Verifying Higher-Order Functions

Verification Problem

Merge Sort Implementation

```
def split(list: List[Int]): (List[Int], List[Int]) = list match {
```

```
def merge(I1: List[Int], I2: List[Int]): List[Int] = (I1, I2) match {
```

```
def mergeSort(list: List[Int]): List[Int] = list match {
  case Cons(h1, t1 @ Cons(h2, t2)) =>
    val (l1, l2) = split(list)
    merge(mergeSort(l1), mergeSort(l2))
  case _ => list
```

Verifying Sortedness

ł

```
def isSorted(list: List[Int]): Boolean = list match {
   case Cons(h1, t1 @ Cons(h2, xs)) => h1 <= h2 && isSorted(t1)
   case _ => true
```

Result of mergeSort for *any* input must be sorted (*i.e.* isSorted must return **true**)

Verification Condition

- Boolean property on program
- Encoded into quantifier-free (QF) formula

!isSorted(mergeSort(list)) ∈ UNSAT

Program Verification in Stainless

- Transform boolean expression into formula verification condition $p \rightarrow$ formula *f*
- Use SMT solver to verify $\neg f$
 - $\circ \neg f \in \text{UNSAT}$

no inputs can break condition

 $\circ \neg f \in SAT$

produces a breaking model : counterexample

First-Order Verification

First-Order Verification in Stainless

- Encoding to formulas well supported for many language features
- How to encode recursive definitions?

def size[T](list: List[T]): BigInt = (list match {
 case Cons(x, xs) => 1 + size(xs)
 case Nil() => 0
}) ensuring (_ >= 0)

Naive Recursive Definitions

Just use universal quantification :

Unfortunately not (yet) well supported by SMT solvers

Unfolding Procedure in Leon

- Progressively inline function calls
- Instrument decision tree so execution tree can be limited to subset that doesn't depend on further inlinings
- At each inlining step :
 - o if ¬*f* with blocked branches ∈ SAT
 model is a counterexample
 - if $\neg f \in \text{UNSAT}$

VC is valid

Unfolding Procedure - Example I

Unfolding Procedure - Example II

No result of size(list) can break VC!

Higher-Order Functions

Challenges

- can't statically track closure definitions for unfolding
- decision tree branches that need blocking can't be statically determined
- no natural encoding in the formula domain

First-Class Functions - Approach

Key observation:

we cannot track arbitrary closures through the program ...

... but we can track the set of all closures generated or input into the program

Use dynamic dispatch!

First-Class Functions - Dispatching

Set of all closures is $\Lambda = \{ (x: Int) => x + 1, (x: Int) => x + 2, (x: Int) => 2 \}$

When new closures are discovered during unfolding, add them to Λ and expand results of f(x)

First-Class Functions - Blocking

How do we know when the *right* closure has been inlined for a given application?

Block tree branch as long as $f \notin \Lambda$

Note that we need **all** lambdas to appear in Λ at some point to make progress!

Input Functions

- Finding closures during unfolding is easy
- What about input functions?
 - Input f: Int => Int
 - \Box add f to Λ
 - Input tuple: (Int => Int, Int => Int) □ add {tuple._1, tuple._2} to Λ
 - Input list: List[Int => Int]
 ?? how do we find all functions in list?

Input Functions in Recursive ADTs

• Idea: unfold the datatype

def allFunctions(list: List[Int => Int]): Unit = list match {
 case Cons(f, fs) => /* register function f */ allFunctions(fs)
 case Nil() => /* do nothing */
}

Specialized unfolding to register functions

Function Equality

Remember, branches are blocked by $f \notin \Lambda$

• Consider $g \in \Lambda$, $f \notin \Lambda$

	$\forall x. f(x) = g(x)$	$\exists x. f(x) \neq g(x)$
encode(f) = encode(g)	model ✓, proof ✓	model x, proof x
encode(f) ≠ encode(g)	model 🗸 , proof 🗙	model 🗸 , proof

Function Equality - Tradeoffs

- We want semantics that can be evaluated
 o encode(f) = encode(g) ⇔ ∀x. f(x) = g(x) x
- We want sound counterexamples
 encode(f) = encode(g) x
- We want to preserve proofs when possible
 o encode(f) ≠ encode(g) x
- Idea: use function structure

Function Equality - Structural

encode(f) = encode(g) iff
structure(f) = structure(g) - static
closures(f) = closures(g) - dynamic

Note that these are **not** Scala semantics.

Theoretical Results

• Soundness for proofs

If the procedure reports valid, there exists no counterexample to the VC

• Soundness for counterexamples

If the procedure reports a counterexample, evaluating the VC with it as input will result in **false**

Completeness for counterexamples

If there exists an input to the VC such that evaluation results in **false**, the procedure will eventually report a counterexample