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Loops



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the (smallest) relation ρ(L)
between state (x , y) before loop started executing and the final
state (x ′, y ′)?

Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)
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Heuristically Eliminating a Quantifier from formula (no
longer in PA)

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

Note that x − x ′ > 0 and k > 0 so from ky = x − x ′ we get y > 0.

∃k . k > 0∧y > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

Apply one-point rule to eliminate k

((x − x ′)/y) > 0 ∧ y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

which is also equivalent to simply

y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y
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Formula for Loop

Meaning of

while (x > 0) {
x = x − y
}

is given by formula

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y)

What happens if initially x > 0 ∧ y ≤ 0 ?

I in the formula

I in the program
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Integer Programs with Loops

Even if loop body is in Presburger arithmetic, the semantics of a
loop need not be.

Integer programs with loops are Turing complete and can compute
all computable functions.

Even if we cannot find Presburger arithmetic formula, we may be
able to find

I a formula in a richer logic

I a property of the meaning of the loop
(e.g. formula for the superset)

To help with these tasks, we give mathematical semantics of loops
Useful concept for this is transitive closure: r∗ =

⋃
n≥0 r

n

( We may or may not have a general formula for rn or r∗ )



A few more facts about relations

Let r ⊆ S × S and ∆ = {(x , x) | x ∈ S}. Then

∆ ◦ r = r = r ◦∆

We say that r is reflexive iff ∀x ∈ S .(x , x) ∈ r .

I equivalently, reflexivity means ∆ ⊆ r

Relation r is transitive iff

∀x , y , z . ((x , y) ∈ r ∧ (y , z) ∈ r → (x , z) ∈ r)

which is the same as saying r ◦ r ⊆ r



Transitive Closure of a Relation

r ⊆ S × S . Define r0 = ∆ and rn+1 = r ◦ rn. Then (x0, xn) ∈ rn

iff ∃x1, . . . , xn−1 such that (xi , xi+1) ∈ r for 0 ≤ i ≤ n − 1.
Define reflexive transitive closure of r by

r∗ =
⋃
n≥0

rn

Properties that follow from the definition:

I (x0, xn) ∈ r∗ iff there exists n ≥ 0 and ∃x1, . . . , xn−1 such that
(xi , xi+1) ∈ r for 0 ≤ i ≤ n − 1 (a path in the graph r)

I r∗ is a reflexive and transitive relation
I If s is a reflexive transitive relation and r ⊆ s, then r∗ ⊆ s

I r∗ is the smallest reflexive transitive relation containing r

I (r−1)∗ = (r∗)−1

I r1 ⊆ r2 implies r∗1 ⊆ r∗2
I r∗ = ∆ ∪ (r ◦ r∗) and, likewise, r∗ = ∆ ∪ (r∗ ◦ r)



Towards meaning of loops: unfolding

Loops can describe an infinite number of basic paths
(for a larger input, program takes a longer path)
Consider loop

L ≡ while(F )c

We would like to have

L ≡ if (F ) (c ; L)
≡ if (F ) (c ; if (F ) (c ; L))

For rL = ρ(L), rc = ρ(c), ∆1 = ∆F̃ , ∆2 = ∆¬̃F we have

rL = (∆1 ◦ rc ◦ rL) ∪∆2

= (∆1 ◦ rc ◦ ((∆1 ◦ rc ◦ rL) ∪∆2)) ∪∆2

= ∆2 ∪
(∆1 ◦ rc) ◦∆2 ∪
(∆1 ◦ rc)2 ◦ rL



Unfolding Loops

rL = ∆2 ∪
(∆1 ◦ rc) ◦∆2 ∪
(∆1 ◦ rc)2 ◦∆2 ∪
(∆1 ◦ rc)3 ◦ rL

We prove by induction that for every n ≥ 0,

(∆1 ◦ rc)n ◦∆2 ⊆ rL

So,
⋃

n≥0
(
(∆1 ◦ rc)n ◦∆2

)
⊆ rL, that is( ⋃

n≥0
(∆1 ◦ rc)n

)
◦∆2 ⊆ rL

We do not wish to have unnecessary elements in relation, so we try

rL = (∆1 ◦ rc)∗ ◦∆2

and this does satisfy rL = (∆1 ◦ rc ◦ rL) ∪∆2, so we define

ρ(while(F )c) = (∆F̃ ◦ ρ(c))∗ ◦∆¬̃F



Why loop semantics satisfies the condition

We defined
rL = (∆1 ◦ rc)∗ ◦∆2

Show that (∆1 ◦ rc ◦ rL) ∪∆2 equals rL, as we expect from
recursive definition of a while loop.

Using property r∗ = ∆ ∪ r ◦ r∗ we have

rL = (∆1 ◦ rc)∗ ◦∆2

= [∆ ∪ ∆1 ◦ rc ◦ (∆1 ◦ rc)∗] ◦∆2

= ∆2 ∪ [∆1 ◦ rc ◦ (∆1 ◦ rc)∗ ◦∆2]
= ∆2 ∪∆1 ◦ rc ◦ rL
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Using Loop Semantics in Example

ρ of L:

while (x > 0) {
x = x − y
}

is:

(∆ ˜x>0 ◦ ρ(x = x − y))∗ ◦∆ ˜¬(x>0)

Compute each relation:

∆ ˜x>0 = {((x , y), (x , y)) | x > 0}
∆ ˜¬(x>0)

= {((x , y), (x , y)) | x ≤ 0}
ρ(x = x − y) = {((x , y), (x − y , y)) | x , y ∈ Z}

∆ ˜x>0 ◦ ρ(x = x − y) =
(∆ ˜x>0 ◦ ρ(x = x − y))k =
(∆ ˜x>0 ◦ ρ(x = x − y))∗ =

ρ(L) =
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Semantics of a Program with a Loop
Compute and simplify relation for this program:

x = 0
while (y > 0) {

x = x + y
y = y − 1
}

ρ(x = 0)◦
(∆ ˜y>0 ◦ ρ(x = x + y ; y = y − 1))∗◦
∆ ˜y≤0

R(x = 0) x′ = 0 ∧ y′ = y
R([y > 0]) y′ > 0 ∧ x′ = x ∧ y′ = y
R([y ≤ 0]) y′ ≤ 0 ∧ x′ = x ∧ y′ = y

R( [y > 0];
x = x + y ;
y = y − 1) y > 0 ∧ x′ = x + y ∧ y′ = y − 1

R(( [y > 0];
x = x + y ;

y = y − 1)k ), k > 0

y − (k − 1) > 0∧
x′ = x + (y + (y−1) + · · · + y − (k−1)) ∧ y′ = y − k

i.e.
y ≥ k ∧ x′ = x + k(y + y − (k−1))/2 ∧ y′ = y − k

R(( [y > 0];
x = x + y ;
y = y − 1)∗)

(x′ = x ∧ y′ = y) ∨
∃k > 0.
y ≥ k ∧ x′ = x + k(2y − k + 1))/2 ∧ y′ = y − k

i.e. (k = y − y′)
(x′ = x ∧ y′ = y) ∨

(
y − y′ > 0 ∧ y′ ≥ 0 ∧ x′ = x + (y − y′)(y + y′ + 1)/2

)
i.e.

R(program) (x′ = 0 ∧ y′ = y ∧ y′ ≤ 0) ∨
(
y > 0 ∧ y′ = 0 ∧ x′ = y(y + 1)/2

)



Remarks on Previous Solution

Intermediate components can be more complex than final result

I they must account for all possible initial states, even those
never reached in actual executions

Be careful with handling base case. This solution is “almost
correct” but incorrectly describes behavior when the initial state
has, for example, y = −2:

y ′ = 0 ∧ x ′ = y(y + 1)/2



Approximate Semantics of Loops

Instead of computing exact semantics, it can be sufficient to
compute approximate semantics.
Observation: r1 ⊆ r2 → r∗1 ⊆ r∗2
Suppose we only wish to show that the semantics satisfies y ′ ≤ y

x = 0
while (y > 0) {

x = x + y
y = y − 1
}

ρ(x = 0)◦
(∆ ˜y>0 ◦ ρ(x = x + y ; y = y − 1))∗◦
∆ ˜y≤0

v ⊆
x = 0
while (y > 0) {

val y0 = y
havoc(y)
assume(y > y0)
}

ρ(x = 0)◦
(∆ ˜y>0 ◦ {(x , y , x ′, y ′) | y ′ ≤ y})∗◦
∆ ˜y≤0
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Recursion



Example of Recursion

For simplicity assume no parameters
(we can simulate them using global variables)

def f =
if (x > 0) {

if (x % 2 == 0) {
x = x / 2;
f;
y = y ∗ 2
} else {

x = x − 1;
y = y + x;
f
}
}

E (rf ) =
∆ ˜x>0 ◦

(
(∆x%2=0◦
ρ(x = x/2)◦
rf ◦
ρ(y = y ∗ 2))
∪

(∆x%26=0◦
ρ(x = x − 1)◦
ρ(y = y + x)◦
rf ))
∪∆ ˜x≤0

Assume recursive function call denotes some relation rf
Need to find relation rf such that rf = E (rf )



Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

What is E (∅)?
What is E (E (∅))?
E k(∅)?
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What is E (E (∅))?
E k(∅)?



Review from Before: Expressions E on Relations

The law
E (
⋃
i∈I

ri ) =
⋃
i∈I

E (ri )

holds, for each of these cases

1. If E (r) is given by an expression containing r at most once.

2. ⇒ If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.



Sequence of Bounded Recursions

Consider the sequence of relations r0 = ∅, rk = E k(∅).
What is the relationship between rk and rk+1?

I r0 ⊆ r1 because ∅ ⊆ . . .. Moreover, we showed several lectures
earlier that E is monotonic

I from here it follows r1 ⊆ r2 and, by induction, rk ⊆ rk+1

Define
s =

⋃
k≥0

rk

Then

E (s) = E (
⋃
k≥0

rk)
?
=
⋃
k≥0

E (rk) =
⋃
k≥0

rk+1 =
⋃
k≥1

rk = ∅ ∪
⋃
k≥1

rk = s

If E (s) = s we say s is a fixed point (fixpoint) of function E

Meaning of a recursive program is fixpoint of the corresponding E
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Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f : R→ R defined as

f (x) = x2 − x − 3

Solution of x2 − x − 3 = x , that is, (x − 1)2 = 4, i.e., |x − 1| = 2,
is x1 = −1 and x2 = 3
2. Compute the fixpoint that is smaller than all other fixpoints
x1 = −1 is the smallest.
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Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
E : C → C such that for r0 ⊆ r1 ⊆ r2 . . .
we have

E (
⋃
i

ri ) =
⋃
i

E (ri )

(This holds when E is given in terms of ◦ and ∪.) Then
s =

⋃
i E

i (∅) is such that

1. E (s) = s (we have shown this)

2. if r is such that E (r) ⊆ r (special case: if E (r) = r), then
s ⊆ r (we show this next)



Showing that the Fixpoint is Least

s =
⋃
i

E i (∅)

Now take any r such that E (r) ⊆ r .
We will show s ⊆ r , that is⋃

i

E i (∅) ⊆ r (∗)

This means showing E i (∅) ⊆ r , for every i . For i = 0 this is just
∅ ⊆ r . We proceed by induction. If E i (∅) ⊆ r , then by
monotonicity of E

E (E i (∅)) ⊆ E (r) ⊆ r

This completes the proof of (∗)



Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation E (r) = r

We define the intended meaning as s =
⋃

i≥0 E (∅), which satisfies
E (s) = s and also is the least among all relations r such that
E (r) ⊆ r (and therefore, also the least among those r for which
E (r) = r)

We picked least fixpoint, so if the execution cannot terminate on a
state x , then there is no x ′ such that (x , x ′) ∈ s

I Let q be a program that never terminates, then

I ρ(q) = ∅ and ρ(c q) = ρ(c) ∪ ∅ = ρ(c)

I also, ρ(q) = ρ(∆∅) (assume(false))


