
Lecture 1
Synthesis, Analysis, and Verification

Viktor Kuncak

Today

See web site http://lara.epfl.ch/w/sav for logistics
What

I verification

I analysis

I synthesis

Demo of http://leon.epfl.ch
Verification industry ((r)/TM/(c))

I Coverity (press release)

I AbsInt and ASTREE

I Jasper

I Monoidics

http://lara.epfl.ch/w/sav
http://leon.epfl.ch

Countdown Program

object Even {
def countdown(acc: BigInt, x: BigInt): BigInt = {

require(0 <= x)
if (x == 0) acc
else countdown(acc + 2, x − 1)
} ensuring(== acc + 2∗x)

def count(x: BigInt): BigInt = {
require(0 <= x)
countdown(0, x)
} ensuring(== 2∗x)

def ex1 = count(100)
}

Deductive Verification

Three-step approach:

1. Compile program meaning to logical formulas
(verification-condition generator, symbolic execution)

2. Express properties in logic or code (assertions, preconditions,
post-conditions, invariants, run-time error conditions)

3. Develop and use an automated theorem prover for generated
conditions (SAT solving, SMT solving, resolution-based
theorem proving, rewriting, interactive provers)

Which logic to use? Today: integer linear arithmetic

Presburger arithmetic

Integer arithmetic with logical operations (and, or, not),
quantifiers, only addition as an arithmetic operation, and < and =
as a relation.

I minimalistically one can define a variant of it over
non-negative natural numbers as having ∧,¬, ∀,+,= as the
only symbols

One of the earliest theories shown decidable. Mojżesz Presburger
gave an algorithm for quantifier elimination in 1929.

I a student of a famous logician Alfred Tarski

I Tarski gave him this question for his MSc thesis

The result at this time was of interest to mathematical logic and
foundations of mathematics

I only much later it found applications in automated reasoning
(Cooper 1972, Derek C. Oppen - STOC 1973)

Presburger Arithmetic for Verification

res = 0
i = x
while // invariant I(res,i): res + 2∗i == 2∗x && 0 <= i
(i > 0) {

i = i − 1
res = res + 2

}

Verification condition (VC) for preservation of loop invariant:[
I (res, i) ∧ i ′ = i − 1 ∧ res ′ = res + 2 ∧ 0 < i

]
→ I (res ′, i ′)

To prove that this VC is valid, we check whether its negation

I (res, i) ∧ i ′ = i − 1 ∧ res ′ = res + 2 ∧ 0 < i ∧ ¬I (res ′, i ′)

is satisfiable, i.e. whether this PA formula is true:

∃x , res, i , res ′, i ′.
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

i ′ = i − 1 ∧ res ′ = res + 2 ∧
¬(res ′ + 2i ′ = 2x ∧ 0 ≤ i ′)

]

Introducing: One-Point Rule

If ȳ is a tuple of variables not containing x , then

∃x .(x = t(ȳ) ∧ F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

Proof:

→ : Consider the values of ȳ such that there exists x , say x1, for
which x1 = t(ȳ) ∧ F (x1, ȳ). Because F (x1, ȳ) evaluates to
true and the values of x1 and t(ȳ) are the same, F (t, ȳ) also
evaluates to true.

← : Let ȳ be such that F (t, ȳ) holds. Let x be the value of t(ȳ).
Then of course x = t(ȳ) evaluates to true and so does
F (x , ȳ). So there exists x for which x = t(ȳ) ∧ F (x , ȳ) holds.

One point rule:
replaces left side (LHS) of equivalence by the right side (RHS).

Flattening, used when t is complex, replaces RHS by LHS.

Dual One-Point Rule for ∀

∀x .(x = t(ȳ)→ F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

To prove it, negate both sides:

∃x .(x = t(ȳ) ∧ ¬F (x , ȳ)) ⇐⇒ ¬F (t(ȳ), ȳ)

so it reduces to the rule for ∃.

Using One-Point Rule on Negated Verification Condition

∃x , res, i , res ′, i’.
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

i’ = i - 1 ∧ res ′ = res + 2 ∧
¬(res ′ + 2i ′ = 2x ∧ 0 ≤ i ′)

]

∃x , res, i , res’.
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

res’ = res + 2 ∧
¬(res ′ + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res = 2x - 2i ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , i .

[
0 ≤ i ∧ 0 < i ∧
¬(2x − 2i + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
Simplifies to ∃x , i . 0 < i ∧ ¬(0 ≤ i − 1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res, i , res ′, i’.
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

i’ = i - 1 ∧ res ′ = res + 2 ∧
¬(res ′ + 2i ′ = 2x ∧ 0 ≤ i ′)

]
∃x , res, i , res’.

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

res’ = res + 2 ∧
¬(res ′ + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]

∃x , res, i .
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res = 2x - 2i ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , i .

[
0 ≤ i ∧ 0 < i ∧
¬(2x − 2i + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
Simplifies to ∃x , i . 0 < i ∧ ¬(0 ≤ i − 1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res, i , res ′, i’.
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

i’ = i - 1 ∧ res ′ = res + 2 ∧
¬(res ′ + 2i ′ = 2x ∧ 0 ≤ i ′)

]
∃x , res, i , res’.

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

res’ = res + 2 ∧
¬(res ′ + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]

∃x , res, i .
[
res = 2x - 2i ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , i .

[
0 ≤ i ∧ 0 < i ∧
¬(2x − 2i + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
Simplifies to ∃x , i . 0 < i ∧ ¬(0 ≤ i − 1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res, i , res ′, i’.
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

i’ = i - 1 ∧ res ′ = res + 2 ∧
¬(res ′ + 2i ′ = 2x ∧ 0 ≤ i ′)

]
∃x , res, i , res’.

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

res’ = res + 2 ∧
¬(res ′ + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res = 2x - 2i ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]

∃x , i .
[
0 ≤ i ∧ 0 < i ∧
¬(2x − 2i + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
Simplifies to ∃x , i . 0 < i ∧ ¬(0 ≤ i − 1) and then to false.

Using One-Point Rule on Negated Verification Condition

∃x , res, i , res ′, i’.
[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

i’ = i - 1 ∧ res ′ = res + 2 ∧
¬(res ′ + 2i ′ = 2x ∧ 0 ≤ i ′)

]
∃x , res, i , res’.

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧

res’ = res + 2 ∧
¬(res ′ + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res + 2i = 2x ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , res, i .

[
res = 2x - 2i ∧ 0 ≤ i ∧ 0 < i ∧
¬(res + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
∃x , i .

[
0 ≤ i ∧ 0 < i ∧
¬(2x − 2i + 2 + 2(i − 1) = 2x ∧ 0 ≤ i − 1)

]
Simplifies to ∃x , i . 0 < i ∧ ¬(0 ≤ i − 1) and then to false.

But there is more

One-point rule is one of the many steps used in
quantifier elimination procedures.

Quantifier Elimination (QE)

∀∃∅
Given a formula F (ȳ) containing quantifiers find a formula G (ȳ)

I equivalent to F (ȳ)

I that has no quantifiers

I and has a subset (or equal set) of free variables of F

Note

I Equivalence: For all ȳ , F (ȳ) and G (ȳ) have same truth value
; we can use G (ȳ) instead of F (ȳ)

I No quantifiers: easier to check satisfiability of G (ȳ)

ȳ is a possibly empty tuple of variables

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F ?

Are there any variables in the resulting formula?

I No free variables: they are a subset of the original, empty set

I No quantified variables: because it has no quantifiers ,

Formula without any variables! Example:

(2 + 4 = 7) ∨ (1 + 1 = 2)

We check the truth value of such formula by simply evaluating it!

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F ?
Are there any variables in the resulting formula?

I No free variables: they are a subset of the original, empty set

I No quantified variables: because it has no quantifiers ,

Formula without any variables! Example:

(2 + 4 = 7) ∨ (1 + 1 = 2)

We check the truth value of such formula by simply evaluating it!

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F ?
Are there any variables in the resulting formula?

I No free variables: they are a subset of the original, empty set

I No quantified variables: because it has no quantifiers ,

Formula without any variables! Example:

(2 + 4 = 7) ∨ (1 + 1 = 2)

We check the truth value of such formula by simply evaluating it!

Using QE for Deciding Satisfiability/Validity

I To check satisfiability of H(ȳ): eliminate the quantifiers from
∃ȳ .H(ȳ) and evaluate.

I Validity: eliminate quantifiers from ∀ȳ .H(ȳ) and evaluate

We can even check formulas like this:

∀x , y , r . ∃z . (5 ≤ r ∧ x + r ≤ y)→ (x < z ∧ z < y ∧ 3|z)

Here 3|z denotes that z is divisible by 3.

Does Presburger Arithmetic admit QE?

Depends on the particular set of symbols!
(Recall objective: given F (ȳ) containing quantifiers find a formula
G (ȳ)

I equivalent to F (ȳ)

I that has no quantifiers

I and has a subset (or equal set) of free variables of F)

If we lack some operations that can be expressed using quantifiers,
there may be no equivalent formula without quantifiers.

I ∃y .x = y + y + y , so we better have divisibility

Quantifier elimination says: if you can define some relationship
between variables using an arbitrary, possibly quantified, formula F ,

r
def
= {(x , y) | F (x , y)}

then you can also define same r using another quantifier-free
formula G .

Does Presburger Arithmetic admit QE?

Depends on the particular set of symbols!
(Recall objective: given F (ȳ) containing quantifiers find a formula
G (ȳ)

I equivalent to F (ȳ)

I that has no quantifiers

I and has a subset (or equal set) of free variables of F)

If we lack some operations that can be expressed using quantifiers,
there may be no equivalent formula without quantifiers.

I ∃y .x = y + y + y , so we better have divisibility

Quantifier elimination says: if you can define some relationship
between variables using an arbitrary, possibly quantified, formula F ,

r
def
= {(x , y) | F (x , y)}

then you can also define same r using another quantifier-free
formula G .

Presburger Arithmetic (PA)

We look at the theory of integers with addition.

I introduce constant for each integer constant

I to be able to restrict values to natural numbers when needed,
and to compare them, we introduce <

I introduce not only addition but also subtraction

I to conveniently express certain expressions, introduce function
mK for each K ∈ Z, to be interpreted as multiplication by a
constant, mK (x) = K · x . We write mK as K · x .
Note: there is no multiplication between variables in PA

I to enable quantifier elimination from ∃x .y = K · x introduce
for each K predicate K |y (divisibility, y%K = 0)

The resulting language has these function and relation symbols:
{+,−,=, <} ∪ {K | K ∈ Z} ∪ {(K ·) | K ∈ Z} ∪ {(K |) | K ∈ Z}
We also have, as usual: ∧,∨,¬,→ and also: ∃, ∀

Example

Eliminate y from this formula:

∃y . 3y − 2w + 1 > −w ∧ 2y − 6 < z ∧ 4 | 5y + 1

What should we do first?

Simplify/normalize what we can using properties of integer
operations:

∃y . 0 < −w + 3y + 1 ∧ 0 < −2y + z + 6 ∧ 4 | 5y + 1

First we will consider only eliminating existential from a
conjunction of literals.

Example

Eliminate y from this formula:

∃y . 3y − 2w + 1 > −w ∧ 2y − 6 < z ∧ 4 | 5y + 1

What should we do first?
Simplify/normalize what we can using properties of integer
operations:

∃y . 0 < −w + 3y + 1 ∧ 0 < −2y + z + 6 ∧ 4 | 5y + 1

First we will consider only eliminating existential from a
conjunction of literals.

Example

Eliminate y from this formula:

∃y . 3y − 2w + 1 > −w ∧ 2y − 6 < z ∧ 4 | 5y + 1

What should we do first?
Simplify/normalize what we can using properties of integer
operations:

∃y . 0 < −w + 3y + 1 ∧ 0 < −2y + z + 6 ∧ 4 | 5y + 1

First we will consider only eliminating existential from a
conjunction of literals.

Conjunctions of Literals

Atomic formula: a relation applied to argument.
Here, relations are: =, <, K | . So, atomic formulas are:

t1 = t2, t1 < t2, K | t

Literal: Atomic formula or its negation. Example: ¬(x = y + 1)
Conjunction of literals: L1 ∧ . . . ∧ Ln

I no disjunctions, no implications

I negation only applies to atomic formulas

We first consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . . ∧ Ln

This will prove to be sufficient to eliminate all quantifiers!

Conjunctions of Literals

Atomic formula: a relation applied to argument.
Here, relations are: =, <, K | . So, atomic formulas are:

t1 = t2, t1 < t2, K | t
Literal: Atomic formula or its negation. Example: ¬(x = y + 1)
Conjunction of literals: L1 ∧ . . . ∧ Ln

I no disjunctions, no implications

I negation only applies to atomic formulas

We first consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . . ∧ Ln

This will prove to be sufficient to eliminate all quantifiers!

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?

Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.
Convert F to disjunctive normal form:

F ⇐⇒
m∨
i=1

Ci

each Ci is a conjunction of literals.

[
∃x .

m∨
i=1

Ci

]
⇐⇒

m∨
i=1

(∃x .Ci)

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?
Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.

Convert F to disjunctive normal form:

F ⇐⇒
m∨
i=1

Ci

each Ci is a conjunction of literals.

[
∃x .

m∨
i=1

Ci

]
⇐⇒

m∨
i=1

(∃x .Ci)

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?
Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.
Convert F to disjunctive normal form:

F ⇐⇒
m∨
i=1

Ci

each Ci is a conjunction of literals.

[
∃x .

m∨
i=1

Ci

]
⇐⇒

m∨
i=1

(∃x .Ci)

Eliminating ∃ from conjunction of literals suffices

Can we eliminate ∃ from any quantifier-free formula?

∃x .F (x , ȳ)

where F is quantifier-free?
Formula without quantifiers has ∧,∨,¬ applied to atomic formulas.
Convert F to disjunctive normal form:

F ⇐⇒
m∨
i=1

Ci

each Ci is a conjunction of literals.

[
∃x .

m∨
i=1

Ci

]
⇐⇒

m∨
i=1

(∃x .Ci)

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?

Negation propagation:

¬(p ∧ q) ; (¬p) ∨ (¬q)

¬(p ∨ q) ; (¬p) ∧ (¬q)

¬¬p ; p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a ∧ (b1 ∨ b2) ; (a ∧ b1) ∨ (a ∧ b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! See exercise.

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?
Negation propagation:

¬(p ∧ q) ; (¬p) ∨ (¬q)

¬(p ∨ q) ; (¬p) ∧ (¬q)

¬¬p ; p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)

Distributivity

a ∧ (b1 ∨ b2) ; (a ∧ b1) ∨ (a ∧ b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! See exercise.

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?
Negation propagation:

¬(p ∧ q) ; (¬p) ∨ (¬q)

¬(p ∨ q) ; (¬p) ∧ (¬q)

¬¬p ; p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a ∧ (b1 ∨ b2) ; (a ∧ b1) ∨ (a ∧ b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?

No! See exercise.

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?
Negation propagation:

¬(p ∧ q) ; (¬p) ∨ (¬q)

¬(p ∨ q) ; (¬p) ∧ (¬q)

¬¬p ; p

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a ∧ (b1 ∨ b2) ; (a ∧ b1) ∨ (a ∧ b2)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! See exercise.

Eliminating from quantifier free formulas

∃x .F ⇐⇒
[
∃x .

m∨
i=1

Ci

]
⇐⇒

m∨
i=1

(∃x .Ci)

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1, x2, x3, ȳ)

∃x1.∃x2.F1(x1, x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1, x2, x3, ȳ)

∃x1.∃x2.F1(x1, x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1, x2, x3, ȳ)

∃x1.∃x2.F1(x1, x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1, x2, x3, ȳ)

∃x1.∃x2.F1(x1, x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Nested Existential Quantifiers

∃x1.∃x2.∃x3.F0(x1, x2, x3, ȳ)

∃x1.∃x2.F1(x1, x2, ȳ)

∃x1.F2(x1, ȳ)

F3(ȳ)

,

Universal Quantifiers
If F0(x , ȳ) is quantifier-free, how to eliminate

∀y .F0(x , ȳ)

Equivalence (property always holds if there is no counterexample):

∀y .F0(x , ȳ) ⇐⇒ ¬
[
∃y .¬F0(x , ȳ)

]
It thus suffices to process:

¬
[
∃y .¬F0(x , ȳ)

]
Note that ¬F0(x , ȳ) is quantifier-free, so we know how to handle it:

∃y .¬F0(x , ȳ) ; F1(ȳ)

Therefore, we obtain
¬F1(ȳ)

Universal Quantifiers
If F0(x , ȳ) is quantifier-free, how to eliminate

∀y .F0(x , ȳ)

Equivalence (property always holds if there is no counterexample):

∀y .F0(x , ȳ) ⇐⇒ ¬
[
∃y .¬F0(x , ȳ)

]
It thus suffices to process:

¬
[
∃y .¬F0(x , ȳ)

]
Note that ¬F0(x , ȳ) is quantifier-free, so we know how to handle it:

∃y .¬F0(x , ȳ) ; F1(ȳ)

Therefore, we obtain
¬F1(ȳ)

Removing any alternation of quantifiers: illustration

Alternation: switch between existentials and universals

∃x1.∀x2.∀x3.∃x4.F0(x1, x2, x3, x4, ȳ)

∃x1.¬∃x2.∃x3.¬∃x4.F0(x1, x2, x3, x4, ȳ)

∃x1.¬∃x2.∃x3.¬F1(x1, x2, x3, ȳ)

∃x1.¬∃x2.F2(x1, x2, ȳ)

∃x1.¬F3(x1, ȳ)

F4(ȳ)

Each quantifier alternation involves a disjunctive normal form
transformation.
In practice, we do not have many alternations.

Back to Presburger Arithmetic

Consider the quantifier elimination problem of the form:

∃y . L1 ∧ . . . ∧ Ln

where Li are literals from PA.
Note that, for integers:

I ¬(x < y) ⇐⇒ y ≤ x

I x < y ⇐⇒ x + 1 ≤ y

I x ≤ y ⇐⇒ x < y + 1

We use these observations below.
Instead of ≤ we choose to use < only.
We do not write x > y but only y < x .

Normalizing Literals for PA

Normal Form of Terms: All terms are built from K ,+,−,K · ,
so using standard transformations they can be represented as:
K0 +

∑n
i=1 Kixi We call such term a linear term.

Normal Form for Literals in PA:

¬(t1 < t2) becomes t2 < t1 + 1

¬(t1 = t2) becomes t1 < t2 ∨ t2 < t1

t1 = t2 becomes t1 < t2 + 1 ∧ t2 < t1 + 1 (∗)

¬(K | t) becomes
K−1∨
i=1

K | t + i

t1 < t2 becomes 0 < t2 − t1

To remove disjunctions we generated, compute DNF again.
(∗) We transformed equalities just for simplicity. Usually we handle
them directly.

Why one-point rule will not be enough

Note that we must handle inequalities, not merely equalities

If we have integers, we cannot always divide perfectly.
Variable to eliminate can occur not as y but as, e.g. 3y

Exposing the Variable to Eliminate: Example

∃y . 0 < −w + 3y + 1 ∧ 0 < −2y + z + 6 ∧ 4 | 5y + 1

Least common multiple of coefficients next to y ,
M = lcm(3, 2, 5) = 30
Make all occurrences of y in the body have this coefficient:

∃y . 0 < −10w + 30y + 10 ∧ 0 < −30y + 15z + 90 ∧ 24 | 30y + 6

Now we are quantifying over y and using 30y everywhere.
Let x denote 30y .
It is not an arbitrary x . It is divisible by 30.

∃x . 0 < −10w +x +10∧ 0 < −x +15z +90 ∧ 24 | x +6 ∧ 30 | x

Exposing the Variable to Eliminate in General

Eliminating y from conjunction F (y) of literals:

I 0 < t

I K | t

where t is a linear term. To eliminate ∃y from such conjunction,
we wish to ensure that the coefficient next to y is one or minus
one.
Observation:

I 0 < t is equivalent to 0 < c t

I K | t is equivalent to c K | c t

for c a positive integer.
Let K1, . . . ,Kn be all coefficients next to y in the formula.
Let M be a positive integer such that Ki | M for all i , 1 ≤ i ≤ n

I for example, let M be the least common multiple

M = lcm(K1, . . . ,Kn)

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant
M/|Ki |

I the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?

M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x = My , we conclude the formula is equivalent to

∃x . F (x) ∧ (M | x)

What is the coefficient next to y in the resulting formula?
1 or −1

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant
M/|Ki |

I the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?
M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x = My , we conclude the formula is equivalent to

∃x . F (x) ∧ (M | x)

What is the coefficient next to y in the resulting formula?
1 or −1

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant
M/|Ki |

I the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?
M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x = My , we conclude the formula is equivalent to

∃x . F (x) ∧ (M | x)

What is the coefficient next to y in the resulting formula?

1 or −1

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kiy by constant
M/|Ki |

I the point is, M is divisible by |Ki | by construction

What is the coefficient next to y in the resulting formula?
M or −M

We obtain a formula of the form ∃y .F (M · y).
Letting x = My , we conclude the formula is equivalent to

∃x . F (x) ∧ (M | x)

What is the coefficient next to y in the resulting formula?
1 or −1

Lower and upper bounds:

Consider the coefficient next to x in 0 < t. If it is −1, move the
term to left side. If it is 1, move the remaining terms to the left
side. We obtain formula F1(x) of the form

L∧
i=1

ai < x ∧
U∧
j=1

x < bj ∧
D∧
i=1

Ki | (x + ti)

