
Exercises 3

1 Loop semantics

Compute and simplify the relation corresponding to the following programs:

y = 0
while (z > 0) {

y = y + x
z = z − 1
}

c = 0
while (b >= a) {

b = b − a
c = c + 1
}

2 Loop invariants

In the following program, provide the necessary loop invariant for verification to succeed:

def binarySearch(a: Array[BigInt], key: BigInt): Int = ({
require(a.length > 0 && forall { (i: Int, j: Int) =>

(i >= 0 && j >= 0 && i < a.length && j < a.length && i < j) ==> (a(i) <= a(j))
})

var low = 0
var high = a.length − 1
var res = −1

(while(low <= high && res == −1) {
val o = if ((high & 1) == 1 && (low & 1) == 1) 1 else 0
val i = high / 2 + low / 2 + o
val v = a(i)

if(v == key)
res = i

if(v > key)
high = i − 1

else if(v < key)
low = i + 1

}) invariant(TODO)
res
}) ensuring(res => {
if(res == −1)

forall((i: Int) => (0 <= i && i < a.length) ==> (a(i) != key))
else

a(res) == key
})



3 Proof construction

Show that list flatMap f flatMap g == list flatMap (x => f(x) flatMap g) using the following axioms:

1. Nil flatMap f == Nil

2. (x :: xs) flatMap f == f(x) ++ (xs flatMap f)

3. Nil ++ xs == xs

4. xs ++ Nil == xs

5. (x :: xs) ++ ys == x :: (xs ++ ys)

Use the proof strategies you have seen in Welder, such as structural induction and equational
reasoning. Make sure each step in your reasoning is clearly indicated.

Hint: It may be useful to introduce some auxiliary lemmas.


