Lecture 4
 Paths, Triples, Postconditions, Preconditions

Viktor Kuncak

Loop-Free Programs as Relations: Summary

command c	$R(c)$		$\rho(c)$
$\begin{array}{r} (x=t) \\ c_{1} ; c_{2} \\ \text { if }(*) c_{1} \text { else } c_{2} \\ \text { assume }(\mathbf{F}) \end{array}$	$\begin{aligned} & x^{\prime}=t \wedge \bigwedge_{v \in V} \\ & \exists \bar{z} . R\left(c_{1}\right)\left[\bar{x}^{\prime}:=\bar{z}\right] \\ & R\left(c_{1}\right) \vee \\ & F \bigwedge_{v \in V} \end{aligned}$	$\begin{aligned} & \backslash\{x\} v^{\prime}=v \\ & \wedge R\left(c_{2}\right)[\bar{x}:=\bar{z}] \\ & R\left(c_{2}\right) \\ & v^{\prime}=v \end{aligned}$	$\begin{aligned} & \rho\left(c_{1}\right) \circ \rho\left(c_{2}\right) \\ & \rho\left(c_{1}\right) \cup \rho\left(c_{2}\right) \\ & \Delta_{S(F)} \end{aligned}$
$\rho\left(v_{i}=t\right)=\left\{\left(\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right),\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{n}\right) \mid v_{i}^{\prime}=t\right\}\right.$			
$S(F)=\{\bar{v} \mid F\}, \quad \Delta_{A}=\{(\vec{v}, \vec{v}) \mid \vec{v} \in A\}$ (diagonal relation on A)			
Δ (without subscript) is identity on entire set of states (no-op)			
We always have: $\rho(c)=\left\{\left(\bar{v}, \bar{v}^{\prime}\right) \mid R(c)\right\}$			
Shorthands:			
	assume(F)	[F]	

Examples:

$$
\begin{aligned}
& \text { if } \left.(F) c_{1} \text { else } c_{2} \equiv[F] ; c_{1}\right][\neg F] ; c_{2} \\
& \text { if }(F) c \equiv[F] ; c][\neg F]
\end{aligned}
$$

Program Paths

Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are c_{1}, \ldots, c_{n}

The relation $\rho(c)$ is of the form $E\left(\rho\left(c_{1}\right), \ldots, \rho\left(c_{n}\right)\right)$; it composes meanings of c_{1}, \ldots, c_{n} using union (\cup) and composition (\circ)

$\begin{aligned} & \text { (if }(x>0) \\ & \quad x=x-1 \end{aligned}$	([x> 0]; $x=x-1$	$\left(\Delta_{S(x>0)} \circ \rho(x=x-1)\right.$
else $x=0$	$([\neg(x>0)] ; x=0)$	$\Delta_{S(\neg(x>0))} \circ \rho(x=0)$
); $\begin{aligned} & \text { (if }(y>0) \\ & y=y-1 \end{aligned}$	$([y>0] ; y=y-1$	$\left(\Delta_{S(y>0)} \circ \rho(y=y-1)\right.$
$y=x+1$	$[\neg(y>0)] ; y=x+1$	$\Delta_{S(\neg(y>0))} \circ \rho(y=x+1)$
)		

Note: \circ binds stronger than \cup, so $r \circ s \cup t=(r \circ s) \cup t$

Normal Form for Loop-Free Programs

Composition distributes through union:

$$
\left(r_{1} \cup r_{2}\right) \circ\left(s_{1} \cup s_{2}\right)=r_{1} \circ s_{1} \cup r_{1} \circ s_{2} \cup r_{2} \circ s_{1} \cup r_{2} \circ s_{2}
$$

Example corresponding to two if-else statements one after another:

$$
\begin{array}{ll}
\left(\Delta_{1} \circ r_{1}\right. & \\
\cup & \\
\Delta_{2} \circ r_{2} & \\
) \circ & \Delta_{1} \circ r_{1} \circ \Delta_{3} \circ r_{3} \cup \\
\left(\Delta_{3} \circ r_{3}\right. & \Delta_{1} \circ r_{1} \circ \Delta_{4} \circ r_{4} \cup \\
\cup & \Delta_{2} \circ r_{2} \circ \Delta_{3} \circ r_{3} \cup \\
\Delta_{4} \circ r_{4} & \Delta_{2} \circ r_{2} \circ \Delta_{4} \circ r_{4}
\end{array}
$$

Sequential composition of basic statements is called basic path. Loop-free code describes finitely many (exponentially many) paths.

Properties of Program Contexts

Some Properties of Relations

$$
\begin{aligned}
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right) \\
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right) \\
& \left(p_{1} \subseteq p_{2}\right) \wedge\left(q_{1} \subseteq q_{2}\right) \quad \rightarrow \quad\left(p_{1} \cup q_{1}\right) \subseteq\left(p_{2} \cup q_{2}\right)
\end{aligned}
$$

$$
\left(p_{1} \cup p_{2}\right) \circ q=\left(p_{1} \circ q\right) \cup\left(p_{2} \circ q\right)
$$

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S=\mathbb{Z}^{k}$
Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S=\mathbb{Z}^{k}$
Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.
Proof: induction on the expression tree defining E, using monotonicity properties of \cup and \circ

Union-Distributivity of Expressions using \cup and o

Claim: E distributes over unions, that is, if $r_{i}, i \in I$ is a family of relations,

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

Prove or disprove.

Union-Distributivity of Expressions using \cup and \circ

Claim: E distributes over unions, that is, if $r_{i}, i \in I$ is a family of relations,

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

Prove or disprove.
False. Take $E(r)=r \circ r$ and consider relations r_{1}, r_{2}. The claim becomes

$$
\left(r_{1} \cup r_{2}\right) \circ\left(r_{1} \cup r_{2}\right)=r_{1} \circ r_{1} \cup r_{2} \circ r_{2}
$$

that is,

$$
r_{1} \circ r_{1} \cup r_{1} \circ r_{2} \cup r_{2} \circ r_{1} \cup r_{2} \circ r_{2}=r_{1} \circ r_{1} \cup r_{2} \circ r_{2}
$$

Taking, for example, $r_{1}=\{(1,2)\}, r_{2}=\{(2,3)\}$ we obtain

$$
\{(1,3)\}=\emptyset \quad(\text { false })
$$

Union "Distributivity" in One Direction

Lemma:

$$
E\left(\bigcup_{i \in 1}\left(r_{1}\right) \geq \bigcup_{i \in 1} E\left(r_{i}\right)\right.
$$

Union "Distributivity" in One Direction

Lemma:

$$
E\left(\bigcup_{i \in I} r_{i}\right) \supseteq \bigcup_{i \in I} E\left(r_{i}\right)
$$

Proof. Let $r=\bigcup_{i \in I} r_{i}$. Note that, for every $i, r_{i} \subseteq r$. We have shown that E is monotonic, so $E\left(r_{i}\right) \subseteq E(r)$. Since all $E\left(r_{i}\right)$ are included in $E(r)$, so is their union, so

$$
\bigcup E\left(r_{i}\right) \subseteq E(r)
$$

as desired.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once?

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$ Induction. In the previous counter-example the largest relation will contain all other $r_{i} \circ r_{j}$.
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once? Proof: Induction on expression for $E(r)$. Only one branch of the tree may contain r. Note previous counter-example uses r twice.
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence:
$r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$ Induction. In the previous counter-example the largest relation will contain all other $r_{i} \circ r_{j}$.
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite. Induction. Generalizes the previous case.

About Strength and Weakness

Putting Conditions on Sets Makes them Smaller

Let P_{1} and P_{2} be formulas ("conditions") whose free variables are among \bar{x}. Those variables may denote program state.
When we say "condition P_{1} is stronger than condition P_{2} " it simply means

$$
\forall \bar{x} .\left(P_{1} \rightarrow P_{2}\right)
$$

- if we know P_{1}, we immediately get (conclude) P_{2}
- if we know P_{2} we need not be able to conclude P_{1}

Stronger condition $=$ smaller set: if P_{1} is stronger than P_{2} then

$$
\left\{\bar{x} \mid P_{1}\right\} \subseteq\left\{\bar{x} \mid P_{2}\right\}
$$

- strongest possible condition: "false" \leadsto smallest set: \emptyset
- weakest condition: "true" \sim biggest set: set of all tuples

Hoare Triples

About Hoare Logic

We have seen how to translate programs into relations. We will use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

$$
\begin{aligned}
& / /\{0<=y\} \\
& i=y ; \\
& / /\{0<=y \& i=y\} \\
& r=0 ; \\
& / /\{0<=y \& i=y \& r=0\} \\
& \text { while } / /\{r=(y-i) * x \& 0<=i\} \\
& (i>0)(\\
& / /\{r=(y-i) * x \& 0<i\} \\
& r=r+x ; \\
& / /\{r=(y-i+1) * x \& 0<i\} \\
& i=i-1 \\
& / /\{r=(y-i) * x \& 0<=i\} \\
&) \\
& / /\{r=x * y\}
\end{aligned}
$$

Hoare Triple and Friends

$$
P, Q \subseteq S \quad r \subseteq S \times S
$$

$$
\{P\} r\{Q\} \Longleftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)
$$

$\{P\}$ does not denote a singleton set containing P but is just a notation for an "assertion" around a command. Likewise for $\{Q\}$. Strongest postcondition:

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

Weakest precondition:

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. $\{j=a\} j:=j+1\{a=j+1\}$
2. $\{i=j\} i:=j+i\{i>j\}$
3. $\{j=a+b\} i:=b ; j:=a\{j=2 * a\}$
4. $\{i>j\} j:=i+1 ; i:=j+1\{i>j\}$
5. $\{i!=j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m>0\}$
6. $\{i=3 * j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m-2 * j=0\}$

Postconditions and Their Strength

What is the relationship between these postconditions?

$$
\begin{array}{lll}
\{x=5\} & x:=x+2 & \{\mathbf{x}>\mathbf{0}\} \\
\{x=5\} & x:=x+2 & \{\mathbf{x}=\mathbf{7}\}
\end{array}
$$

Postconditions and Their Strength

What is the relationship between these postconditions?

$$
\begin{array}{lll}
\{x=5\} & x:=x+2 & \{\mathbf{x}>\mathbf{0}\} \\
\{x=5\} & x:=x+2 & \{\mathbf{x}=\mathbf{7}\}
\end{array}
$$

- weakest conditions (predicates) correspond to largest sets
- strongest conditions (predicates) correspond to smallest sets that satisfy a given property.
(Graphically, a stronger condition $x>0 \wedge y>0$ denotes one quadrant in plane, whereas a weaker condition $x>0$ denotes the entire half-plane.)

Strongest Postconditions

Strongest Postcondition

Definition: For $P \subseteq S, r \subseteq S \times S$,

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

This is simply the relation image of a set.

Weakest Preconditions

Weakest Precondition

Definition: for $Q \subseteq S, r \subseteq S \times S$,

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Note that this is in general not the same as $s p\left(Q, r^{-1}\right)$ when then relation is non-deterministic or partial.

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\{P\} r\{Q\}$
- $P \subseteq w p(r, Q)$
- $s p(P, r) \subseteq Q$

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\{P\} r\{Q\}$
- $P \subseteq w p(r, Q)$
- $s p(P, r) \subseteq Q$

Proof. The three conditions expand into the following three formulas

- $\forall s, s^{\prime} .\left[\left(s \in P \wedge\left(s, s^{\prime}\right) \in r\right) \rightarrow s^{\prime} \in Q\right]$
- $\forall s .\left[s \in P \rightarrow\left(\forall s^{\prime} .\left(s, s^{\prime}\right) \in Q\right)\right]$
- $\forall s^{\prime} .\left[\left(\exists s . s \in P \wedge\left(s, s^{\prime}\right) \in P\right) \rightarrow s^{\prime} \in Q\right]$
which are easy to show equivalent using basic first-order logic properties.

Lemma: Characterization of sp

$s p(P, r)$ is the the smallest set Q such that $\{P\} r\{Q\}$, that is:

- $\{P\} r\{s p(P, r)\}$
- $\forall Q \subseteq S .\{P\} r\{Q\} \rightarrow s p(P, r) \subseteq Q$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
s p(P, r) & =\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
\end{aligned}
$$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $s p(P, r) \subseteq s p(P, r)$
- $\forall P \subseteq S . s p(P, r) \subseteq Q \rightarrow s p(P, r) \subseteq Q$

Lemma: Characterization of wp

$w p(r, Q)$ is the largest set P such that $\{P\} r\{Q\}$, that is:

- $\{w p(r, Q)\} r\{Q\}$
- $\forall P \subseteq S .\{P\} r\{Q\} \rightarrow P \subseteq w p(r, Q)$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
w p(r, Q) & =\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
\end{aligned}
$$

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $w p(r, Q) \subseteq w p(r, Q)$
- $\forall P \subseteq S . P \subseteq w p(r, Q) \rightarrow P \subseteq w p(r, Q)$

Exercise: Postcondition of inverse versus wp

Lemma:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing sp backwards.

Note that $r^{-1}=\{(y, x) \mid(x, y) \in r\}$ and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

In other words, when instead of good states we look at the completement set of "error states", then wp corresponds to doing sp backwards.

Note that $r^{-1}=\{(y, x) \mid(x, y) \in r\}$ and is always defined.
Proof of the lemma: Expand both sides and apply basic first-order logic properties.

More Laws on Preconditions and Postconditions

Disjunctivity of sp

$$
\begin{aligned}
& s p\left(P_{1} \cup P_{2}, r\right)=s p\left(P_{1}, r\right) \cup s p\left(P_{2}, r\right) \\
& s p\left(P, r_{1} \cup r_{2}\right)=s p\left(P, r_{1}\right) \cup s p\left(P, r_{2}\right)
\end{aligned}
$$

Conjunctivity of wp

$$
\begin{aligned}
w p\left(r, Q_{1} \cap Q_{2}\right) & =w p\left(r, Q_{1}\right) \cap w p\left(r, Q_{2}\right) \\
w p\left(r_{1} \cup r_{2}, Q\right) & =w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)
\end{aligned}
$$

Pointwise wp

$$
w p(r, Q)=\{s \mid s \in S \wedge s p(\{s\}, r) \subseteq Q\}
$$

Pointwise sp

$$
s p(P, r)=\bigcup_{s \in P} s p(\{s\}, r)
$$

Hoare Logic for Loop-free Code

Expanding Paths

The condition

$$
\{P\}\left(\bigcup_{i \in J} r_{i}\right)\{Q\}
$$

is equivalent to

$$
\forall i . i \in J \rightarrow\{P\} r_{i}\{Q\}
$$

Proof: By definition, or use that the first condition is equivalent to $s p\left(P, \bigcup_{i \in J} r_{i}\right) \subseteq Q$ and $\{P\} r_{i}\{Q\}$ to $s p\left(P, r_{i}\right) \subseteq Q$

Transitivity

If $\{P\} s_{1}\{Q\}$ and $\{Q\} s_{2}\{R\}$ then also $\{P\} s_{1} \circ s_{2}\{R\}$.
We write this as the following inference rule:

$$
\frac{\{P\} s_{1}\{Q\}, \quad\{Q\} s_{2}\{R\}}{\{P\} s_{1} \circ s_{2}\{R\}}
$$

Exercise

We call a relation $r \subseteq S \times S$ functional if
$\forall x, y, z \in S .(x, y) \in r \wedge(x, z) \in r \rightarrow y=z$. For each of the following statements either give a counterexample or prove it. In the following, $Q \subseteq S$.
(i) for any $r, w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(ii) if r is functional, $w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(iii) for any $r, w p(r, Q)=s p\left(Q, r^{-1}\right)$
(iv) if r is functional, $w p(r, Q)=s p\left(Q, r^{-1}\right)$
(v) for any $r, w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vi) if r is functional, $w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vii) for any $r, w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cup w p\left(r_{2}, Q\right)$
(viii) Alice has a conjecture: For all sets S and relations $r \subseteq S \times S$ it holds:

$$
\left(S \neq \emptyset \wedge \operatorname{dom}(r)=S \wedge \triangle_{S} \cap r=\emptyset\right) \rightarrow(r \circ r \cap((S \times S) \backslash r) \neq \emptyset)
$$

where $\Delta_{S}=\{(x, x) \mid x \in S\}$, $\operatorname{dom}(r)=\{x \mid \exists y .(x, y) \in r\}$. She tried many sets and relations and did not find any counterexample. Is her conjecture true? If so, prove it; if false, provide a counterexample for which S is as small as possible.

Helping Alice: Properties of the Relation

We believe Alice is wrong and that there exists r such that the property (viii) from the previous slide is false. In other words, that there is relation r such that

$$
S \neq \emptyset \wedge \operatorname{dom}(r)=S \wedge \triangle_{S} \cap r=\emptyset \wedge r \circ r \cap((S \times S) \backslash r)=\emptyset
$$

We are thus looking for relation that is:

- on a non-empty set S
- total, because $\operatorname{dom}(r)=S$ means that for every element $x \in S$ there exists $y \in S$ such that $(x, y) \in r$.
- irreflexive: there is no element $x \in S$ such that $(x, x) \in r$, otherwise we would have $\Delta \cap r=\emptyset$
- transitive: indeed, if B^{c} denotes complement of a set B, then $A \cap B^{c}=\emptyset$ is equivalent to $A \subseteq B$. Thus, the last conjunct above just says that $r \circ r \subseteq r$, which is stating transitivity of r.
Find a total irreflexive transitive relation on a non-empty set.

Counter-Example for Alice

Let $S=\{0,1,2, \ldots\}$ (non-negative integers)
Define $r=\{(x, y) \mid x<y\}$
S is non-empty, for every element there exists a larger, no element is strictly larger than itself, and the relation is transitive.

- r satisfies properties that make Alice's conjecture false

Counter-Example for Alice

Let $S=\{0,1,2, \ldots\}$ (non-negative integers)
Define $r=\{(x, y) \mid x<y\}$
S is non-empty, for every element there exists a larger, no element is strictly larger than itself, and the relation is transitive.

- r satisfies properties that make Alice's conjecture false

Is there a relation on a finite set as a counter-example? Perhaps Alice was trying finite counter-examples by hand, but if she tried to enumerate it fast with a computer program, she would find a different, finite, counter-example?

Counter-Example for Alice

Let $S=\{0,1,2, \ldots\}$ (non-negative integers)
Define $r=\{(x, y) \mid x<y\}$
S is non-empty, for every element there exists a larger, no element is strictly larger than itself, and the relation is transitive.

- r satisfies properties that make Alice's conjecture false

Is there a relation on a finite set as a counter-example? Perhaps Alice was trying finite counter-examples by hand, but if she tried to enumerate it fast with a computer program, she would find a different, finite, counter-example?

- No! All relations with these properties are infinite!

Total Irreflexive Transitive Relations are Infinite

It may be helpful to keep < as an example in mind, but now r is arbitrary with the given properties.
We show by induction that for every non-negative integer k there exists a sequence $x_{0}, x_{1}, \ldots, x_{k}$ of elements inside S such that $\left(x_{i}, x_{i+1}\right) \in r$ for every $0 \leq i<k$.

- Let $x_{0} \in S$ be an arbitrary element of our non-empty set S.
- Consider by inductive hypothesis elements x_{0}, \ldots, x_{k} such that $\left(x_{i}, x_{i+1}\right) \in r$ for all $1 \leq i<k$. By totality of r, there exists element y such that $\left(x_{i}, y\right) \in r$; define x_{i+1} to be one such y. We obtain a longer sequence, which completes proof by induction.
In a sequence of elements related by r, all elements are distinct. Indeed, for $i<j$, by transitivity, $\left(x_{i}, x_{j}\right) \in r$, and r is irreflexive. Now, if S were finite it would have some size given by natural number n. By our property there exists a sequence of $n+1$ distinct elements inside S, which is a contradiction.

