
Lecture 7
More Recursion. Bounded Model Checking

Viktor Kuncak

Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation E (r) = r

We define the intended meaning as s =
⋃

i≥0 E (∅), which satisfies E (s) = s
and also is the least among all relations r such that E (r) ⊆ r (therefore,
also the least among r for which E (r) = r)

We picked least fixpoint, so if the execution cannot terminate on a state x ,
then there is no x ′ such that (x , x ′) ∈ s.
This model is simple (just relations on states) though it has some
limitations: let q be a program that never terminates, then

I ρ(q) = ∅ and ρ(c q) = ρ(c) ∪ ∅ = ρ(c)
(we cannot observe optional non-termination in this model)

I also, ρ(q) = ρ(∆∅) (assume(false)), so the absence of results due to
path conditions and infinite loop are represented in the same way

Alternative: error states for non-termination (we will not pursue)

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

What does it mean that E (r) ⊆ r ?

Plugging r instead of the recursive call results in something that conforms
to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r ,
show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

What does it mean that E (r) ⊆ r ?
Plugging r instead of the recursive call results in something that conforms
to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies specification r ,
show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Prove E (q) ⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be q = {((x , y), (x ′, y ′)) | y ′ ≥ y}

Prove E (q) ⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Prove E (q) ⊆ q - given by a quantifier-free formula

Formula for Checking Specification

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

Specification: q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Formula to prove, generated by representing E (q) ⊆ q:[

(x > 0 ∧ x1 = x − 1 ∧ y1 = y ∧ y2 ≥ y1 ∧ y ′ = y2 + 2)
∨(¬(x > 0) ∧ x ′ = x ∧ y ′ = y)

)
→ y ′ ≥ y

I Because q appears as E (q) and q, the condition appears twice.

I Proving f ⊆ q by E (q) ⊆ q is always sound, whether or not function f
terminates; the meaning of f talks only about properties of terminating
executions (relations can be partial)

Multiple Procedures: Functions on Pairs of Relations

Two mutually recursive procedures r1 = E1(r1, r2), r2 = E2(r1, r2)
We extend the approach to work on pairs of relations:

(r1, r2) = (E1(r1, r2),E2(r1, r2))

Define Ē (r1, r2) = (E1(r1, r2),E2(r1, r2)), let r̄ = (r1, r2). We define
semantics of procedures as the least solution of

Ē (r̄) = r̄

where (r1, r2) v (r ′1, r
′
2) means r1 ⊆ r ′1 and r2 ⊆ r ′2

Even though pairs of relations are not sets but pairs of sets, we can define
set-like operations on them, e.g.

(r1, r2) t (r ′1, r
′
2) = (r1 ∪ r ′1, r2 ∪ r ′2)

The entire theory works when we have a partial order v with some “good
properties”. (Lattice elements are a generalization of sets.)

Multiple Procedures: Least Fixedpoint and Consequences

Two mutually recursive procedures r1 = E1(r1, r2), r2 = E2(r1, r2)
For E (r1, r2) = (E1(r1, r2),E2(r1, r2)), semantics is

(s1, s2) =
⊔
i≥0

Ē i (∅, ∅)

It follows that for any c1, c2 if

E1(c1, c2) ⊆ c1 and E2(c1, c2) ⊆ c2

then s1 ⊆ c1 and s2 ⊆ c2.

Induction-like principle: To prove that mutually recursive relations satisfy
two contracts, prove those contracts for the relation body definitions in
which recursive calls are replaced by those contracts.

Replacing Calls by Contracts: Example

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
r2
} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
r1
}
} ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
{ val x0 = x; y0 = y

havoc(x,y)
assume(y >= y0) }

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
val x0 = x; y0 = y
havoc(x,y)
assume(y > y0)
}
} ensuring(y >= old(y))

Replacing Calls by Contracts: Example

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
r2
} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
r1
}
} ensuring(y >= old(y))

Reduces to checking these two non-recursive procedures:

def r1 = {
if (x % 2 == 1) {

x = x − 1
}
y = y + 2
{ val x0 = x; y0 = y

havoc(x,y)
assume(y >= y0) }

} ensuring(y > old(y))

def r2 = {
if (x != 0) {

x = x / 2
val x0 = x; y0 = y
havoc(x,y)
assume(y > y0)
}
} ensuring(y >= old(y))

Bounded Model Checking and k-Induction

Concrete program semantics and verification

For each program there is a (monotonic, ω-continuous) function
F : Cn → Cn such that

c̄∗ =
⋃
n≥0

F n(∅, . . . , ∅)

describes the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics remains
within the set of good states G , that is c∗ ⊆ G , or⋃

n≥0
F n(∅, . . . , ∅)

 ⊆ G

which is equivalent to
∀n. F n(∅, . . . , ∅) ⊆ G

Unfolding for Counterexamples: Bounded Model Checking

∀n. F n(∅, . . . , ∅) ⊆ G

The above condition is false iff there exists k and c̄ ∈ Cn such that

c̄ ∈ F k(∅, . . . , ∅) ∧ c̄ /∈ G

For a fixed k this can often be expressed as a quantifier-free formula.
Example: replace a loop ([c]s) ∗ [!c] with finite unrolding ([c]s)k [!c]
Specifically, for n = 1, S = Z2, C = 2S , and F : C → C describes the
program: x=0;while(*)x=x+y

F (B) = {(x , y) | x = 0} ∪ {(x + y , y) | (x , y) ∈ B}

We have F (∅) = {(x , y) | x = 0} = {(0, y) | y ∈ Z}

F 2(∅) = {(0, y) | y ∈ Z} ∪ {(y , y) | y ∈ Z}

F 3(∅) = {(x , y) | x = 0 ∨ x = y ∨ x = 2 ∗ y}

Formula for Bounded Model Checking

Let PB(x , y) be a formula in Presburger arithmetic such that
B = {(x , y) | PB(x , y)} then the formula

x = 0 ∨ (∃x0, y0.x = x0 + y0 ∧ y = y0 ∧ PB(x0, y0))

describes F (B). Suppose the set F k(B) can be described by a PA formula
Pk . If G is given by a formula PG then the program can reach error in k
steps iff

Pk ∧ ¬PG

is satisfiable.
Suppose PG is x ≤ y . For k = 3 we obtain

(x = 0 ∨ x = y ∨ x = 2 ∗ y) ∧ ¬(x ≤ y)

By checking satisfiability of the formula we obtain counterexample values
x = −1, y = −2.

Bounded Model Checking Algorithm

B = ∅
while (∗) {

checksat(!(B ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat =>
B ′ = F (B)
if (B ′ ⊆ B) return Valid
else B = B ′

}

Good properties

I subsumes testing up to given depth for all possible initial states

I for a buggy program k, can be small, tools can find many bugs fast

I a semi-decision procedure for finding all error inputs

Bounded Model Checking is Bounded

Bad properties

I can prove correctness only if F n+1(∅) = F n(∅) for a finite n

I errors after initializations of long arrays require unfolding for large n.
This program requires unfolding past all loop iterations, even if the
property does not depend on the loop:

i = 0
z = 0
while (i < 1000) {

a(i) = 0
}
y = 1/z

I For large k formula F k becomes large, so deep bugs are hard to find

Unfolding for Proving Correctness: k-Induction

Goal: ∀n. F n(∅, . . . , ∅) ⊆ G (1)

Suppose that, for some k ≥ 1

F k(G) ⊆ G (2)

By induction on p, for every p ≥ 1,

F pk(G) ⊆ G

By monotonicity of F , if n ≤ pk then

F n(∅̄) ⊆ F pk(∅̄) ⊆ F pk(G) ⊆ G

Therefore, (1) holds.
Algorithm: check (2) for increasing k ∈ {1, 2, . . .}

Summary: Using F k for Proofs and Counterexamples

Exact semantics is:
⋃

n≥0 F
n(∅̄)

Specification is G
If for some k :

I ¬(F k(∅̄) ⊆ G) then we prove that specification does not hold (and
there is a “k-step” execution in G ⊆ F k(∅̄) showing this)

I F k(G) ⊆ G , then we prove that specification holds by showing that it
holds in all base cases up to k and assuming it holds for all recursive
steps at depth k and deeper (k-induction)

Least fixedpoint of F k is the same as least fixedpoint of F : F i (∅̄) ⊆ F ki (∅̄),
so
⋃

gives same result as sequences are monotonic.
Each F k defines the program with the meaning same as F but syntactically
more obvious as k grows and we unfold more.

k-induction Algorithm

Prove or find counterexample for:

∀n. F n(∅, . . . , ∅) ⊆ G

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

F ′(c) can be F (c) or, thanks to previous checks, F (c) ∩ G
Save work: preserve solver state in checksats across different k
Lucky test: if (!(lfp(F)(initState(v0)) ⊆ G)) return Counterexample(v0)

Divergence in k-Induction

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
Often cannot find proofs when lfp(F) ⊆ G . Then G may be too weak to be
inductive, (F ′)n(G) may remain too weak:

F n(∅̄) ⊆ lfp(F) ⊆ (F ′)n(G) ⊆ F n(G)

Need weakening of F n(∅) or strengthening of (F ′)n(G)

Approximate Postconditions

Suppose we did not find counterexample yet and we have sequence

c0 ⊆ c1 ⊆ . . . ck ⊆ G

where ci = F i (∅̄), so F (ci) = ci+1

Instead of simply increasing k , we try to obtain larger values by finding
another sequence ai satisfying ai ⊆ ai+1 and

F (ai) ⊆ ai+1

for 0 ≤ i ≤ k , and with ak ⊆ G .
c0 ⊆ a0 and, by induction, ci ⊆ ai
If ai+1 = ai for some i , then F (ai) = ai so

lfp(F) ⊆ ai ⊆ ak ⊆ G

so we have proven lfp(F) ⊆ G , i.e., program satisfies spec.
We can also dually require ai−1 ⊆ F (ai), ensuring ai ⊆ F k−i (G).

Abstract Interpretation

A Method for Constructing Inductive Invariants

Basic idea of abstract interpretation

Abstract interpretation is a way to infer properties of program
computations.
Consider the assignment: z = x + y .

Interpreter: x : 10
y : −2
z : 3

 z=x+y−−−−→

 x : 10
y : −2
z : 8

Abstract interpreter: x ∈ [0, 10]

y ∈ [−5, 5]
z ∈ [0, 10]

 z=x+y−−−−→

 x ∈ [0, 10]
y ∈ [−5, 5]
z ∈ [−5, 15]

Each abstract state represents a set of concrete states

Program Meaning is a Fixpoint. We Approximate It.

γ
maps abstract states to concrete states

Proving through Fixpoints of Approximate Functions

Meaning of a program (e.g. a relation) is a least fixpoint of F .
Given specification s, the goal is to prove lfp(F) ⊆ s

I if F (s) ⊆ s then lfp(F) ⊆ s and we are done

I lfp(F) =
⋃

k≥0 F
k(∅), but that is too hard to compute because it is infinite

union unless, by some luck, F n+1(∅) = F n for some n

Instead, we search for an inductive strengthening of s: find s ′ such that:

I F (s ′) ⊆ s ′ (s ′ is inductive). If so, theorem says lfp(F) ⊆ s ′

I s ′ ⊆ s (s ′ implies the desired specification). Then lfp(F) ⊆ s ′ ⊆ s

How to find s ′? Iterating F is hard, so we try some simpler function F#

I suppose F# is approximation: F (r) ⊆ F#(r) for all r

I we can find s ′ such that: F#(s ′) ⊆ s ′ (e.g. s ′ = F n+1
(∅) = F n

#(∅))

Then: F (s ′) ⊆ F#(s ′) ⊆ s ′ ⊆ s
Abstract interpretation: automatically construct F# from F (and sometimes s)

Programs as control-flow graphs

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

One possible corresponding control-flow graph is:

a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Programs as control-flow graphs

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

One possible corresponding control-flow graph is:
a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Sets of states at each program point
Suppose that

I program state is given by the value of the integer variable i

I initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Sets of states at each program point
Suppose that

I program state is given by the value of the integer variable i

I initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a Z

b

{0, 2, 5, 8, 11}
c {11}

d {0, 2, 5, 8}

e {2, 5, 8} f {0}

g {2, 5, 8, 11}

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Sets of states at each program point

Running the Program
One way to describe the set of states for each program point: for each
initial state, run the CFG with this state and insert the modified states at
appropriate points.

Reachable States as A Set of Recursive Equations
If c is the label on the edge of the graph, let ρ(c) denotes the relation
between initial and final state that describes the meaning of statement. For
example,

ρ(i = 0) = {(i , i ′) | i ′ = 0}
ρ(i = i + 2) = {(i , i ′) | i ′ = i + 2}
ρ(i = i + 3) = {(i , i ′) | i ′ = i + 3}
ρ([i < 10]) = {(i , i ′) | i ′ = i ∧ i < 10}

Sets of states at each program point

We will write T (S , c) (transfer function) for the image of set S under
relation ρ(c). For example,

T ({10, 15, 20}, i = i + 2) = {12, 17, 22}

General definition can be given using the notion of strongest postcondition

T (S , c) = sp(S , ρ(c))

If [p] is a condition (assume(p), coming from ’if’ or ’while’) then

T (S , [p]) = {x ∈ S | p}

If an edge has no label, we denote it skip. So, T (S , skip) = S .

Reachable States as A Set of Recursive Equations

Now we can describe the meaning of our program using recursive equations:

S(a) = {. . . ,−2,−1, 0, 1, 2, . . .}
S(b) = T (S(a), i = 0) ∪ T (S(g), skip)
S(c) = T (S(b), [¬(i < 10)])
S(d) = T (S(b), [i < 10])
S(e) = T (S(d), [i > 1])
S(f) = T (S(d), [¬(i > 1)])
S(g) = T (S(e), i = i + 3)

∪T (S(f), i = i + 2)

a Z

b

{0, 2, 5, 8, 11}
c {11}

d {0, 2, 5, 8}

e {2, 5, 8} f {0}

g {2, 5, 8, 11}

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Our solution is the unique least solution of these equations
The problem:

These exact equations are as difficult to compute as running the program on all

possible input states. Instead, we consider approximate descriptions of these sets

of states.

A Large Analysis Domain: All Intervals of Integers

For every L,U ∈ Z interval:

{x | L ≤ x ∧ x ≤ U}

This domain has infinitely many elements, but is already an approximation
of all possible sets of integers.

Smaller Domain: Finitely Many Intervals

We continue with the same example but instead of allowing to denote all possible
sets, we will allow sets represented by expressions

[L,U]

which denote the set {x | L ≤ x ∧ x ≤ U}.
Example: [0, 127] denotes integers between 0 and 127.

I L is the lower bound and U is the upper bound, with L ≤ U.

I to ensure that we have only a few elements, we let

L,U ∈ {MININT,−128, 1, 0, 1, 127,MAXINT}

I [MININT,MAXINT] denotes all possible integers, denote it >
I instead of writing [1, 0] and other empty sets, we will always write ⊥

So, we only work with a finite number of sets 1 +
(
7
2

)
= 22.

Denote the family of these sets by D (domain).

New Set of Recursive Equations
We want to write the same set of equations as before, but because we have
only a finite number of sets, we must approximate. We approximate sets
with possibly larger sets.

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

I S1 t S2 denotes the approximation of S1 ∪ S2: it is the set that
contains both S1 and S2, that belongs to D, and is otherwise as small
as possible. Here [a, b] t [c , d] = [min(a, c),max(b, d)]

I We use approximate functions T#(S , c) that give a result in D.

Updating Sets

We solve the equations by starting in the initial state and repeatedly
applying them.

I in the ’entry’ point, we put >, in all others we put ⊥.

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

⊥
c ⊥

d ⊥

e ⊥ f ⊥

g ⊥

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Updating Sets

Sets after a few iterations:

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

[0, 0]

c ⊥

d [0, 0]

e ⊥ f [0, 0]

g [2, 2]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Updating Sets

Sets after a few more iterations:

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

[0, 2]

c ⊥

d [0, 2]

e [2, 2] f [0, 1]

g [2, 5]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Fixpoint Found

Final values of sets:

S#(a) = >
S#(b) = T#(S#(a), i = 0)

t T#(S#(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)

t T#(S#(f), i = i + 2)

a >

b

[0, 12]

c [10, 12]

d [0, 9]

e [2, 9] f [0, 1]

g [2, 12]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

If we map intervals to sets, this is also solution of the original constraints.

Automatically Constructed Hoare Logic Proof

Final values of sets:

//a: true
i = 0;

//b: 0 ≤ i ≤ 12
while (i < 10) {

//d: 0 ≤ i ≤ 9
if (i > 1)

//e: 2 ≤ i ≤ 9
i = i + 3;

else
//f: 0 ≤ i ≤ 1
i = i + 2;

//g: 2 ≤ i ≤ 12
}
//c: 10 ≤ i ≤ 12

a >

b

[0, 12]

c [10, 12]

d [0, 9]

e [2, 9] f [0, 1]

g [2, 12]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

This method constructed a sufficiently annotated program and ensured that
all Hoare triples that were constructed hold

Abstract Interpretation Big Picture

Abstract Domains are Partial Orders

Program semantics is given by certain sets (e.g. sets of reachable states).

I subset relation ⊆: used to compare sets

I union of states: used to combine sets coming from different executions
(e.g. if statement)

Our goal is to approximate such sets. We introduce a domain of elements
d ∈ D where each d represents a set.

I γ(d) is a set of states. γ is called concretization function

I given d1 and d2, it could happen that there is no element d
representing union

γ(d1) ∪ γ(d2) = γ(d)

Instead, we use a set d that approximates union, and denote it d1 t d2

This leads us to review the theory of partial orders and (semi)lattices.

Partial Orders

Partial ordering relation is a binary relation ≤ that is reflexive, antisymmetric,
and transitive, that is, the following properties hold for all x , y , z :

I x ≤ x

I x ≤ y ∧ y ≤ x → x = y

I x ≤ y ∧ y ≤ z → x ≤ z

If A is a set and ≤ a binary relation on A, we call the pair (A,≤) a partial order.

Given a partial ordering relation ≤, the corresponding strict ordering relation
x < y is defined by x ≤ y ∧ x 6= y and can be viewed as a shorthand for this
conjunction.

I Orders on integers, rationals, reals are all special cases of partial orders called
linear orders.

I Given a set U, let A be any set of subsets of U, that is A ⊆ 2U . Then (A,⊆)
is a partial order.

Example: Let U = {1, 2, 3} and let A = {∅, {1}, {2}, {3}, {2, 3}}. Then (A,⊆) is
a partial order. We can draw it as a Hasse diagram.

Hasse diagram

presents the relation as a directed graph in a plane, such that

I the direction of edge is given by which nodes is drawn above

I transitive and reflexive edges are not represented (they can be derived)

Extreme Elements in Partial Orders

Given a partial order (A,≤) and a set S ⊆ A, we call an element a ∈ A

I upper bound of S if for all a′ ∈ S we have a′ ≤ a

I lower bound of S if for all a′ ∈ S we have a ≤ a′

I minimal element of S if a ∈ S and there is no element a′ ∈ S such that a′ < a

I maximal element of S if a ∈ S and there is no element a′ ∈ S such that a < a′

I greatest element of S if a ∈ S and for all a′ ∈ S we have a′ ≤ a

I least element of S if a ∈ S and for all a′ ∈ S we have a ≤ a′

I least upper bound (lub, supremum, join, t) of S if a is the least element in
the set of all upper bounds of S

I greatest lower bound (glb, infimum, meet, u) of S if a is the greatest element
in the set of all lower bounds of S

Taking S = A we obtain minimal, maximal, greatest, least elements for the entire
partial order.

Extreme Elements in Partial Orders

Notes

I minimal element need not exist: (0, 1) interval of rationals

I there may be multiple minimal elements: {{a}, {b}, {a, b}}
I if minimal element exists, it need not be least: above example

I there are no two distinct least elements for the same set

I least element is always glb and minimal

I if glb belongs to the set, then it is always least and minimal

I for relation ⊆ on sets, glb is intersection, lub is union (not all families
of sets are closed under ∩, ∪)

Least upper bound (lub, supremum, join, t)

Denoted lub(S), least upper bound of S is an element M, if it exists, such
that M is the least element of the set

U = {x | x is upper bound on S}

In other words:

I M is an upper bound on S

I for every other upper bound M ′ on S , we have that M ≤ M ′

Note: this is the same definition as supremum in real analysis.

Least upper bound (glb, infimum, meet, u)

a1 t a2 denotes lub({a1, a2})

(. . . (a1 t a2) . . .) t an is in fact lub({a1, . . . , an})

So the operation is

I associative

I commutative

I idempotent

Real Analysis

Take as S the open interval of reals (0, 1) = {x | 0 < x < 1}
Then

I S has no maximal element

I S thus has no greatest element

I 2, 2.5, 3,... are all upper bounds on S

I lub(S) = 1

Execise: subsets of U

Consider
A = 2U = {S | S ⊆ U} and (A,⊆)

Do these exist, and if so, what are they?

I s1 ⊆ S , s2 ⊆ S , lub({s1, s2}) =?

I lub(S) =?

Exercise: find the lub

{1} t {2} = {1} t {2} =

Does every pair of elements in this order have a least
upper bound?

Dually, does it have a greatest lower bound?

Partial order for the domain of intervals

Domain: D = {⊥} ∪ {(L,U) | L ∈ {−∞} ∪ Z,U ∈ {+∞} ∪ Z
such that L ≤ U.

The associated set of elements is given by the function γ:

γ : D → 2Z, γ((L,U)) = {x | L ≤ x ∧ x ≤ U}

Lub: for d1, d2 ∈ D, d1 v d2 ↔ γ(d1) ⊆ γ(d2)
hence

(L1,U1) v (L2,U2) ↔ L2 ≤ L1 ∧ U1 ≤ U2

⊥ v d ∀d ∈ D

(L1,U1) t (L2,U2) = (min(L1, L2),max(U1,U2))

Remark on constructing orders using inverse images

Suppose γ : D → C where C is some collection of sets.
If we define relation v by:

d1 v d2 ⇐⇒ γ(d1) ⊆ γ(d2)

then

1. v is reflexive

2. v is transitive

3. v is antisymmetric if and only iff γ is injective

If v is not antisymmetric then we can define equivalence relation

d1 ∼ d2 ⇐⇒ γ(d1) = γ(d2)

and then take D ′ to be equivalence classes of such new set.
Example: suppose we defined intervals as all possible pairs of integers
(L,U). Then there would be many representations of the empty set, all
those intervals where L > U.

Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound.

Lemma: In a lattice every non-empty finite set has a lub (t) and glb (u).

Proof: is by induction!
Case where the set S has three elements x,y and z:
Let a = (x t y) t z .
By definition of t we have z v a and x t y v a.
Then we have again by definition of t, x v x t y and y v x t y . Thus by
transitivity we have x v a and y v a.
Thus we have S v a and a is an upper bound.
Now suppose that there exists a′ such that S v a′. We want a v a′ (a least upper
bound):
We have x v a′ and y v a′, thus x t y v a′. But z v a′, thus ((x t y) t z) v a′.

Thus a is the lub of our 3 elements set.

Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound.

Lemma: In a lattice every non-empty finite set has a lub (t) and glb (u).

Proof: is by induction!
Case where the set S has three elements x,y and z:
Let a = (x t y) t z .
By definition of t we have z v a and x t y v a.
Then we have again by definition of t, x v x t y and y v x t y . Thus by
transitivity we have x v a and y v a.
Thus we have S v a and a is an upper bound.
Now suppose that there exists a′ such that S v a′. We want a v a′ (a least upper
bound):
We have x v a′ and y v a′, thus x t y v a′. But z v a′, thus ((x t y) t z) v a′.

Thus a is the lub of our 3 elements set.

Examples of Lattices

Lemma: Every linear order is a lattice.

Example: Every bounded subset of the set of real numbers has a lub. This
is an axiom of real numbers, the way they are defined (or constructed from
rationals).

I If a lattice has least and greatest element, then every finite set
(including empty set) has a lub and glb.

I This does not imply there are lub and glb for infinite sets.
Example: In the oder ([0, 1),≤) with standard ordering on reals is a
lattice, the entire set has no lub. The set of all rationals of interval
[0, 10] is a lattice, but the set {x | 0 ≤ x ∧ x2 < 2} has no lub.

Exercises

Prove the following:

1. (x t y) t z = x t (y t z)

2. tA v uB ⇔ ∀x ∈ A.∀y ∈ B.x v y

3. Let (A,v) be a partial order such that every set S ⊆ A has the
greatest lower bound.
Prove that then every set S ⊆ A has the least upper bound.

