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Lower and upper bounds:

Consider the coefficient next to x in 0 < t. If it is −1, move the
term to left side. If it is 1, move the remaining terms to the left
side. We obtain formula F1(x) of the form

L∧
i=1

ai < x ∧
U∧
j=1

x < bj ∧
D∧
i=1

Ki | (x + ti )

If there are no divisibility constraints (D = 0), what is the formula
equivalent to?

max
i

ai + 1 ≤ min
j

bj − 1 which is equivalent to
∧
ij

ai + 1 < bj
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Replacing variable by test terms

There is a an alternative way to express the above condition by
replacing F1(x) with

∨
k F1(tk) where tk do not contain x . This is

a common technique in quantifier elimination. Note that if F1(tk)
holds then certainly ∃x .F1(x).
What are example terms ti when D = 0 and L > 0? Hint: ensure
that at least one of them evaluates to max ai + 1.

L∨
k=1

F1(ak + 1)

What if D > 0 i.e. we have additional divisibility constraints?

L∨
k=1

N∨
i=1

F1(ak + i)

What is N? least common multiple of K1, . . . ,KD

Note that if F1(u) holds then also F1(u − N) holds.



Back to Example

∃x .− 10 + 10w < x ∧ x < 90 + 15z ∧ 24 | x + 6 ∧ 30|x

120∨
i=1

10w + i < 100 + 15z ∧0 < i ∧24 | 10w −4 + i ∧30|10w −10 + i
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Special cases

What if L = 0? We first drop all constraints except divisibility,
obtaining F2(x)

D∧
i=1

Ki | (x + ti )

and then eliminate quantifier as

N∨
i=1

F2(i)



It works

We finished describing a complete quantifier elimination algorithm
for Presburger Arithmetic!

This algorithm and its correctness prove that:

I PA admits quantifier elimination

I Satisfiability, validity, entailment, equivalence of PA formulas
is decidable
We can use the algorithm to prove verification conditions.
Even if not the most efficient way, it gives us insights on
which we can later build to come up with better algorithms.

I Quantified and quantifier-free formulas have the same
expressive power

Many other properties follow (e.g. interpolation).
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Interpolation For Logical Theories
Interpolation can be useful in generalizing counterexamples to
invariants.
Universal Entailment: we will write F1 |= F2 to denote that for all
free variables of F1 and F2, if F1 holds then F2 holds.
Given two formulas such that

F0(x̄ , ȳ) |= F1(ȳ , z̄)

an interpolant for F1,F2 is a formula I (ȳ), which has only variables
common to F0 and F1, such that

I F0(x̄ , ȳ) |= I (ȳ), and

I I (ȳ) |= F1(ȳ , z̄)

In other words, the entailment between F0 and F1 can be explained
through I (ȳ).
Logic has interpolation property if, whenever F0 |= F1, then
there exists an interpolant for F0,F1.
We often wish to have simple interpolants, for example ones that
are quantifier free.



Quantifier Elimination Implies Interpolation
If logic has QE, it also has quantifier-free interpolants.
Consider the formula

∀x̄ , ȳ , z̄ . F0(x̄ , ȳ)→ F1(ȳ , z̄)

pushing x̄ into assumption we get

∀ȳ , z̄ . (∃x̄ .F0(x̄ , ȳ))→ F1(ȳ , z̄)

and pushing z̄ into conclusion we get

∀x̄ , ȳ . F0(x̄ , ȳ)→ (∀z̄ .F1(ȳ , z̄))

Given two formulas F0 and F1, each of the formulas satisfies
properties of interpolation:

I ∃x̄ .F0(x̄ , ȳ)

I ∀z̄ .F1(ȳ , z̄)

Applying QE to them, we obtain quantifier-free interpolants.



More on QE: One Direction to Make it More Efficient

Avoid transforming to conjunctions of literals: work directly on
negation-normal form. The technique is similar to what we
described for conjunctive normal form.

+ no need for DNF

- we may end up trying irrelevant bounds

This is the Cooper’s algorithm:

I Reddy, Loveland: Presburger Arithmetic with Bounded
Quantifier Alternation. (Gives a slight improvement of the
original Cooper’s algorithm.)

I Section 7.2 of the Calculus of Computation Textbook



Eliminate Quantifiers: Example

∃y .∃x . x < −2 ∧ 1− 5y < x ∧ 1 + y < 13x



Check whether the formula is satisfiable

x < y + 2 ∧ y < x + 1 ∧ x = 3k ∧ (y = 6p + 1 ∨ y = 6p − 1)



Apply quantifier elimination

∃x . (3x + 1 < 10 ∨ 7x − 6 < 7) ∧ 2 | x



Another Direction for Improvement

Handle a system of equalities more efficiently, without introducing
divisibility constraints too eagerly.

Hermite normal form of an integer matrix.



Eliminate variables x and y

5x + 7y = a ∧ x ≤ y ∧ 0 ≤ x



Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ε.∃δ.
(
|x1− x2| < δ ∧ |y1− y2| < δ → |3x1 + 4y1− 3x2− 4y2| < ε

)
(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.

Answer: replace F (|t|) with, for example

(t > 0 ∧ F (t)) ∨ (¬(t > 0) ∧ F (−t))

Is there a way to remove |...| while increasing formula size only
linearly?
(ii) Give quantifier elimination algorithm for this theory.
Solution is simpler than for Presburger arithmetic—no divisibility.



Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ε.∃δ.
(
|x1− x2| < δ ∧ |y1− y2| < δ → |3x1 + 4y1− 3x2− 4y2| < ε

)
(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.
Answer: replace F (|t|) with, for example

(t > 0 ∧ F (t)) ∨ (¬(t > 0) ∧ F (−t))

Is there a way to remove |...| while increasing formula size only
linearly?

(ii) Give quantifier elimination algorithm for this theory.
Solution is simpler than for Presburger arithmetic—no divisibility.



Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ε.∃δ.
(
|x1− x2| < δ ∧ |y1− y2| < δ → |3x1 + 4y1− 3x2− 4y2| < ε

)
(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.
Answer: replace F (|t|) with, for example

(t > 0 ∧ F (t)) ∨ (¬(t > 0) ∧ F (−t))

Is there a way to remove |...| while increasing formula size only
linearly?
(ii) Give quantifier elimination algorithm for this theory.

Solution is simpler than for Presburger arithmetic—no divisibility.



Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.
This theory is called dense linear order without endpoints
For example:

∀ε.∃δ.
(
|x1− x2| < δ ∧ |y1− y2| < δ → |3x1 + 4y1− 3x2− 4y2| < ε

)
(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.
Answer: replace F (|t|) with, for example

(t > 0 ∧ F (t)) ∨ (¬(t > 0) ∧ F (−t))

Is there a way to remove |...| while increasing formula size only
linearly?
(ii) Give quantifier elimination algorithm for this theory.
Solution is simpler than for Presburger arithmetic—no divisibility.



From (Integer) Programs to Formulas



Verification Condition Generation Example

We examine algorithms for going from programs to their
verification conditions.

Program and postcondition:

def f(x : Int) : Int = {
if (x > 0)

2∗x + 1
else 42
} ensuring (res => res > 0)

Verification condition saying “program satisfies postcondition”:[
((x > 0) ∧ res = 2x + 1) ∨ (¬(x > 0) ∧ res = 42)

]
→ res > 0

For above formula, we would check validity: all variables are
universally quantified



What Relations Can Represent

Let r be ρ(c), the relation describing the command c .
For an initial state s, we can compute the set of states that the
system can end up after executing c :

r [{s}] = {s ′ | (s, s ′) ∈ r}

This set of states can be

I a singleton set {s ′}, meaning that precisely one result is
possible

I



Verification Condition Generation (VCG) For Functions

def f(x̄ : Intn) : Int = {
b(x̄)
} ensuring (res => Post(x̄ , res))

I Function f with arguments x̄ and body b(x̄), built from:
I Presburger Arithmetic (PA) expressions, as well as x/K , x%K
I if statement, and local value definitions (val in Scala)

I Postcondition Post(x̄ , res) written in quantifier-free PA

Claim: there is polynomial-time algorithm to construct formula
V (x̄) such that

I the execution of f on input x̄ meets the Post iff V (x̄)
Hence, it always meets postcondition iff ∀x̄ .V (x̄)

I V (x̄) is quantifier-free or has only top-level ∀ quantifiers

Idea: perhaps V (x̄) could be Post(x̄ , b(x̄)) ? Yes, if it was in PA



PA with x/K , x%K , if, val

Context-Free grammar (syntax) of extended PA formulas

F,b : Boolean, t : Int

F ::= b | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x .F | ∀x .F | t1 < t2 | t1 = t2
| {val x = t; F} | {val b = F1; F}

t ::= x | K | t1 + t2 | K · t
| t/K | t % K | if (F) t1 else t2 | {val x = t1; t2}

We show how to translate x/K , x%K , if, val into other constructs

I without changing the meaning of a formula

I without adding alternations of quantifiers

I in time polynomial in input
(result is thus also in polynomial size)



Reminder: Free Variables and Substitutions



Free Variables
FV (t),FV (F ) denotes free variables in term t or formula F
Normally we just collect all variables:

FV (x + y < z) = {x , y , z}

We do not count quantified occurrences of variables:

FV (∃x . x + y < z) = {y , z}

If it occurs quantified somewhere it can still be free overall:

FV ((∃x .∃y .x < y + u) ∧ (∃y .x + y < z + 100)) = {u, x , z}

Rules for FV are of two kinds: operations � (e.g., ∧, <, +) and
binders Q (e.g. ∀, ∃, val)

FV (x) = {x}, if x is a variable
FV (F1 � F2) = FV (F1) ∪ FV (F2)
FV (Qx .F ) = FV (F ) \ {x}



Substitutions

One possible convention: write F (x) and later F (t). Then F is not
a formula but function from terms to formulas
(Or we do not even know what F is.)
Our notation: write F , and instead of F (t) write F [x := t]

I closer to a typical implementation

Definition of substitution:

(F1 � F2)[x := t] ; (F1[x := t])� (F2[x := t])
(Qy .F )[x := t] ; Qy .(F [x := t])

Capture:
The following formula is true in integers for all x : ∃y .x < y
If we naively substitute x with y + 1 we obtain: ∃y . y + 1 < y
Problem: t has y free. A solution: rename y to fresh y1

(Qy .F )[x := t] ; (Qy1.F [y := y1])[x := t] ; Qy1.(F [y := y1][x := t])



Summary of Our Translation Goal

Transform logic of this grammar
F,b : Boolean, t : Int

F ::= b | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x .F | ∀x .F | t1 < t2 | t1 = t2
| {val x = t; F} | {val b = F1; F}

t ::= x | K | t1 + t2 | K · t
| t/K | t % K | if (F) t1 else t2 | {val x = t1; t2}

Into a logic for which we did quantifier elimination, which omits
the bold symbols:

I val (let) definitions in formulas and terms

I conditionals

I division by a constant

I computing modulo by a constant as a term



About val Definitions

{val x = t; E}

Equivalent ways of saying:

I in the rest of the block, introduce read-only variable x with
value equal to t

I let x have the value t in E (written so in ML, Haskell)

I E , where x has the value E (math, Haskell’s where clause)

I in lambda calculus: (λx .E )t

Slightly different cases depending on whether types of t and E
(each of which can be Boolean or Int)

Note: x is bound to t inside E , but not inside t or anywhere else



Free Variables and Substitution for val

Computing free variable:

FV ({val x = t; E}) = FV (t) ∪ (FV (E ) \ {x})

Substitution, for x 6= y , x /∈ FV (s) (otherwise, rename x):

({val x = t; E})[y := s] = {val x = t[y := s]; (E [y := s])}

Renaming means transforming {val x = t; E} into
{val x1 = t; E [x := x1]} where x1 is different from other relevant
variables (clear from the context)



How to Translate Value Definitions

Construct: {val x = t; F} where we additionally require x /∈ FV (t)
(otherwise just rename x)

Example
{val x = y + 1; x < 2x + 5}

Becomes one of these:

(y + 1) < 2(y + 1) + 5 substitution
∃x . x = y + 1 ∧ x < 2x + 5 one-point rule
∀x . x = y + 1→ x < 2x + 5 dual one-point rule
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Rule to Translate Value Definitions

In general, for x /∈ FV (t)

{val x = t; F}

Becomes one of these:

F [x := t] substitution
∃x . x = t ∧ F one-point rule
∀x . x = t → F dual one-point rule

Substitution can square formula size

I Do it several times ; exponential increase

The other rules add quantified variables

I but we can choose which way they are quantified, to avoid
adding quantifier alternations
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Dual of val elimination is flattening: remove nested Terms

Similar to compilation
Example:

x + 3y < z

flattening 3y and denoting it by y1 we get

{val y1 = 3y ; x + y1 < z}

and then flattening x + y1 denoting it by y2 we get

{val y1 = 3y ; {val y2 = x + y1; y2 < z}}

which we may write as

{ val y1=3y
val y2=x+y1
y2 < z
}



Flattening Rule

Suppose F contains t1 � t2 somewhere and we wish to pull it out.
For some fresh y1 then F becomes

{val y1 = t1 � t2; F [t1 � t2 := y1] }
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We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas

{val x = a + 1; 2x}+ 5 < y

becomes

{val x = a + 1; 2x + 5 < y}
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val given by val rule

{val x = {val y = a + 1; y + y}; x < 2x}

becomes

{val y = a + 1; {val x = y + y ; x < 2x}}

which we pretty-print as

{val y = a + 1; val x = y + y ; x < 2x}

Flat form:

I each operation � is inside a {val x = y1 � y2; F}
I atomic formulas only use variables

I val applies to formulas only (not terms)
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Translating if
F,b : Boolean, t : Int

F ::= b | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x .F | ∀x .F | t1 < t2 | t1 = t2
| {val x = t; F} | {val b = F1; F}

t ::= x | K | t1 + t2 | K · t
| t/K | t % K | if (F) t1 else t2 | {val x = t1; t2}

Suppose terms are in flat form. We only need to handle:

{val x = (if (b1) t1 else t2); F}

Note that the logical equality

x = (if (b1) t1 else t2) (∗)

is equivalent to

(b1 ∧ x = t1) ∨ (¬b1 ∧ x = t2)

as well as to:

((b1 → x = t1) ∧ (¬b1 → x = t2))



Translating if

From two one-point rule translations of val, we can thus transform

{val x = (if (b1) t1 else t2); F}

into any of these:

∃x .
[
((b1 ∧ x = t1) ∨ (¬b1 ∧ x = t2)) ∧ F

]
∃x .

[
((b1 → x = t1) ∧ (¬b1 → x = t2)) ∧ F

]
∀x .

[
((b1 ∧ x = t1) ∨ (¬b1 ∧ x = t2))→ F

]
∀x .

[
((b1 → x = t1) ∧ (¬b1 → x = t2))→ F

]
This translates if-else without duplicating sub-formulas
(thanks to boolean variable b1).



Integer Division by a Constant

Consider
{val q = p/K ; F}

The corresponding equality q = p/K is equivalent to

Kq ≤ p ∧ p < K (q + 1)

Which gives corresponding translations:

∃q.
[
Kq ≤ p ∧ p < K (q + 1) ∧ F

]
∀q.

[
(Kq ≤ p ∧ p < K (q + 1))→ F

]



Remainder Modulo a Constant

{val r = p%K ; F}

One way:
{val r = p − K (p/K ); F}



Remainder Modulo a Constant

{val r = p%K ; F}

One way:
{val r = p − K (p/K ); F}



Quantifier-Free Polynomial-Sized VC

def f(x̄ : Intn) : Int = {
b(x̄)
} ensuring (res => Post(x̄ , res))

VC in quantifier-free PA extended with val, if, /, % :

res = b(x̄)→ Post(res, x̄)

Eliminate extensions, choosing always existential quantifiers for
new variables z̄ . Moreover, such existentials can be pulled to
top-level, because we only introduced ∨,∧ and never ¬ for
sub-formulas. We obtain:

(∃z̄ .F (res, x̄ , z̄))→ Post(res, x̄)

which is equivalent to

∀z̄ .[F (res, x̄ , z̄)→ Post(res, x̄)]

So, all variables are universally quantified.
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Explaining (∃F )→ G

Indeed, from first-order logic we have these equivalent formulas:

(∃z̄ .F (res, x̄ , z̄))→ Post(res, x̄)
¬(∃z̄ .F (res, x̄ , z̄)) ∨ Post(res, x̄)
(∀z̄ .¬F (res, x̄ , z̄)) ∨ Post(res, x̄)
∀z̄ .[¬F (res, x̄ , z̄) ∨ Post(res, x̄)]
∀z̄ .[F (res, x̄ , z̄)→ Post(res, x̄)]

Checking validity is same as showing that

F (res, x̄ , z̄)→ Post(res, x̄)

is true for all values of variables, or that

F (res, x̄ , z̄) ∧ ¬Post(res, x̄)

has no satisfying assignments.



Adding State and Non-Determinism



VC Generation for Imperative Non-Deterministic Programs

Program can be represented by a formula relating initial and final
state. Consider program with variables x , y , z

program: x = x + 2; y = x + 10
relation: {(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
formula: x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z

Specification: z = old(z) ∧ (old(x) > 0→ (x > 0 ∧ y > 0))
Adhering to specification is relation subset:

{(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
⊆ {(x , y , z , x ′, y ′, z ′) | z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))}

or validity of the following implication:

x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z
→ z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))



Imperative Presburger Arithmetic Programs
F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1, . . . , xn}
Imperative statements:

I x = t: change x ∈ V to have value given by t; leave vars in
V \ {x} unchanged

I if(F)c1 else c2: if F holds, execute c1 else execute c2
I c1; c2: first execute c1, then execute c2

Statements for introducing and restricting non-determinism:

I havoc(x): non-deterministically change x ∈ V to have an
arbitrary value; leave vars in V \ {x} unchanged

I if(∗) c1 else c2: arbitrarily choose to run c1 or c2
I assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: ∃z̄ .F (x̄ , z̄ , x̄ ′) describing
relation between initial values of variables x1, . . . , xn and final
values of variables x ′1, . . . , x

′
n



Construction Formula that Describe Relations

c - imperative command

R(c) - formula describing relation between initial and final states
of execution of c

If ρ(c) describes the relation, then R(c) is formula such that

ρ(c) = {(v̄ , v̄ ′) | R(c)}

R(c) is a formula between unprimed variables v̄ and primed
variables v̄ ′



Formula for Assignment

x = t

R(x = t):

x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Note that the formula must explicitly state which variables remain
the same (here: all except x). Otherwise, those variables would
not be constrained by the relation, so they could take arbitrary
value in the state after the command.
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∧
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Formula for if-else

After flattening,
if (b) c1 else c2

R(if (b) c1 else c2):

(b ∧ R(c1)) ∨ (¬b ∧ R(c2))



Formula for if-else

After flattening,
if (b) c1 else c2

R(if (b) c1 else c2):
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Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code



Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code



Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?

R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code



Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ]

where z̄ are freshly picked names of intermediate states.

I a useful convention: z̄ refer to position in program source code



havoc

Definition of HAVOC

1. wide and general destruction: devastation

2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

∧
v∈V \{x}

v ′ = v

This again illustrates “politically correct” approach to describing
the destruction of values of variables: just do not mention them.
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Non-deterministic choice

if (∗) c1 else c2

R(if (∗) c1 else c2):
R(c1) ∨ R(c2)

I translation is simply a disjunction – this is why construct is
interesting

I corresponds to branching in control-flow graphs
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assume

assume(F )

R(assume(F )):

F ∧
∧
v∈V

v ′ = v

I This command does not change any state.

I If F does not hold, it stops with “instantaneous success”.
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Example of Translation

0

(if (b) x = x + 1 else y = x + 2);
1

x = x + 5;
2

(if (∗) y = y + 1 else x = y)
3

becomes

∃x1, y1, x2, y2. ((b ∧ x1 = x + 1 ∧ y1 = y) ∨ (¬b ∧ x1 = x ∧ y1 = x + 2))
∧ (x2 = x1 + 5 ∧ y2 = y1)
∧ ((x ′ = x2 ∧ y′ = y2 + 1) ∨ (x′ = y2 ∧ y ′ = y2))

Think of execution trace (x0, y0), (x1, y1), (x2, y2), (x3, y3) where

I (x0, y0) is denoted by (x , y)

I (x3, y3) is denoted by (x ′, y ′)



Imperative Presburger Arithmetic Programs
F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1, . . . , xn}
Imperative statements:

I x = t: change x ∈ V to have value given by t; leave vars in
V \ {x} unchanged

I if(F)c1 else c2: if F holds, execute c1 else execute c2
I c1; c2: first execute c1, then execute c2

Statements for introducing and restricting non-determinism:

I havoc(x): non-deterministically change x ∈ V to have an
arbitrary value; leave vars in V \ {x} unchanged

I if(∗) c1 else c2: arbitrarily choose to run c1 or c2
I assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: ∃z̄ .F (x̄ , z̄ , x̄ ′) describing
relation between initial values of variables x1, . . . , xn and final
values of variables x ′1, . . . , x

′
n



Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F ); c)

= F ∧ R(c)

2. R(c ; assume(F )) = R(c) ∧ F [x̄ := x̄ ′]
where F [x̄ := x̄ ′] denotes F with all variables replaced with
primed versions
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Expressing if through non-deterministic choice and assume

if (b) c1 else c2

|||

if (∗) {
assume(b);
c1
} else {

assume(!b);
c2
}

Indeed, apply translation to both sides and observe that generated
formulas are equivalent.
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Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?
x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into xfresh = x + 1; x = xfresh
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