) =T
S#(b) = T#(S%#(a),i = 0)
L T#(S#(g),skip)
§#(c) = T#(5%(b), [-(i < 10)])
S#(d) = T#(S#(b),[i < 10])
S#(e) = T#(5%(d),[i > 1])
S#(f) = T#(5%(d), [-(i > 1)])
S#(g) = T#(S#(e),i =i+ 3)
U T#(S#(f),i=i+2)

» S; LIS, denotes the approximation of S; U Sy: it is the set that
contains both §; and S, that belongs to D, and is otherwise as small
as possible. Here [a, b] U [c, d] = [min(a, c), max(b, d)]

» We use approximate functions T#(S, c) that give a result in D.

Updating Sets

We solve the equations by starting in the initial state and repeatedly
applying them.
> in the 'entry’ point, we put T, in all others we put L.

S*a@)=T
S#(b) = T#(5%(a),i = 0)
U T#(S5%(g), skip)
S#(c) = T#(S#(b),[-(i < 10)])
S#(d) = T#(S#(b),[i < 10])
S#(e) = T#(S7#(d),[i > 1])
S#(f) = T#(S%(d),[-(i > 1))
S*(g) = T#(S*(e),i =i+ 3)
U T#(S*(f),i=i+2)

Updating Sets

Sets after a few iterations:

$#(c) = T*(S*(b),

S#(d) = T#(S#(b), i < 10])

S*(e) = T#(S*(d),[i > 1])

S#(F) = T#(S#(d), [-(i > 1)])

S*(g) = T#(S*(e).i =i +3)
U T#(S#(f),i =i +2)

Updating Sets

Sets after a few more iterations:

$#(c) = T*(S*(b),

S#(d) = T#(S#(b), i < 10])

S*(e) = T#(S*(d),[i > 1])

S#(F) = T#(S#(d), [-(i > 1)])

S*(g) = T#(S*(e).i =i +3)
U T#(S#(f),i =i +2)

Fixpoint Found

Final values of sets:

S#*a)=T
S#(b) = T#(S*
U T#(S*
S#(c) = T#(
S#(d) = T#(
S#(e) = T#(
S#(f) = T#(
S#(g) = T#(
U T#(

If we map intervals to sets, this is also solution of the original constraints.

Automatically Constructed Hoare Logic Proof

Final values of sets:

//a: true
i=0;
//b:0<i<12
while (i < 10) {
//d:0<i<9
if i >1)
//e:2<i<9
i=i+3
else
//f0<i<1
i=i+4+ 2
//g:2<i<12

//c:10 < i <12

This method constructed a sufficiently annotated program and ensured that
all Hoare triples that were constructed hold

