
Lecture 5
Computing Postconditions and Preconditions

Viktor Kuncak

Review of Key Definitions

Hoare triple:

{P} r {Q} ⇐⇒ ∀s, s ′ ∈ S .
(
(s ∈ P ∧ (s, s ′) ∈ r)→ s ′ ∈ Q

)
{P} does not denote a singleton set containing P but is just a
notation for an “assertion” around a command. Likewise for {Q}.
Strongest postcondition:

sp(P, r) = {s ′ | ∃s. s ∈ P ∧ (s, s ′) ∈ r}

Weakest precondition:

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Exercise
We call a relation r ⊆ S × S functional if
∀x , y , z ∈ S .(x , y) ∈ r ∧ (x , z) ∈ r → y = z . For each of the following
statements either give a counterexample or prove it. In the following, Q ⊆ S .

(i) for any r , wp(r , S \ Q) = S \ wp(r ,Q)

(ii) if r is functional, wp(r ,S \ Q) = S \ wp(r ,Q)

(iii) for any r , wp(r ,Q) = sp(Q, r−1)

(iv) if r is functional, wp(r ,Q) = sp(Q, r−1)

(v) for any r , wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vi*) if r is functional, wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vii*) for any r , wp(r1 ∪ r2,Q) = wp(r1,Q) ∪ wp(r2,Q)

(viii*) Alice has a conjecture: For all sets S and relations r ⊆ S × S it holds:(
S 6= ∅ ∧ dom(r) = S ∧4S ∩ r = ∅

)
→

(
r ◦ r ∩ ((S × S) \ r) 6= ∅

)
where ∆S = {(x , x) | x ∈ S}, dom(r) = {x | ∃y .(x , y) ∈ r}. She tried
many sets and relations and did not find any counterexample. Is her
conjecture true? If so, prove it; if false, provide a counterexample for
which S is as small as possible.

Helping Alice: Properties of the Relation

We believe Alice is wrong and that there exists r such that the
property (viii) from the previous slide is false. In other words, that
there is relation r such that

S 6= ∅ ∧ dom(r) = S ∧4S ∩ r = ∅ ∧ r ◦ r ∩ ((S × S) \ r) = ∅

We are thus looking for relation that is:

I on a non-empty set S

I total, because dom(r) = S means that for every element
x ∈ S there exists y ∈ S such that (x , y) ∈ r .

I irreflexive: there is no element x ∈ S such that (x , x) ∈ r ,
otherwise we would have ∆ ∩ r = ∅

I transitive: indeed, if Bc denotes complement of a set B, then
A ∩ Bc = ∅ is equivalent to A ⊆ B. Thus, the last conjunct
above just says that r ◦ r ⊆ r , which is stating transitivity of r .

Find a total irreflexive transitive relation on a non-empty set.

Counter-Example for Alice

Let S = {0, 1, 2, . . .} (non-negative integers)
Define r = {(x , y) | x < y}
S is non-empty, for every element there exists a larger, no element
is strictly larger than itself, and the relation is transitive.

I r satisfies properties that make Alice’s conjecture false

Is there a relation on a finite set as a counter-example? Perhaps
Alice was trying finite counter-examples by hand, but if she tried to
enumerate it fast with a computer program, she would find a
different, finite, counter-example?

I No! All relations with these properties are infinite!

Counter-Example for Alice

Let S = {0, 1, 2, . . .} (non-negative integers)
Define r = {(x , y) | x < y}
S is non-empty, for every element there exists a larger, no element
is strictly larger than itself, and the relation is transitive.

I r satisfies properties that make Alice’s conjecture false

Is there a relation on a finite set as a counter-example? Perhaps
Alice was trying finite counter-examples by hand, but if she tried to
enumerate it fast with a computer program, she would find a
different, finite, counter-example?

I No! All relations with these properties are infinite!

Counter-Example for Alice

Let S = {0, 1, 2, . . .} (non-negative integers)
Define r = {(x , y) | x < y}
S is non-empty, for every element there exists a larger, no element
is strictly larger than itself, and the relation is transitive.

I r satisfies properties that make Alice’s conjecture false

Is there a relation on a finite set as a counter-example? Perhaps
Alice was trying finite counter-examples by hand, but if she tried to
enumerate it fast with a computer program, she would find a
different, finite, counter-example?

I No! All relations with these properties are infinite!

Total Irreflexive Transitive Relations are Infinite

It may be helpful to keep < as an example in mind, but now r is
arbitrary with the given properties.
We show by induction that for every non-negative integer k there
exists a sequence x0, x1, . . . , xk of elements inside S such that
(xi , xi+1) ∈ r for every 0 ≤ i < k.

I Let x0 ∈ S be an arbitrary element of our non-empty set S .

I Consider by inductive hypothesis elements x0, . . . , xk such
that (xi , xi+1) ∈ r for all 1 ≤ i < k . By totality of r , there
exists element y such that (xi , y) ∈ r ; define xi+1 to be one
such y . We obtain a longer sequence, which completes proof
by induction.

In a sequence of elements related by r , all elements are distinct.
Indeed, for i < j , by transitivity, (xi , xj) ∈ r , and r is irreflexive.
Now, if S were finite it would have some size given by natural
number n. By our property there exists a sequence of n + 1
distinct elements inside S , which is a contradiction.

Formulas for Strongest Postconditions

Forward Verification Condition Generation

Computing Formulas for Strongest Postcondition

Let x̄ , x̄ ′ range over states from S
We gave definition of strongest postcondition (sp) on sets and
relations P1 ⊆ S and r ⊆ S × S :

sp(P1, r) = {x̄ ′ | ∃x̄ . x̄ ∈ P1 ∧ (x̄ , x̄ ′) ∈ r}

Denote the set of states satisfying a predicate by underscore s: let
P̃ be the set of states that satisfies it: P̃ = {x̄ |P}
We consider how to compute with representations of those sets
and relations

I P1 = P̃

I r = ρ(c) = {(x̄ , x̄ ′) | Fc} for some formula Fc with FV (Fc)
among x̄ , x̄ ′

We introduce spF on formulas. We look how to compute Q such
that spF (P, c) = Q implies sp(P̃, ρ(c)) = Q̃

Deriving spF

sp(P1, r) = {x̄ ′ | ∃x̄ . x̄ ∈ P1 ∧ (x̄ , x̄ ′) ∈ r}

for P1 = P̃, r = ρ(c), this becomes

sp(P̃, ρ(c)) = {x̄ ′ | ∃x̄ . P ∧ Fc}

If we use convention that formulas range over x̄ and not x̄ ′, then
spF (P, c) will be a formula logically equivalent to

(∃x̄ . P ∧ F)[x̄ ′ := x̄]

spF (P, c) is therefore the formula Q that describes the set of
states that can result from executing c in a state satisfying P.

Forward VCG: Using Strongest Postcondition

Remember: {P̃} ρ(c) {Q̃} is equivalent to

sp(P̃, ρ(c)) ⊆ Q̃

A syntactic form of Hoare triple is {P}c{Q}

That syntactic form is therefore equivalent to proving

∀x̄ . (spF (P, c)→ Q)

We can use the spF operator to compute verification conditions
such as the one above

We next give rules to compute spF (P, c) for our commands such
that

(spF (P, c) = Q) implies (sp(P̃, ρ(c)) = Q̃)

Forward VCG: Using Strongest Postcondition

Remember: {P̃} ρ(c) {Q̃} is equivalent to

sp(P̃, ρ(c)) ⊆ Q̃

A syntactic form of Hoare triple is {P}c{Q}

That syntactic form is therefore equivalent to proving

∀x̄ . (spF (P, c)→ Q)

We can use the spF operator to compute verification conditions
such as the one above
We next give rules to compute spF (P, c) for our commands such
that

(spF (P, c) = Q) implies (sp(P̃, ρ(c)) = Q̃)

Assume Statement

Consider

I a precondition P, with FV (P) among x̄ and

I a property E , also with FV (E) among x̄

Note that ρ(assume(E)) = ∆Ẽ . Therefore

sp(P̃, ρ(assume(E)))

= sp(P̃,∆Ẽ)

= {x̄ ′ | ∃x̄ ∈ P̃. (x̄ , x̄ ′) ∈ ∆Ẽ}
= {x̄ ′ | ∃x̄ ∈ P̃. (x̄ = x̄ ′ ∧ x̄ ∈ Ẽ)}
= {x̄ ′ | x̄ ′ ∈ P̃ ∧ x̄ ′ ∈ Ẽ} = {x̄ | x̄ ∈ P̃ ∧ x̄ ∈ Ẽ}
= {x̄ | P ∧ E}

So, we define:
spF (P, assume(E)) = P ∧ E

Strongest Postcondition of Havoc

Formula for havoc. Let x̄ = x1, . . . , xi , . . . , xn

R(havoc(xi)) =
∧
v 6=x

v = v ′ = F

General formula for postcondition is:

(∃x̄ . P ∧ F)[x̄ ′ := x̄] (∗)

It becomes here

(∃x̄ . P ∧
∧
j 6=i

xj = x ′j)[x̄ ′ := x̄]

We replace xj with x ′j for all j 6= i by one-point obtaining:

(∃xi .P[xj := x ′j]j 6=i)[x̄ ′ := x̄]

All variables become unprimed in the end; we get (∃xi .P).

Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename
first:

spF (P, havoc(x)) = ∃x0.P[x := x0] which is same as ∃x .P

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.

Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename
first:

spF (P, havoc(x)) = ∃x0.P[x := x0] which is same as ∃x .P

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.

Strongest Postcondition of Havoc

To avoid many nested quantifiers and name clashes, we rename
first:

spF (P, havoc(x)) = ∃x0.P[x := x0] which is same as ∃x .P

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.

Rules for Computing Strongest Postcondition

Assignment Statement
Define:

spF (P, x = e) = ∃x0.(P[x := x0] ∧ x = e[x := x0])

Indeed:

sp(P̃, ρ(x = e))

= {x̄ ′ | ∃x̄ . (x̄ ∈ P̃ ∧ (x̄ , x̄ ′) ∈ ρ(x = e))}
= {x̄ ′ | ∃x̄ . (x̄ ∈ P̃ ∧ x̄ ′ = x̄ [x := e(x̄)])}

Exercise

Precondition: {x ≥ 5 ∧ y ≥ 3}.
Code: x = x + y + 10

sp(x ≥ 5 ∧ y ≥ 3, x = x + y + 10) =

∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x = x0 + y + 10

↔ y ≥ 3 ∧ x ≥ y + 15

Exercise

Precondition: {x ≥ 5 ∧ y ≥ 3}.
Code: x = x + y + 10

sp(x ≥ 5 ∧ y ≥ 3, x = x + y + 10) =

∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x = x0 + y + 10

↔ y ≥ 3 ∧ x ≥ y + 15

Rules for Computing Strongest Postcondition

Sequential Composition
For relations we proved

sp(P̃, r1 ◦ r2) = sp(sp(P̃, r1), r2)

Therefore, define

spF (P, c1; c2) = spF (spF (P, c1), c2)

Nondeterministic Choice (Branches)
We had sp(P̃, r1 ∪ r2) = sp(P̃, r1) ∪ sp(P̃, r2). Therefore define:

spF (P, c1 c2) = spF (P, c1) ∨ spF (P, c2)

Correctness

We can show by easy induction on c1 that for all P:

sp(P̃, ρ(c1)) = {x̄ | spF (P, c1)}

Size of Generated Formulas

The size of the formula can be exponential because each time we
have a nondeterministic choice, we double formula size:

spF (P, (c1 c2); (c3 c4)) =
spF (spF (P, c1 c2), c3 c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3 c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3) ∨ spF (spF (P, c1) ∨ spF (P, c2), c4)

Another Useful Characterization of sp

For any relation σ ⊆ S × S we define its range by

ran(σ) = {s ′ | ∃s ∈ S .(s, s ′) ∈ σ}

Lemma: suppose that

I A ⊆ S and r ⊆ S × S

I ∆ = {(s, s) | s ∈ S}
Then

sp(A, r) = ran(∆A ◦ r)

Proof of the previous fact

ran(∆A ◦ r) = ran({(x , z) | ∃y . (x , y) ∈ ∆A ∧ (y , z) ∈ r})
= ran({(x , z) | ∃y . x = y ∧ x ∈ A ∧ (y , z) ∈ r})
= ran({(x , z) | x ∈ A ∧ (x , z) ∈ r})
= {z | ∃x . x ∈ A ∧ (x , z) ∈ r}
= sp(A, r)

Reducing sp to Relation Composition

The following identity holds for relations:

sp(P̃, r) = ran(∆P ◦ r)

Based on this, we can compute sp(P̃, ρ(c1)) in two steps:

I compute formula R(assume(P); c1)

I existentially quantify over initial (non-primed) variables

Indeed, if F1 is a formula denoting relation r1, that is,

r1 = {(x̄ , x̄ ′) | F1(x̄ , x̄ ′)}

then ∃x̄ .F1(x̄ , x̄ ′) is formula denoting the range of r1:

ran(r1) = {x̄ ′ | ∃x̄ .F1(x̄ , x̄ ′)}

Moreover, the resulting approach does not have exponentially large
formulas.

Computing Weakest Precondition Formulas

Rules for Computing Weakest Preconditions

We derive the rules below from the definition of weakest
precondition on sets and relations

wp(r , Q̃) = {s | ∀s ′. (s, s ′) ∈ r → s ′ ∈ Q̃}

Let now r = ρ(c) = {(x̄ , x̄ ′) | F} and Q̃ = {x̄ | Q}. Then

wp(r , Q̃) = {x̄ | ∀x̄ ′.(F → Q[x̄ := x̄ ′])}

Thus, we will be defining wpF as equivalent to

∀x̄ ′. (F ∧ Q[x̄ := x̄ ′])

Assume Statement

Suppose we have one variable x, and identify the state with that
variable. Note that ρ(assume(F)) = ∆F̃ . By definition

wp(∆F̃ , Q̃) = {x | ∀x ′.(x , x ′) ∈ ∆F̃ → x ′ ∈ Q̃}
= {x | ∀x ′.(x ∈ F̃ ∧ x = x ′)→ x ′ ∈ Q̃}
= {x | x ∈ F̃ → x ∈ Q̃} = {x | F → Q}

Changing from sets to formulas, we obtain the rule for wp on
formulas:

wpF (assume(F),Q) = (F → Q)

Rules for Computing Weakest Preconditions

Assignment Statement
Consider the case of two variables. Recall that the relation
associated with the assignment x = e is

x ′ = e ∧ y ′ = y

Then we have, for formula Q containing x and y :

wp(ρ(x = e), {(x , y) | Q}) = {(x , y) | ∀x ′.∀y ′. x ′ = e ∧ y ′ = y →
Q[x := x ′, y := y ′]}

= {(x , y) | Q[x := e]}

From here we obtain a justification to define:

wpF (x = e,Q) = Q[x := e]

Rules for Computing Weakest Preconditions

Havoc Statement

wpF (havoc(x),Q) = ∀x .Q

Sequential Composition

wp(r1 ◦ r2, Q̃) = wp(r1,wp(r2, Q̃))

Same for formulas:

wpF (c1 ; c2,Q) = wpF (c1,wpF (c2,Q))

Nondeterministic Choice (Branches)
In terms of sets and relations

wp(r1 ∪ r2, Q̃) = wp(r1, Q̃) ∩ wp(r2, Q̃)

In terms of formulas

wpF (c1 c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)

Summary of Weakest Precondition Rules

c wp(c ,Q)

x = e Q[x := e]
havoc(x) ∀x .Q
assume(F) F → Q
c1 c2 wp(c1,Q) ∧ wp(c2,Q)
c1; c2 wp(c1,wp(c2,Q))

Size of Generated Verification Conditions

Because of the rule

wpF (c1 c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)

which duplicates Q, the size can be exponential.

wpF ((c1 c2); (c3 c4),Q) =

Avoiding Exponential Blowup

Propose an algorithm that, given an arbitrary program c and a
formula Q, computes in polynomial time formula equivalent to
wpF (c ,Q)

