Lecture 7
 Loops and Recursion

Viktor Kuncak

Loops

$$
4 \square>4 \text { 岛 } \downarrow \text { 引 三 }
$$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L : while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L : while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L : while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L : while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L : while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L : while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L : while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$
- $k>0$:

Loops: Example

Consider the set of variables $V=\{x, y\}$ and this program L :
while $(x>0)$ \{

$$
x=x-y
$$

\}
When the loop terminates, what is the (smallest) relation $\rho(L)$ between state (x, y) before loop started executing and the final state $\left(x^{\prime}, y^{\prime}\right)$?
Let k be the number of times loop executes.

- $k=0: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$
- $k=1: x>0 \wedge x^{\prime}=x-y \wedge y^{\prime}=y \wedge x^{\prime} \leq 0$
- $k>0: x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$

Solution:

$$
\begin{aligned}
& \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\
& \left(\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y\right)
\end{aligned}
$$

Heuristically Eliminating a Quantifier from formula (no longer in PA)

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Heuristically Eliminating a Quantifier from formula (no longer in PA)

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Heuristically Eliminating a Quantifier from formula (no longer in PA)

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.

Heuristically Eliminating a Quantifier from formula (no longer in PA)

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.
$\exists k . k>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$
Apply one-point rule to eliminate k

Heuristically Eliminating a Quantifier from formula (no longer in PA)

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.
$\exists k . k>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$
Apply one-point rule to eliminate k

$$
\left(\left(x-x^{\prime}\right) / y\right)>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

which is also equivalent to simply

Heuristically Eliminating a Quantifier from formula (no longer in PA)

$$
\exists k . k>0 \wedge x>0 \wedge x^{\prime}=x-k y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

$$
\exists k . k>0 \wedge x>0 \wedge k y=x-x^{\prime} \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Note that $x-x^{\prime}>0$ and $k>0$ so from $k y=x-x^{\prime}$ we get $y>0$.
$\exists k . k>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge k=\left(x-x^{\prime}\right) / y \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y$
Apply one-point rule to eliminate k

$$
\left(\left(x-x^{\prime}\right) / y\right)>0 \wedge y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

which is also equivalent to simply

$$
y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y
$$

Formula for Loop

Meaning of

```
while (x>0) {
    x = x - y
}
```

is given by formula

$$
\begin{aligned}
& \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\
& \left(y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y\right)
\end{aligned}
$$

Formula for Loop

Meaning of
while $(x>0)$ \{

$$
x=x-y
$$

\}
is given by formula

$$
\begin{aligned}
& \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\
& \left(y>0 \wedge x>0 \wedge y \mid\left(x-x^{\prime}\right) \wedge x^{\prime} \leq 0 \wedge y^{\prime}=y\right)
\end{aligned}
$$

What happens if initially $x>0 \wedge y \leq 0$?

- in the formula
- in the program

Integer Programs with Loops

Even if loop body is in Presburger arithmetic, the semantics of a loop need not be.

Integer programs with loops are Turing complete and can compute all computable functions.

Even if we cannot find Presburger arithmetic formula, we may be able to find

- a formula in a richer logic
- a property of the meaning of the loop (e.g. formula for the superset)

To help with these tasks, we give mathematical semantics of loops Useful concept for this is transitive closure: $r^{*}=\bigcup_{n \geq 0} r^{n}$ (We may or may not have a general formula for r^{n} or r^{*})

A few more facts about relations

Let $r \subseteq S \times S$ and $\Delta=\{(x, x) \mid x \in S\}$. Then

$$
\Delta \circ r=r=r \circ \Delta
$$

We say that r is reflexive iff $\forall x \in S .(x, x) \in r$.

- equivalently, reflexivity means $\Delta \subseteq r$

Relation r is transitive iff

$$
\forall x, y, z .((x, y) \in r \wedge(y, z) \in r \rightarrow(x, z) \in r)
$$

which is the same as saying $r \circ r \subseteq r$

Transitive Closure of a Relation

$r \subseteq S \times S$. Define $r^{0}=\Delta$ and $r^{n+1}=r \circ r^{n}$. Then $\left(x_{0}, x_{n}\right) \in r^{n}$
iff $\exists x_{1}, \ldots, x_{n-1}$ such that $\left(x_{i}, x_{i+1}\right) \in r$ for $0 \leq i \leq n-1$.
Define reflexive transitive closure of r by

$$
r^{*}=\bigcup_{n \geq 0} r^{n}
$$

Properties that follow from the definition:

- $\left(x_{0}, x_{n}\right) \in r^{*}$ iff there exists $n \geq 0$ and $\exists x_{1}, \ldots, x_{n-1}$ such that $\left(x_{i}, x_{i+1}\right) \in r$ for $0 \leq i \leq n-1$ (a path in the graph r)
- r^{*} is a reflexive and transitive relation
- If s is a reflexive transitive relation and $r \subseteq s$, then $r^{*} \subseteq s$
- r^{*} is the smallest reflexive transitive relation containing r
- $\left(r^{-1}\right)^{*}=\left(r^{*}\right)^{-1}$
- $r_{1} \subseteq r_{2}$ implies $r_{1}^{*} \subseteq r_{2}^{*}$
- $r^{*}=\Delta \cup\left(r \circ r^{*}\right)$ and, likewise, $r^{*}=\Delta \cup\left(r^{*} \circ r\right)$

Towards meaning of loops: unfolding

Loops can describe an infinite number of basic paths (for a larger input, program takes a longer path)
Consider loop

$$
L \equiv \text { while }(F) c
$$

We would like to have

$$
\begin{aligned}
L & \equiv \text { if }(F)(c ; L) \\
& \equiv \text { if }(F)(c ; \text { if }(F)(c ; L))
\end{aligned}
$$

For $r_{L}=\rho(L), r_{c}=\rho(c), \Delta_{1}=\Delta_{\tilde{F}}, \Delta_{2}=\Delta_{\neg F}$ we have

$$
\begin{aligned}
r_{L}= & \left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2} \\
= & \left(\Delta_{1} \circ r_{c} \circ\left(\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}\right)\right) \cup \Delta_{2} \\
= & \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right) \circ \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right)^{2} \circ r_{L}
\end{aligned}
$$

Unfolding Loops

$$
\begin{aligned}
r_{L}= & \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right) \circ \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right)^{2} \circ \Delta_{2} \cup \\
& \left(\Delta_{1} \circ r_{c}\right)^{3} \circ r_{L}
\end{aligned}
$$

We prove by induction that for every $n \geq 0$,

$$
\left(\Delta_{1} \circ r_{c}\right)^{n} \circ \Delta_{2} \subseteq r_{L}
$$

So, $\bigcup_{n \geq 0}\left(\left(\Delta_{1} \circ r_{c}\right)^{n} \circ \Delta_{2}\right) \subseteq r_{L}$, that is

$$
\left(\bigcup_{n \geq 0}\left(\Delta_{1} \circ r_{c}\right)^{n}\right) \circ \Delta_{2} \subseteq r_{L}
$$

We do not wish to have unnecessary elements in relation, so we try

$$
r_{L}=\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}
$$

and this does satisfy $r_{L}=\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}$, so we define

$$
\rho(\boldsymbol{w h i l e}(F) c)=\left(\Delta_{\tilde{F}} \circ \rho(c)\right)^{*} \circ \Delta_{\neg F}
$$

Why loop semantics satisfies the condition

We defined

$$
r_{L}=\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}
$$

Show that $\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}$ equals r_{L}, as we expect from recursive definition of a while loop.

Why loop semantics satisfies the condition

We defined

$$
r_{L}=\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}
$$

Show that $\left(\Delta_{1} \circ r_{c} \circ r_{L}\right) \cup \Delta_{2}$ equals r_{L}, as we expect from recursive definition of a while loop.
Using property $r^{*}=\Delta \cup r \circ r^{*}$ we have

$$
\begin{aligned}
r_{L} & =\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2} \\
& =\left[\Delta \cup \Delta_{1} \circ r_{c} \circ\left(\Delta_{1} \circ r_{c}\right)^{*}\right] \circ \Delta_{2} \\
& =\Delta_{2} \cup\left[\Delta_{1} \circ r_{c} \circ\left(\Delta_{1} \circ r_{c}\right)^{*} \circ \Delta_{2}\right] \\
& =\Delta_{2} \cup \Delta_{1} \circ r_{c} \circ r_{L}
\end{aligned}
$$

Using Loop Semantics in Example

$$
\begin{aligned}
& \rho \text { of } L \text { : } \\
& \text { while }(x>0)\{ \\
& \quad x=x-y \\
& \} \\
& \text { is: }
\end{aligned}
$$

Using Loop Semantics in Example

ρ of L :
while $(x>0)$ \{

$$
x=x-y
$$

\}
is:

$$
\left(\Delta_{x>0} \circ \rho(x=x-y)\right)^{*} \circ \Delta_{\neg(x>0)}
$$

Compute each relation:

$$
\begin{aligned}
\Delta_{x \tilde{}} & =\{((x, y),(x, y)) \mid x>0\} \\
\Delta_{\neg(x>0)} & =\{((x, y),(x, y)) \mid x \leq 0\} \\
\rho(x=x-y) & =\{((x, y),(x-y, y)) \mid x, y \in \mathbb{Z}\} \\
\Delta_{x>0} \circ \rho(x=x-y) & = \\
\left(\Delta_{x \tilde{>} 0} \circ \rho(x=x-y)\right)^{k} & = \\
\left(\Delta_{x>0} \circ \rho(x=x-y)\right)^{*} & = \\
\rho(L) & =
\end{aligned}
$$

Semantics of a Program with a Loop

Compute and simplify relation for this program:
$x=0$
while $(y>0)$ \{

$$
x=x+y
$$

$$
y=y-1
$$

$$
\}
$$

$$
\begin{aligned}
& \rho(x=0) \circ \\
& \left(\Delta_{y \tilde{>} 0} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ \\
& \Delta_{y \tilde{\leq} 0}
\end{aligned}
$$

$\begin{array}{r} R(x=0) \\ R([y>0]) \\ R([y \leq 0]) \end{array}$	$\begin{aligned} & x^{\prime}=0 \wedge y^{\prime}=y \\ & y^{\prime}>0 \wedge x^{\prime}=x \wedge y^{\prime}=y \\ & y^{\prime} \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y \end{aligned}$
	$y>0 \wedge x^{\prime}=x+y \wedge y^{\prime}=y-1$
	$\begin{aligned} & y-(k-1)>0 \wedge \\ & x^{\prime}=x+(y+(y-1)+\cdots+y-(k-1)) \wedge y^{\prime}=y-k \\ & \text { i.e. } \\ & y \geq k \wedge x^{\prime}=x+k(y+y-(k-1)) / 2 \wedge y^{\prime}=y-k \end{aligned}$
$\begin{aligned} & R((\quad[y>0] ; \\ & \quad x=x+y ; \\ & \left.y=y-1)^{*}\right) \end{aligned}$	$\begin{aligned} & \quad\left(x^{\prime}=x \wedge y^{\prime}=y\right) \vee \\ & \exists k>0 . \\ & \left.y \geq k \wedge x^{\prime}=x+k(2 y-k+1)\right) / 2 \wedge y^{\prime}=y-k \\ & \text { i.e. }\left(k=y-y^{\prime}\right) \\ & \quad\left(x^{\prime}=x \wedge y^{\prime}=y\right) \vee\left(y-y^{\prime}>0 \wedge y^{\prime} \geq 0 \wedge x^{\prime}=x+\left(y-y^{\prime}\right)\left(y+y^{\prime}+1\right) / 2\right) \\ & \text { i.e. } \end{aligned}$
R (program)	$\left(x^{\prime}=0 \wedge y^{\prime}=y \wedge y^{\prime} \leq 0\right) \vee\left(y>0 \wedge y^{\prime}=0 \wedge x^{\prime}=y(y+1) / 2\right)$

Remarks on Previous Solution

Intermediate components can be more complex than final result

- they must account for all possible initial states, even those never reached in actual executions

Be careful with handling base case. This solution is "almost correct" but incorrectly describes behavior when the initial state has, for example, $y=-2$:

$$
y^{\prime}=0 \wedge x^{\prime}=y(y+1) / 2
$$

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to compute approximate semantics.
Observation: $r_{1} \subseteq r_{2} \rightarrow r_{1}^{*} \subseteq r_{2}^{*}$
Suppose we only wish to show that the semantics satisfies $y^{\prime} \leq y$
$\mathrm{x}=0$
while $(y>0)$ \{

$$
x=x+y
$$

$$
y=y-1
$$

$$
\begin{aligned}
& \rho(x=0) \circ \\
& \left(\Delta_{y \tilde{>} 0} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ \\
& \Delta_{y \tilde{\leq} 0}
\end{aligned}
$$

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to compute approximate semantics.
Observation: $r_{1} \subseteq r_{2} \rightarrow r_{1}^{*} \subseteq r_{2}^{*}$
Suppose we only wish to show that the semantics satisfies $y^{\prime} \leq y$
$\mathrm{x}=0$
while $(y>0)\{$

$$
x=x+y
$$

$$
y=y-1
$$

$$
\begin{aligned}
& \rho(x=0) \circ \\
& \left(\Delta_{y \tilde{>} 0} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ \\
& \Delta_{y \tilde{\leq} 0}
\end{aligned}
$$

Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to compute approximate semantics.
Observation: $r_{1} \subseteq r_{2} \rightarrow r_{1}^{*} \subseteq r_{2}^{*}$
Suppose we only wish to show that the semantics satisfies $y^{\prime} \leq y$
$\mathrm{x}=0$
while $(y>0)$ \{

$$
x=x+y
$$

$$
y=y-1
$$

$$
\begin{aligned}
& \rho(x=0) \circ \\
& \left(\Delta_{y \tilde{>} 0} \circ \rho(x=x+y ; y=y-1)\right)^{*} \circ \\
& \Delta_{y \tilde{\leq} 0}
\end{aligned}
$$

$I \cap$
$x=0$
while $(y>0)$ \{

$$
\rho(x=0)
$$

val $\mathrm{y} 0=\mathrm{y}$
havoc(y)
assume $(\mathrm{y}>\mathrm{y} 0$)

Recursion

Example of Recursion

For simplicity assume no parameters
(we can simulate them using global variables)

$$
\begin{aligned}
& E\left(r_{f}\right)= \\
& \Delta_{x>0} \tilde{\sim}^{\circ}(\\
& \left(\Delta_{x \% 2=0^{\circ}}\right. \\
& \rho(x=x / 2) \circ \\
& r_{f} \circ \\
& \rho(y=y * 2)) \\
& \cup \\
& \left(\Delta_{x \% 2 \neq 0^{\circ}}\right. \\
& \rho(x=x-1) \circ \\
& \rho(y=y+x) \circ \\
& \left.r_{f}\right) \\
&) \cup \Delta_{x} \tilde{x}_{0}
\end{aligned}
$$

Assume recursive function call denotes some relation r_{f} Need to find relation r_{f} such that $r_{f}=E\left(r_{f}\right)$

Simpler Example of Recursion

$$
\begin{array}{cc}
\text { def } f= & E\left(r_{f}\right)= \\
\text { if }(x>0)\{ & \left(\Delta_{x \tilde{>} 0} \circ(\right. \\
x=x-1 & \rho(x=x-1) \circ \\
\mathrm{f} & r_{f} \circ \\
y=y+2 & \rho(y=y+2)) \\
\} &) \cup \Delta_{x \tilde{\leq} 0}
\end{array}
$$

Simpler Example of Recursion

$$
\begin{array}{cc}
\text { def } f= & \\
\text { if }(x>0)\{ & E\left(r_{f}\right)=\left(\Delta_{x \sim 0} \circ(\right. \\
x=x-1 & \rho(x=x-1) \circ \\
\mathrm{f} & r_{f} \circ \\
y=y+2 & \rho(y=y+2)) \\
\} &) \cup \Delta_{x \tilde{\leq} 0}
\end{array}
$$

What is $E(\emptyset)$?

Simpler Example of Recursion

$$
\begin{array}{cc}
\text { def } f= & E\left(r_{f}\right)= \\
\text { if }(x>0)\{ & \left(\Delta_{x \sim 0} \circ(\right. \\
x=x-1 & \rho(x=x-1) \circ \\
\mathrm{f} & r_{f} \circ \\
y=y+2 & \rho(y=y+2)) \\
\} &) \cup \Delta_{x \tilde{\leq} 0}
\end{array}
$$

What is $E(\emptyset)$?
What is $E(E(\emptyset))$?

Simpler Example of Recursion

$$
\begin{array}{cc}
\text { def } f= & E\left(r_{f}\right)= \\
\text { if }(x>0)\{ & \left(\Delta_{x \tilde{>} 0} \circ(\right. \\
x=x-1 & \rho(x=x-1) \circ \\
\mathrm{f} & r_{f} \circ \\
y=y+2 & \rho(y=y+2)) \\
\} &) \cup \Delta_{x \tilde{\leq} 0}
\end{array}
$$

What is $E(\emptyset)$?
What is $E(E(\emptyset))$?
$E^{k}(\emptyset)$?

Review from Before: Expressions E on Relations

The law

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

holds, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once.
2. \Rightarrow If $E(r)$ contains r any number of times, but I is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite.

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$. What is the relationship between r_{k} and r_{k+1} ?

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?

- $r_{0} \subseteq r_{1}$ because $\emptyset \subseteq \ldots$. Moreover, we showed several lectures earlier that E is monotonic
- from here it follows $r_{1} \subseteq r_{2}$ and, by induction, $r_{k} \subseteq r_{k+1}$

Sequence of Bounded Recursions

Consider the sequence of relations $r_{0}=\emptyset, r_{k}=E^{k}(\emptyset)$.
What is the relationship between r_{k} and r_{k+1} ?

- $r_{0} \subseteq r_{1}$ because $\emptyset \subseteq \ldots$. Moreover, we showed several lectures earlier that E is monotonic
- from here it follows $r_{1} \subseteq r_{2}$ and, by induction, $r_{k} \subseteq r_{k+1}$

Define

$$
s=\bigcup_{k \geq 0} r_{k}
$$

Then
$E(s)=E\left(\bigcup_{k \geq 0} r_{k}\right) \stackrel{?}{=} \bigcup_{k \geq 0} E\left(r_{k}\right)=\bigcup_{k \geq 0} r_{k+1}=\bigcup_{k \geq 1} r_{k}=\emptyset \cup \bigcup_{k \geq 1} r_{k}=s$
If $E(s)=s$ we say s is a fixed point (fixpoint) of function E
Meaning of a recursive program is fixpoint of the corresponding E

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Solution of $x^{2}-x-3=x$, that is, $(x-1)^{2}=4$, i.e., $|x-1|=2$, is $x_{1}=-1$ and $x_{2}=3$

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Solution of $x^{2}-x-3=x$, that is, $(x-1)^{2}=4$, i.e., $|x-1|=2$, is $x_{1}=-1$ and $x_{2}=3$
2. Compute the fixpoint that is smaller than all other fixpoints

Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
f(x)=x^{2}-x-3
$$

Solution of $x^{2}-x-3=x$, that is, $(x-1)^{2}=4$, i.e., $|x-1|=2$, is $x_{1}=-1$ and $x_{2}=3$
2. Compute the fixpoint that is smaller than all other fixpoints $x_{1}=-1$ is the smallest.

Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
$E: C \rightarrow C$ such that for $r_{0} \subseteq r_{1} \subseteq r_{2} \ldots$
we have

$$
E\left(\bigcup_{i} r_{i}\right)=\bigcup_{i} E\left(r_{i}\right)
$$

(This holds when E is given in terms of \circ and \cup.) Then $s=\bigcup_{i} E^{i}(\emptyset)$ is such that

1. $E(s)=s$ (we have shown this)
2. if r is such that $E(r) \subseteq r$ (special case: if $E(r)=r$), then $s \subseteq r$ (we show this next)

Showing that the Fixpoint is Least

$$
s=\bigcup_{i} E^{i}(\emptyset)
$$

Now take any r such that $E(r) \subseteq r$.
We will show $s \subseteq r$, that is

$$
\begin{equation*}
\bigcup_{i} E^{i}(\emptyset) \subseteq r \tag{*}
\end{equation*}
$$

This means showing $E^{i}(\emptyset) \subseteq r$, for every i. For $i=0$ this is just $\emptyset \subseteq r$. We proceed by induction. If $E^{i}(\emptyset) \subseteq r$, then by monotonicity of E

$$
E\left(E^{i}(\emptyset)\right) \subseteq E(r) \subseteq r
$$

This completes the proof of $(*)$

Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation $E(r)=r$
We define the intended meaning as $s=\bigcup_{i \geq 0} E(\emptyset)$, which satisfies
$E(s)=s$ and also is the least among all relations r such that
$E(r) \subseteq r$ (and therefore, also the least among those r for which
$E(r)=r)$
We picked least fixpoint, so if the execution cannot terminate on a state x, then there is no x^{\prime} such that $\left(x, x^{\prime}\right) \in s$

- Let q be a program that never terminates, then
- $\rho(q)=\emptyset$ and $\rho(c \square q)=\rho(c) \cup \emptyset=\rho(c)$
- also, $\rho(q)=\rho\left(\Delta_{\emptyset}\right)$ (assume(false))

