# Lecture 4 Paths, Triples, Postconditions, Preconditions

Viktor Kuncak

# Loop-Free Programs as Relations: Summary

Examples:

if 
$$(F)$$
  $c_1$  else  $c_2 \equiv [F]$ ;  $c_1 \square [\neg F]$ ;  $c_2$  if  $(F)$   $c \equiv [F]$ ;  $c \square [\neg F]$ 



# Program Paths

# Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are  $c_1, \ldots, c_n$ 

The relation  $\rho(c)$  is of the form  $E(\rho(c_1), \ldots, \rho(c_n))$ ; it composes meanings of  $c_1, \ldots, c_n$  using union ( $\cup$ ) and composition ( $\circ$ )

Note:  $\circ$  binds stronger than  $\cup$ , so  $r \circ s \cup t = (r \circ s) \cup t$ 

# Normal Form for Loop-Free Programs

Composition distributes through union:

$$(r_1 \cup r_2) \circ (s_1 \cup s_2) = r_1 \circ s_1 \cup r_1 \circ s_2 \cup r_2 \circ s_1 \cup r_2 \circ s_2$$

Example corresponding to two if-else statements one after another:

$$egin{pmatrix} (\Delta_1\circ r_1 & & & & & & & \\ & \cup & & & & & & \\ \Delta_2\circ r_2 & & & & & & \\ )\circ & & & & & & \\ (\Delta_3\circ r_3 & & & & & \\ & & & & & \Delta_1\circ r_1\circ \Delta_3\circ r_3 \cup \\ \Delta_1\circ r_1\circ \Delta_4\circ r_4 \cup & & & \\ \Delta_2\circ r_2\circ \Delta_3\circ r_3 \cup \\ \Delta_2\circ r_2\circ \Delta_4\circ r_4 & & \\ ) & & & & \\ \end{pmatrix}$$

Sequential composition of basic statements is called basic path. Loop-free code describes finitely many (exponentially many) paths.

# Properties of Program Contexts

# Some Properties of Relations

$$(p_1\subseteq p_2)\to (p_1\circ p)\subseteq (p_2\circ p)$$

$$(p_1\subseteq p_2) o (p\circ p_1)\subseteq (p\circ p_2)$$

$$(p_1 \subseteq p_2) \wedge (q_1 \subseteq q_2) \rightarrow (p_1 \cup q_1) \subseteq (p_2 \cup q_2)$$

$$(p_1 \cup p_2) \circ q = (p_1 \circ q) \cup (p_2 \circ q)$$

# Monotonicity of Expressions using $\cup$ and $\circ$

For a program with k integer variables,  $S = \mathbb{Z}^k$ Consider relations that are subsets of  $S \times S$  (i.e.  $S^2$ ) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations  $b_1, \ldots, b_n$ , using  $\cup$  and  $\circ$ .

Example:  $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ 

E(r) is function  $C \rightarrow C$ , maps relations to relations

**Claim:** *E* is monotonic function on *C*:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.



# Monotonicity of Expressions using $\cup$ and $\circ$

For a program with k integer variables,  $S = \mathbb{Z}^k$ Consider relations that are subsets of  $S \times S$  (i.e.  $S^2$ ) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations  $b_1, \ldots, b_n$ , using  $\cup$  and  $\circ$ .

Example:  $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ 

E(r) is function  $C \rightarrow C$ , maps relations to relations

**Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Proof: induction on the expression tree defining E, using monotonicity properties of  $\cup$  and  $\circ$ 



# Union-Distributivity of Expressions using $\cup$ and $\circ$

Claim: E distributes over unions, that is, if  $r_i$ ,  $i \in I$  is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

Prove or disprove.

# Union-Distributivity of Expressions using $\cup$ and $\circ$

Claim: E distributes over unions, that is, if  $r_i$ ,  $i \in I$  is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

Prove or disprove.

False. Take  $E(r) = r \circ r$  and consider relations  $r_1, r_2$ . The claim becomes

$$(r_1 \cup r_2) \circ (r_1 \cup r_2) = r_1 \circ r_1 \cup r_2 \circ r_2$$

that is,

$$r_1 \circ r_1 \cup r_1 \circ r_2 \cup r_2 \circ r_1 \cup r_2 \circ r_2 = r_1 \circ r_1 \cup r_2 \circ r_2$$

Taking, for example,  $r_1 = \{(1,2)\}, r_2 = \{(2,3)\}$  we obtain

$$\{(1,3)\} = \emptyset$$
 (false)

# Union "Distributivity" in One Direction

Lemma:

$$E(\bigcup_{i\in I}r_i)\supseteq\bigcup_{i\in I}E(r_i)$$

# Union "Distributivity" in One Direction

Lemma:

$$E(\bigcup_{i\in I}r_i)\supseteq\bigcup_{i\in I}E(r_i)$$

Proof. Let  $r = \bigcup_{i \in I} r_i$ . Note that, for every i,  $r_i \subseteq r$ . We have shown that E is monotonic, so  $E(r_i) \subseteq E(r)$ . Since all  $E(r_i)$  are included in E(r), so is their union, so

$$\bigcup E(r_i) \subseteq E(r)$$

as desired.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.
- 2. If E(r) contains r any number of times, but I is a set of natural numbers and  $r_i$  is an increasing sequence:

$$r_1 \subseteq r_2 \subseteq r_3 \subseteq \dots$$

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.
- 2. If E(r) contains r any number of times, but I is a set of natural numbers and  $r_i$  is an increasing sequence:  $r_1 \subseteq r_2 \subseteq r_3 \subseteq \ldots$  Induction. In the previous counter-example the largest relation will contain all other  $r_i \circ r_j$ .
- 3. If E(r) contains r any number of times, but  $r_i$ ,  $i \in I$  is a **directed family** of relations: for each i, j there exists k such that  $r_i \cup r_j \subseteq r_k$ , and I is possibly uncountably infinite.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses r twice.
- 2. If E(r) contains r any number of times, but I is a set of natural numbers and  $r_i$  is an increasing sequence:  $r_1 \subseteq r_2 \subseteq r_3 \subseteq \ldots$  Induction. In the previous counter-example the largest relation will contain all other  $r_i \circ r_j$ .
- 3. If E(r) contains r any number of times, but  $r_i, i \in I$  is a **directed family** of relations: for each i, j there exists k such that  $r_i \cup r_j \subseteq r_k$ , and I is possibly uncountably infinite. Induction. Generalizes the previous case.



# About Strength and Weakness

# Putting Conditions on Sets Makes them Smaller

Let  $P_1$  and  $P_2$  be formulas ("conditions") whose free variables are among  $\bar{x}$ . Those variables may denote program state. When we say "condition  $P_1$  is stronger than condition  $P_2$ " it simply means

$$\forall \bar{x}. (P_1 \rightarrow P_2)$$

- if we know  $P_1$ , we immediately get (conclude)  $P_2$
- if we know  $P_2$  we need not be able to conclude  $P_1$

Stronger condition = smaller set: if  $P_1$  is stronger than  $P_2$  then  $\{\bar{x}\mid P_1\}\subseteq \{\bar{x}\mid P_2\}$ 

- ▶ strongest possible condition: "false" ~> smallest set: ∅
- ▶ weakest condition: "true" ~ biggest set: set of all tuples

# Hoare Triples

### About Hoare Logic

We have seen how to translate programs into relations. We will use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

 $//\{0 \le v\}$ i = v:  $//\{0 \le v \& i = v\}$ r = 0:  $//\{0 \le v \& i = v \& r = 0\}$ **while**  $//\{r = (y-i)*x \& 0 <= i\}$ (i > 0) $//\{r = (y-i)*x \& 0 < i\}$ r = r + x:  $//\{r = (y-i+1)*x \& 0 < i\}$ i = i - 1 $//\{r = (y-i)*x \& 0 <= i\}$  $//\{r = x * v\}$ 

Example proof:

# Hoare Triple and Friends



$$P, Q \subseteq S$$
  $r \subseteq S \times S$  Hoare Triple:

$$\{P\} \ r \ \{Q\} \iff \forall s, s' \in S. \ (s \in P \land (s, s') \in r \rightarrow s' \in Q)$$

 $\{P\}$  does not denote a singleton set containing P but is just a notation for an "assertion" around a command. Likewise for  $\{Q\}$ . **Strongest postcondition:** 

$$sp(P,r) = \{s' \mid \exists s. \, s \in P \land (s,s') \in r\}$$

### Weakest precondition:

$$wp(r,Q) = \{s \mid \forall s'.(s,s') \in r \rightarrow s' \in Q\}$$



# Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. 
$$\{j = a\} \ j := j+1 \ \{a = j+1\}$$

2. 
$$\{i = j\} i := j+i \{i > j\}$$

3. 
$${j = a + b}$$
 i:=b; j:=a  ${j = 2 * a}$ 

4. 
$$\{i > j\}$$
 j:=i+1; i:=j+1  $\{i > j\}$ 

5. 
$$\{i != j\}$$
 **if**  $i > j$  then  $m := i - j$  **else**  $m := j - i$   $\{m > 0\}$ 

6. 
$$\{i = 3*j\}$$
 if  $i>j$  then  $m:=i-j$  else  $m:=j-i$   $\{m-2*j=0\}$ 

# Postconditions and Their Strength

What is the relationship between these postconditions?

$$\{x = 5\}$$
  $x := x + 2$   $\{x > 0\}$   
 $\{x = 5\}$   $x := x + 2$   $\{x = 7\}$ 

### Postconditions and Their Strength

What is the relationship between these postconditions?

$$\{x = 5\}$$
  $x := x + 2$   $\{x > 0\}$   
 $\{x = 5\}$   $x := x + 2$   $\{x = 7\}$ 

- weakest conditions (predicates) correspond to largest sets
- ▶ strongest conditions (predicates) correspond to smallest sets that satisfy a given property.

(Graphically, a stronger condition  $x>0 \land y>0$  denotes one quadrant in plane, whereas a weaker condition x>0 denotes the entire half-plane.)

# Strongest Postconditions

# Strongest Postcondition

Definition: For  $P \subseteq S$ ,  $r \subseteq S \times S$ ,

$$sp(P,r) = \{s' \mid \exists s.s \in P \land (s,s') \in r\}$$

This is simply the relation image of a set.



# Weakest Preconditions

### Weakest Precondition

Definition: for  $Q \subseteq S$ ,  $r \subseteq S \times S$ ,

$$wp(r,Q) = \{s \mid \forall s'.(s,s') \in r \rightarrow s' \in Q\}$$

Note that this is in general not the same as  $sp(Q, r^{-1})$  when then relation is non-deterministic or partial.



# Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $ightharpoonup \{P\}r\{Q\}$
- $ightharpoonup P \subseteq wp(r,Q)$
- ▶  $sp(P, r) \subseteq Q$

# Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- ▶  $P \subseteq wp(r, Q)$
- ▶  $sp(P, r) \subseteq Q$

Proof. The three conditions expand into the following three formulas

- $\forall s, s'. \ [(s \in P \land (s, s') \in r) \rightarrow s' \in Q]$
- $\forall s. \ [s \in P \to (\forall s'.(s,s') \in Q)]$
- $\qquad \forall s'. \ [(\exists s. \ s \in P \land (s,s') \in P) \rightarrow s' \in Q]$

which are easy to show equivalent using basic first-order logic properties.

# Lemma: Characterization of sp

sp(P,r) is the the smallest set Q such that  $\{P\}r\{Q\}$ , that is:

- ▶  $\{P\}r\{sp(P,r)\}$
- ▶  $\forall Q \subseteq S$ .  $\{P\}r\{Q\} \rightarrow sp(P,r) \subseteq Q$



$$\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. \ (s \in P \land (s, s') \in r \rightarrow s' \in Q) \\
sp(P, r) = \{s' \mid \exists s.s \in P \land (s, s') \in r\}$$

# Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- ▶  $sp(P, r) \subseteq sp(P, r)$
- $\blacktriangleright \ \forall P \subseteq S. \ sp(P,r) \subseteq Q \rightarrow sp(P,r) \subseteq Q$

# Lemma: Characterization of wp

wp(r, Q) is the largest set P such that  $\{P\}r\{Q\}$ , that is:

- $\qquad \{wp(r,Q)\}r\{Q\}$
- $\blacktriangleright \forall P \subseteq S. \ \{P\}r\{Q\} \rightarrow P \subseteq wp(r,Q)$



$$\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. \ (s \in P \land (s, s') \in r \rightarrow s' \in Q) \\
wp(r, Q) = \{s \mid \forall s'.(s, s') \in r \rightarrow s' \in Q\}$$



# Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $\blacktriangleright$   $wp(r,Q) \subseteq wp(r,Q)$
- $\blacktriangleright \ \forall P \subseteq S. \ P \subseteq wp(r,Q) \rightarrow P \subseteq wp(r,Q)$

# Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r,Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that  $r^{-1} = \{(y, x) \mid (x, y) \in r\}$  and is always defined.

# Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r,Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that  $r^{-1} = \{(y, x) \mid (x, y) \in r\}$  and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.

### More Laws on Preconditions and Postconditions

#### Disjunctivity of sp

$$sp(P_1 \cup P_2, r) = sp(P_1, r) \cup sp(P_2, r)$$

$$sp(P, r_1 \cup r_2) = sp(P, r_1) \cup sp(P, r_2)$$

#### Conjunctivity of wp

$$wp(r,Q_1\cap Q_2)=wp(r,Q_1)\cap wp(r,Q_2)$$

$$wp(r_1 \cup r_2, Q) = wp(r_1, Q) \cap wp(r_2, Q)$$

#### Pointwise wp

$$wp(r, Q) = \{s \mid s \in S \land sp(\{s\}, r) \subseteq Q\}$$

#### Pointwise sp

$$sp(P,r) = \bigcup_{s \in P} sp(\{s\},r)$$

# Hoare Logic for Loop-free Code

### **Expanding Paths**

The condition

$$\{P\} \left(\bigcup_{i \in J} r_i\right) \{Q\}$$

is equivalent to

$$\forall i.i \in J \to \{P\} r_i \{Q\}$$

Proof: By definition, or use that the first condition is equivalent to  $sp(P, \bigcup_{i \in I} r_i) \subseteq Q$  and  $\{P\}r_i\{Q\}$  to  $sp(P, r_i) \subseteq Q$ 

### **Transitivity**

If  $\{P\}s_1\{Q\}$  and  $\{Q\}s_2\{R\}$  then also  $\{P\}s_1 \circ s_2\{R\}$ . We write this as the following inference rule:

$$\frac{\{P\}s_1\{Q\}, \{Q\}s_2\{R\}}{\{P\}s_1 \circ s_2\{R\}}$$

#### Exercise

We call a relation  $r \subseteq S \times S$  functional if  $\forall x,y,z \in S.(x,y) \in r \land (x,z) \in r \rightarrow y = z$ . For each of the following statements either give a counterexample or prove it. In the following,  $Q \subseteq S$ .

- (i) for any r,  $wp(r, S \setminus Q) = S \setminus wp(r, Q)$
- (ii) if r is functional,  $wp(r, S \setminus Q) = S \setminus wp(r, Q)$
- (iii) for any r,  $wp(r, Q) = sp(Q, r^{-1})$
- (iv) if r is functional,  $wp(r, Q) = sp(Q, r^{-1})$
- (v) for any r,  $wp(r,Q_1\cup Q_2)=wp(r,Q_1)\cup wp(r,Q_2)$
- (vi) if r is functional,  $wp(r, Q_1 \cup Q_2) = wp(r, Q_1) \cup wp(r, Q_2)$
- (vii) for any r,  $wp(r_1 \cup r_2, Q) = wp(r_1, Q) \cup wp(r_2, Q)$
- (viii) Alice has a conjecture: For all sets S and relations  $r \subseteq S \times S$  it holds:

$$\left(S \neq \emptyset \land dom(r) = S \land \triangle_S \cap r = \emptyset\right) \rightarrow \left(r \circ r \cap ((S \times S) \setminus r) \neq \emptyset\right)$$

where  $\Delta_S = \{(x,x) \mid x \in S\}$ ,  $dom(r) = \{x \mid \exists y.(x,y) \in r\}$ . She tried many sets and relations and did not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a counterexample for which S is as small as possible.

# Helping Alice: Properties of the Relation

We believe Alice is wrong and that there exists r such that the property (viii) from the previous slide is false. In other words, that there is relation r such that

$$S \neq \emptyset \land dom(r) = S \land \triangle_S \cap r = \emptyset \land r \circ r \cap ((S \times S) \setminus r) = \emptyset$$

We are thus looking for relation that is:

- ightharpoonup on a non-empty set S
- ▶ **total**, because dom(r) = S means that for every element  $x \in S$  there exists  $y \in S$  such that  $(x, y) \in r$ .
- ▶ **irreflexive**: there is no element  $x \in S$  such that  $(x,x) \in r$ , otherwise we would have  $\Delta \cap r = \emptyset$
- ▶ **transitive**: indeed, if  $B^c$  denotes complement of a set B, then  $A \cap B^c = \emptyset$  is equivalent to  $A \subseteq B$ . Thus, the last conjunct above just says that  $r \circ r \subseteq r$ , which is stating transitivity of r.

Find a total irreflexive transitive relation on a non-empty set.



# Counter-Example for Alice

```
Let S = \{0, 1, 2, ...\} (non-negative integers)
Define r = \{(x, y) \mid x < y\}
```

S is non-empty, for every element there exists a larger, no element is strictly larger than itself, and the relation is transitive.

r satisfies properties that make Alice's conjecture false

# Counter-Example for Alice

```
Let S = \{0, 1, 2, ...\} (non-negative integers)
Define r = \{(x, y) \mid x < y\}
```

S is non-empty, for every element there exists a larger, no element is strictly larger than itself, and the relation is transitive.

r satisfies properties that make Alice's conjecture false

Is there a relation on a finite set as a counter-example? Perhaps Alice was trying finite counter-examples by hand, but if she tried to enumerate it fast with a computer program, she would find a different, finite, counter-example?

# Counter-Example for Alice

```
Let S = \{0, 1, 2, ...\} (non-negative integers)
Define r = \{(x, y) \mid x < y\}
```

S is non-empty, for every element there exists a larger, no element is strictly larger than itself, and the relation is transitive.

r satisfies properties that make Alice's conjecture false

Is there a relation on a finite set as a counter-example? Perhaps Alice was trying finite counter-examples by hand, but if she tried to enumerate it fast with a computer program, she would find a different, finite, counter-example?

▶ No! All relations with these properties are infinite!

### Total Irreflexive Transitive Relations are Infinite

It may be helpful to keep < as an example in mind, but now r is arbitrary with the given properties.

We show by induction that for every non-negative integer k there exists a sequence  $x_0, x_1, \ldots, x_k$  of elements inside S such that  $(x_i, x_{i+1}) \in r$  for every  $0 \le i < k$ .

- ▶ Let  $x_0 \in S$  be an arbitrary element of our non-empty set S.
- Consider by inductive hypothesis elements  $x_0, \ldots, x_k$  such that  $(x_i, x_{i+1}) \in r$  for all  $1 \le i < k$ . By totality of r, there exists element y such that  $(x_i, y) \in r$ ; define  $x_{i+1}$  to be one such y. We obtain a longer sequence, which completes proof by induction.

In a sequence of elements related by r, all elements are distinct. Indeed, for i < j, by transitivity,  $(x_i, x_j) \in r$ , and r is irreflexive. Now, if S were finite it would have some size given by natural number n. By our property there exists a sequence of n+1 distinct elements inside S, which is a contradiction.