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Verification Problem



Merge Sort Implementation
def split(list: List[Int]): (List[Int], List[Int]) = list match {
  case Cons(h1, Cons(h2, xs)) =>
    val (t1,t2) = split(xs)
    (Cons(h1, t1), Cons(h2, t2))
  case _ => (list, Nil())
}

def merge(l1: List[Int], l2: List[Int]): List[Int] = (l1, l2) match {
  case (Cons(h1, t1), Cons(h2, t2)) =>
    if (h1 < h2) Cons(h1, merge(t1, l2))
    else Cons(h2, merge(l1, t2))
  case _ => l1 ++ l2
}

def mergeSort(list: List[Int]): List[Int] = list match {
  case Cons(h1, t1 @ Cons(h2, t2)) =>
    val (l1, l2) = split(list)
    merge(mergeSort(l1), mergeSort(l2))
  case _ => list
}



Verifying Sortedness
def isSorted(list: List[Int]): Boolean = list match {
  case Cons(h1, t1 @ Cons(h2, xs)) => h1 <= h2 && isSorted(t1)
  case _ => true
}

Result of mergeSort for any input must be 
sorted (i.e. isSorted must return true)



Verification Condition

● Boolean property on program
● Encoded into quantifier-free (QF) formula

∀list: List[Int]. isSorted(mergeSort(list))
- or equivalently -

!isSorted(mergeSort(list))  ∈  UNSAT



Program Verification in Stainless

● Transform boolean expression into formula
verification condition p → formula f

● Use SMT solver to verify ¬f
○ ¬f  ∈  UNSAT

no inputs can break condition

○ ¬f  ∈  SAT
produces a breaking model : counterexample



First-Order Verification



First-Order Verification in Stainless

● Encoding to formulas well supported for 
many language features

● How to encode recursive definitions? 
def size[T](list: List[T]): BigInt = (list match {
  case Cons(x, xs) => 1 + size(xs)
  case Nil() => 0
}) ensuring (_ >= 0)



Naive Recursive Definitions

Just use universal quantification :
∀list: List[T]. size(list) = list match {
  case Cons(x, xs) => 1 + size(xs)
  case Nil() => 0
}

Unfortunately not (yet) well supported by SMT solvers



Unfolding Procedure in Leon
● Progressively inline function calls
● Instrument decision tree so execution tree 

can be limited to subset that doesn’t 
depend on further inlinings

● At each inlining step :
○ if ¬f with blocked branches  ∈  SAT

model is a counterexample

○ if ¬f  ∈  UNSAT
VC is valid

counterexample
No valid path possible



Unfolding Procedure - Example I
Verification Condition

size(list) >= 2
size(list) = list match {
  case Cons(h1, t1) => 1 + size(t1)
  case Nil() => 0
} size(t1) = t1 match {

  case Cons(h2, t2) => 1 + size(t2)
  case Nil() => 0
}

size(Cons(h1, Nil())) = 1

size(Nil()) = 0
size(t2) = t2 match {
  case Cons(h3, t3) => 1 + size(t3)
  case Nil() => 0
} size(t3) = ...

size(Cons(h1, Cons(h2, Nil())) = 2
Breaks VC!



Unfolding Procedure - Example II
Verification Condition

size(list) < 0
size(list) = list match {
  case Cons(h1, t1) => 1 + size(t1)
  case Nil() => 0
}

First call is simply inlined to avoid circular logic

size(t1) = t1 match {
  case Cons(h2, t2) => 1 + size(t2)
  case Nil() => 0
}

size(t1) >= 0

No result of size(list) can break VC!



Higher-Order Functions



Challenges

● can’t statically track closure definitions for 
unfolding

● decision tree branches that need blocking 
can’t be statically determined

● no natural encoding in the formula domain



First-Class Functions - Approach

Key observation:
we cannot track arbitrary closures through the 
program … 
… but we can track the set of all closures 
generated or input into the program

Use dynamic dispatch!



First-Class Functions - Dispatching

f(x) =

x+1 if f = Ident[(x: Int) => x + 1]

x+2 if f = Ident[(x: Int) => x + 2]

2 if f = Ident[(x: Int) => 2]

uninterpreted otherwise

Set of all closures is Λ = { (x: Int) => x + 1, (x: Int) => x + 2, (x: Int) => 2 }

When new closures are discovered during unfolding,
add them to Λ and expand results of f(x)



First-Class Functions - Blocking

How do we know when the right closure has 
been inlined for a given application?

Block tree branch as long as f ∉ Λ

Note that we need all lambdas to appear in Λ at some point to make progress!



Input Functions

● Finding closures during unfolding is easy
● What about input functions?

○ Input f: Int => Int
� add f to Λ

○ Input tuple: (Int => Int, Int => Int)
� add {tuple._1, tuple._2} to Λ

○ Input list: List[Int => Int]
?? how do we find all functions in list?



Input Functions in Recursive ADTs

● Idea: unfold the datatype

def allFunctions(list: List[Int => Int]): Unit = list match {
  case Cons(f, fs) => /* register function f */ allFunctions(fs)
  case Nil() => /* do nothing */
}

● Specialized unfolding to register functions



Function Equality

Remember, branches are blocked by f ∉ Λ

● Consider g ∈ Λ, f ∉ Λ 

∀x. f(x) = g(x) ∃x. f(x) ≠ g(x)

encode(f) = encode(g) model ✓, proof 
✓

model x, proof x

encode(f) ≠ encode(g) model ✓, proof x model ✓, proof 
✓



Function Equality - Tradeoffs

● We want semantics that can be evaluated
○ encode(f) = encode(g) ⇔ ∀x. f(x) = g(x) x

● We want sound counterexamples 
○ encode(f) = encode(g) x

● We want to preserve proofs when possible
○ encode(f) ≠ encode(g) x

● Idea: use function structure



Function Equality - Structural

encode(f) = encode(g) iff
structure(f) = structure(g)  - static
closures(f) = closures(g)   - dynamic

Note that these are not Scala semantics.



Theoretical Results
● Soundness for proofs

If the procedure reports valid, there exists no counterexample to the VC

● Soundness for counterexamples
If the procedure reports a counterexample, evaluating the VC with it as 
input will result in false

● Completeness for counterexamples
If there exists an input to the VC such that evaluation results in false, the 
procedure will eventually report a counterexample


