Lecture 2
 Completing QE for Presburger Arithmetic
 Converting Programs to Formulas

Viktor Kuncak

Lower and upper bounds:

Consider the coefficient next to x in $0<t$. If it is -1 , move the term to left side. If it is 1 , move the remaining terms to the left side. We obtain formula $F_{1}(x)$ of the form

$$
\bigwedge_{i=1}^{L} a_{i}<x \wedge \bigwedge_{j=1}^{U} x<b_{j} \wedge \bigwedge_{i=1}^{D} K_{i} \mid\left(x+t_{i}\right)
$$

If there are no divisibility constraints $(D=0)$, what is the formula equivalent to?

Lower and upper bounds:

Consider the coefficient next to x in $0<t$. If it is -1 , move the term to left side. If it is 1 , move the remaining terms to the left side. We obtain formula $F_{1}(x)$ of the form

$$
\bigwedge_{i=1}^{L} a_{i}<x \wedge \bigwedge_{j=1}^{U} x<b_{j} \wedge \bigwedge_{i=1}^{D} K_{i} \mid\left(x+t_{i}\right)
$$

If there are no divisibility constraints $(D=0)$, what is the formula equivalent to?

$$
\max _{i} a_{i}+1 \leq \min _{j} b_{j}-1 \text { which is equivalent to } \bigwedge_{i j} a_{i}+1<b_{j}
$$

Replacing variable by test terms

There is a an alternative way to express the above condition by replacing $F_{1}(x)$ with $\bigvee_{k} F_{1}\left(t_{k}\right)$ where t_{k} do not contain x. This is a common technique in quantifier elimination. Note that if $F_{1}\left(t_{k}\right)$ holds then certainly $\exists x . F_{1}(x)$.
What are example terms t_{i} when $D=0$ and $L>0$? Hint: ensure that at least one of them evaluates to $\max a_{i}+1$.

$$
\bigvee_{k=1}^{L} F_{1}\left(a_{k}+1\right)
$$

What if $D>0$ i.e. we have additional divisibility constraints?

$$
\bigvee_{k=1}^{L} \bigvee_{i=1}^{N} F_{1}\left(a_{k}+i\right)
$$

What is N ? least common multiple of K_{1}, \ldots, K_{D}
Note that if $F_{1}(u)$ holds then also $F_{1}(u-N)$ holds.

Back to Example

$$
\exists x .-10+10 w<x \wedge x<90+15 z \wedge 24|x+6 \wedge 30| x
$$

Back to Example

$$
\exists x .-10+10 w<x \wedge x<90+15 z \wedge 24|x+6 \wedge 30| x
$$

120
$\bigvee_{i=1} 10 w+i<100+15 z \wedge 0<i \wedge 24|10 w-4+i \wedge 30| 10 w-10+i$ $i=1$

Special cases

What if $L=0$? We first drop all constraints except divisibility, obtaining $F_{2}(x)$

$$
\bigwedge_{i=1}^{D} K_{i} \mid\left(x+t_{i}\right)
$$

and then eliminate quantifier as

$$
\bigvee_{i=1}^{N} F_{2}(i)
$$

It works

We finished describing a complete quantifier elimination algorithm for Presburger Arithmetic!

It works

We finished describing a complete quantifier elimination algorithm for Presburger Arithmetic!
This algorithm and its correctness prove that:

- PA admits quantifier elimination
- Satisfiability, validity, entailment, equivalence of PA formulas is decidable We can use the algorithm to prove verification conditions. Even if not the most efficient way, it gives us insights on which we can later build to come up with better algorithms.
- Quantified and quantifier-free formulas have the same expressive power
Many other properties follow (e.g. interpolation).

Interpolation For Logical Theories

Interpolation can be useful in generalizing counterexamples to invariants.
Universal Entailment: we will write $F_{1} \models F_{2}$ to denote that for all free variables of F_{1} and F_{2}, if F_{1} holds then F_{2} holds.
Given two formulas such that

$$
F_{0}(\bar{x}, \bar{y}) \models F_{1}(\bar{y}, \bar{z})
$$

an interpolant for F_{1}, F_{2} is a formula $I(\bar{y})$, which has only variables common to F_{0} and F_{1}, such that

- $F_{0}(\bar{x}, \bar{y}) \models I(\bar{y})$, and
- $\quad I(\bar{y}) \models F_{1}(\bar{y}, \bar{z})$

In other words, the entailment between F_{0} and F_{1} can be explained through $I(\bar{y})$.
Logic has interpolation property if, whenever $F_{0} \models F_{1}$, then there exists an interpolant for F_{0}, F_{1}.
We often wish to have simple interpolants, for example ones that are quantifier free.

Quantifier Elimination Implies Interpolation

If logic has QE, it also has quantifier-free interpolants.
Consider the formula

$$
\forall \bar{x}, \bar{y}, \bar{z} . F_{0}(\bar{x}, \bar{y}) \rightarrow F_{1}(\bar{y}, \bar{z})
$$

pushing \bar{x} into assumption we get

$$
\forall \bar{y}, \bar{z} .\left(\exists \bar{x} . F_{0}(\bar{x}, \bar{y})\right) \rightarrow F_{1}(\bar{y}, \bar{z})
$$

and pushing \bar{z} into conclusion we get

$$
\forall \bar{x}, \bar{y} . F_{0}(\bar{x}, \bar{y}) \rightarrow\left(\forall \bar{z} . F_{1}(\bar{y}, \bar{z})\right)
$$

Given two formulas F_{0} and F_{1}, each of the formulas satisfies properties of interpolation:

- $\exists \bar{x} . F_{0}(\bar{x}, \bar{y})$
- $\forall \bar{z} . F_{1}(\bar{y}, \bar{z})$

Applying QE to them, we obtain quantifier-free interpolants.

More on QE: One Direction to Make it More Efficient

Avoid transforming to conjunctions of literals: work directly on negation-normal form. The technique is similar to what we described for conjunctive normal form.

+ no need for DNF
- we may end up trying irrelevant bounds

This is the Cooper's algorithm:

- Reddy, Loveland: Presburger Arithmetic with Bounded Quantifier Alternation. (Gives a slight improvement of the original Cooper's algorithm.)
- Section 7.2 of the Calculus of Computation Textbook

Eliminate Quantifiers: Example

$$
\exists y . \exists x . \quad x<-2 \wedge 1-5 y<x \wedge 1+y<13 x
$$

Check whether the formula is satisfiable

$$
x<y+2 \wedge y<x+1 \wedge x=3 k \wedge(y=6 p+1 \vee y=6 p-1)
$$

Apply quantifier elimination

$$
\exists x .(3 x+1<10 \vee 7 x-6<7) \wedge 2 \mid x
$$

Another Direction for Improvement

Handle a system of equalities more efficiently, without introducing divisibility constraints too eagerly.

Hermite normal form of an integer matrix.

Eliminate variables x and y

$$
5 x+7 y=a \wedge x \leq y \wedge 0 \leq x
$$

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and $<$ relation, interpreted over rationals.
This theory is called dense linear order without endpoints For example:
$\forall \varepsilon . \exists \delta .\left(\left|x_{1}-x_{2}\right|<\delta \wedge\left|y_{1}-y_{2}\right|<\delta \rightarrow\left|3 x_{1}+4 y_{1}-3 x_{2}-4 y_{2}\right|<\varepsilon\right)$
(i) Show that absolute value can be defined in first-order logic in terms of other linear operations and comparison.

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and $<$ relation, interpreted over rationals.
This theory is called dense linear order without endpoints For example:
$\forall \varepsilon . \exists \delta .\left(\left|x_{1}-x_{2}\right|<\delta \wedge\left|y_{1}-y_{2}\right|<\delta \rightarrow\left|3 x_{1}+4 y_{1}-3 x_{2}-4 y_{2}\right|<\varepsilon\right)$
(i) Show that absolute value can be defined in first-order logic in terms of other linear operations and comparison.
Answer: replace $F(|t|)$ with, for example

$$
(t>0 \wedge F(t)) \vee(\neg(t>0) \wedge F(-t))
$$

Is there a way to remove |...| while increasing formula size only linearly?

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and $<$ relation, interpreted over rationals.
This theory is called dense linear order without endpoints For example:
$\forall \varepsilon . \exists \delta .\left(\left|x_{1}-x_{2}\right|<\delta \wedge\left|y_{1}-y_{2}\right|<\delta \rightarrow\left|3 x_{1}+4 y_{1}-3 x_{2}-4 y_{2}\right|<\varepsilon\right)$
(i) Show that absolute value can be defined in first-order logic in terms of other linear operations and comparison.
Answer: replace $F(|t|)$ with, for example

$$
(t>0 \wedge F(t)) \vee(\neg(t>0) \wedge F(-t))
$$

Is there a way to remove |...| while increasing formula size only linearly?
(ii) Give quantifier elimination algorithm for this theory.

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and $<$ relation, interpreted over rationals.
This theory is called dense linear order without endpoints For example:
$\forall \varepsilon . \exists \delta .\left(\left|x_{1}-x_{2}\right|<\delta \wedge\left|y_{1}-y_{2}\right|<\delta \rightarrow\left|3 x_{1}+4 y_{1}-3 x_{2}-4 y_{2}\right|<\varepsilon\right)$
(i) Show that absolute value can be defined in first-order logic in terms of other linear operations and comparison.
Answer: replace $F(|t|)$ with, for example

$$
(t>0 \wedge F(t)) \vee(\neg(t>0) \wedge F(-t))
$$

Is there a way to remove |...| while increasing formula size only linearly?
(ii) Give quantifier elimination algorithm for this theory.

Solution is simpler than for Presburger arithmetic-no divisibility.

From (Integer) Programs to Formulas

Verification Condition Generation Example

We examine algorithms for going from programs to their verification conditions.

Program and postcondition:

```
def f(x: Int): Int = {
    if (x>0)
        2*x+1
    else 42
} ensuring (res => res > 0)
```

Verification condition saying "program satisfies postcondition":

$$
[((x>0) \wedge r e s=2 x+1) \vee(\neg(x>0) \wedge r e s=42)] \rightarrow r e s>0
$$

For above formula, we would check validity: all variables are universally quantified

What Relations Can Represent

Let r be $\rho(c)$, the relation describing the command c.
For an initial state s, we can compute the set of states that the system can end up after executing c :

$$
r[\{s\}]=\left\{s^{\prime} \mid\left(s, s^{\prime}\right) \in r\right\}
$$

This set of states can be

- a singleton set $\left\{s^{\prime}\right\}$, meaning that precisely one result is possible

Verification Condition Generation (VCG) For Functions

```
def f(\overline{x}:||\mp@subsup{|}{}{n}): | Int ={
    b(\overline{x})
} ensuring (res => Post(\overline{x},res))
```

- Function f with arguments \bar{x} and body $b(\bar{x})$, built from:
- Presburger Arithmetic (PA) expressions, as well as $x / K, x \% K$
- if statement, and local value definitions (val in Scala)
- Postcondition Post($\bar{x}, r e s)$ written in quantifier-free PA

Claim: there is polynomial-time algorithm to construct formula $V(\bar{x})$ such that

- the execution of f on input \bar{x} meets the Post iff $V(\bar{x})$ Hence, it always meets postcondition iff $\forall \bar{x} . V(\bar{x})$
- $V(\bar{x})$ is quantifier-free or has only top-level \forall quantifiers Idea: perhaps $V(\bar{x})$ could be $\operatorname{Post}(\bar{x}, b(\bar{x}))$? Yes, if it was in PA

PA with $x / K, x \% K$, if, val

Context-Free grammar (syntax) of extended PA formulas
F,b:Boolean, t: Int

$$
\begin{aligned}
F & ::=b\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\neg F| \exists x . F|\forall x . F| t_{1}<t_{2} \mid t_{1}=t_{2} \\
& \mid\{\text { val } \mathbf{x}=\mathbf{t} ; \mathbf{F}\} \mid\left\{\text { val } \mathbf{b}=\mathbf{F}_{\mathbf{1}} ; \mathbf{F}\right\} \\
t & ::=x|K| t_{1}+t_{2} \mid K \cdot t \\
& |\mathbf{t} / \mathbf{K}| \mathbf{t} \% \mathbf{K} \mid \mathbf{i f}(\mathbf{F}) \mathbf{t}_{\mathbf{1}} \text { else } \mathbf{t}_{\mathbf{2}} \mid\left\{\text { val } \mathbf{x}=\mathbf{t}_{\mathbf{1}} ; \mathbf{t}_{\mathbf{2}}\right\}
\end{aligned}
$$

We show how to translate $x / K, x \% K$, if, val into other constructs

- without changing the meaning of a formula
- without adding alternations of quantifiers
- in time polynomial in input (result is thus also in polynomial size)

Reminder: Free Variables and Substitutions

Free Variables

$F V(t), F V(F)$ denotes free variables in term t or formula F Normally we just collect all variables:

$$
F V(x+y<z)=\{x, y, z\}
$$

We do not count quantified occurrences of variables:

$$
F V(\exists x . x+y<z)=\{y, z\}
$$

If it occurs quantified somewhere it can still be free overall:

$$
F V((\exists x \cdot \exists y \cdot x<y+u) \wedge(\exists y \cdot x+y<z+100))=\{u, x, z\}
$$

Rules for FV are of two kinds: operations $\odot($ e.g., $\wedge,<,+$) and binders Q (e.g. \forall, \exists, val)

$$
\begin{aligned}
& F V(x)=\{x\}, \text { if } x \text { is a variable } \\
& F V\left(F_{1} \odot F_{2}\right)=F V\left(F_{1}\right) \cup F V\left(F_{2}\right) \\
& F V(Q x . F)=F V(F) \backslash\{x\}
\end{aligned}
$$

Substitutions

One possible convention: write $F(x)$ and later $F(t)$. Then F is not a formula but function from terms to formulas
(Or we do not even know what F is.)
Our notation: write F, and instead of $F(t)$ write $F[x:=t]$

- closer to a typical implementation

Definition of substitution:

$$
\begin{aligned}
& \left(F_{1} \odot F_{2}\right)[x:=t] \leadsto\left(F_{1}[x:=t]\right) \odot\left(F_{2}[x:=t]\right) \\
& (Q y . F)[x:=t] \sim \text { Qy. }(F[x:=t])
\end{aligned}
$$

Capture:
The following formula is true in integers for all x : $\exists y . x<y$ If we naively substitute x with $y+1$ we obtain: $\exists y . y+1<y$ Problem: t has y free. A solution: rename y to fresh y_{1}

$$
(Q y \cdot F)[x:=t] \sim\left(Q y_{1} \cdot F\left[y:=y_{1}\right]\right)[x:=t] \leadsto Q y_{1} \cdot\left(F\left[y:=y_{1}\right][x:=t]\right)
$$

Summary of Our Translation Goal

Transform logic of this grammar F,b:Boolean, t: Int

$$
\begin{aligned}
F & ::=b\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\neg F| \exists x . F|\forall x . F| t_{1}<t_{2} \mid t_{1}=t_{2} \\
& \mid\{\text { val } \mathbf{x}=\mathbf{t} ; \mathbf{F}\} \mid\left\{\mathbf{v a l} \mathbf{b}=\mathbf{F}_{\mathbf{1}} ; \mathbf{F}\right\} \\
t & ::=x|K| t_{1}+t_{2} \mid K \cdot t \\
& |\mathbf{t} / \mathbf{K}| \mathbf{t} \% \mathbf{K} \mid \text { if }(\mathbf{F}) \mathbf{t}_{\mathbf{1}} \text { else } \mathbf{t}_{\mathbf{2}} \mid\left\{\mathbf{v a l} \mathbf{x}=\mathbf{t}_{\mathbf{1}} ; \mathbf{t}_{\mathbf{2}}\right\}
\end{aligned}
$$

Into a logic for which we did quantifier elimination, which omits the bold symbols:

- val (let) definitions in formulas and terms
- conditionals
- division by a constant
- computing modulo by a constant as a term

About val Definitions

$$
\{\text { val } x=t ; E\}
$$

Equivalent ways of saying:

- in the rest of the block, introduce read-only variable x with value equal to t
- let x have the value t in E (written so in ML, Haskell)
- E, where x has the value E (math, Haskell's where clause)
- in lambda calculus: $(\lambda x . E) t$

Slightly different cases depending on whether types of t and E (each of which can be Boolean or Int)

Note: x is bound to t inside E, but not inside t or anywhere else

Free Variables and Substitution for val

Computing free variable:

$$
F V(\{\text { val } x=t ; E\})=F V(t) \cup(F V(E) \backslash\{x\})
$$

Substitution, for $x \neq y, x \notin F V(s)$ (otherwise, rename x):

$$
(\{\text { val } x=t ; E\})[y:=s]=\{\text { val } x=t[y:=s] ;(E[y:=s])\}
$$

Renaming means transforming $\{$ val $x=t ; E\}$ into $\left\{\right.$ val $\left.x_{1}=t ; E\left[x:=x_{1}\right]\right\}$ where x_{1} is different from other relevant variables (clear from the context)

How to Translate Value Definitions

Construct: $\{$ val $x=t ; F\}$ where we additionally require $x \notin F V(t)$ (otherwise just rename x)

Example

$$
\{\text { val } x=y+1 ; x<2 x+5\}
$$

Becomes one of these:

How to Translate Value Definitions

Construct: $\{$ val $x=t ; F\}$ where we additionally require $x \notin F V(t)$ (otherwise just rename x)

Example

$$
\{\text { val } x=y+1 ; x<2 x+5\}
$$

Becomes one of these:

$$
\begin{array}{ll}
(y+1)<2(y+1)+5 & \text { substitution } \\
\exists x . x=y+1 \wedge x<2 x+5 & \text { one-point rule } \\
\forall x . x=y+1 \rightarrow x<2 x+5 & \text { dual one-point rule }
\end{array}
$$

Rule to Translate Value Definitions

In general, for $x \notin F V(t)$

$$
\{\text { val } x=t ; F\}
$$

Becomes one of these:

Rule to Translate Value Definitions

In general, for $x \notin F V(t)$

$$
\{\text { val } x=t ; F\}
$$

Becomes one of these:

$$
\begin{array}{ll}
F[x:=t] & \text { substitution } \\
\exists x \cdot x=t \wedge F & \text { one-point rule } \\
\forall x \cdot x=t \rightarrow F & \text { dual one-point rule }
\end{array}
$$

Substitution can square formula size

- Do it several times \leadsto exponential increase

The other rules add quantified variables

- but we can choose which way they are quantified, to avoid adding quantifier alternations

Dual of val elimination is flattening: remove nested Terms

Similar to compilation
Example:

$$
x+3 y<z
$$

flattening $3 y$ and denoting it by y_{1} we get

$$
\left\{\text { val } y_{1}=3 y ; x+y_{1}<z\right\}
$$

and then flattening $x+y_{1}$ denoting it by y_{2} we get

$$
\left\{\text { val } y_{1}=3 y ;\left\{\text { val } y_{2}=x+y_{1} ; y_{2}<z\right\}\right\}
$$

which we may write as

```
{ val y1=3y
    val y2=x+y1
    y2<z
}
```


Flattening Rule

Suppose F contains $t_{1} \odot t_{2}$ somewhere and we wish to pull it out. For some fresh y_{1} then F becomes

Flattening Rule

Suppose F contains $t_{1} \odot t_{2}$ somewhere and we wish to pull it out. For some fresh y_{1} then F becomes

$$
\left\{\text { val } y_{1}=t_{1} \odot t_{2} ; \quad F\left[t_{1} \odot t_{2}:=y_{1}\right]\right\}
$$

We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas

$$
\{\text { val } x=a+1 ; 2 x\}+5<y
$$

becomes

We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas

$$
\{\text { val } x=a+1 ; 2 x\}+5<y
$$

becomes

$$
\{\text { val } x=a+1 ; 2 x+5<y\}
$$

val given by val rule

$$
\{\text { val } x=\{\text { val } y=a+1 ; y+y\} ; x<2 x\}
$$

becomes

val given by val rule

$$
\{\text { val } x=\{\text { val } y=a+1 ; y+y\} ; x<2 x\}
$$

becomes

$$
\{\operatorname{val} y=a+1 ;\{\operatorname{val} x=y+y ; x<2 x\}\}
$$

which we pretty-print as

$$
\{\text { val } y=a+1 ; \text { val } x=y+y ; x<2 x\}
$$

Flat form:

- each operation \odot is inside a $\left\{\right.$ val $\left.x=y_{1} \odot y_{2} ; F\right\}$
- atomic formulas only use variables
- val applies to formulas only (not terms)

Translating if

F, b : Boolean, t : Int

$$
\begin{aligned}
F & ::=b\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\neg F| \exists x . F|\forall x . F| t_{1}<t_{2} \mid t_{1}=t_{2} \\
& |\quad\{\mathbf{v a l} \mathbf{x}=\mathbf{t} ; \mathbf{F}\}|\left\{\mathbf{v a l} \mathbf{b}=\mathbf{F}_{\mathbf{1}} ; \mathbf{F}\right\} \\
t & ::=x|K| t_{1}+t_{2} \mid K \cdot t \\
& |\mathbf{t} / \mathbf{K}| \mathbf{t} \% \mathbf{K} \mid \text { if }(\mathbf{F}) \mathbf{t}_{\mathbf{1}} \text { else } \mathbf{t}_{\mathbf{2}} \mid\left\{\text { val } \mathbf{x}=\mathbf{t}_{\mathbf{1}} ; \mathbf{t}_{\mathbf{2}}\right\}
\end{aligned}
$$

Suppose terms are in flat form. We only need to handle:

$$
\left\{\text { val } x=\left(i f\left(b_{1}\right) t_{1} \text { else } t_{2}\right) ; F\right\}
$$

Note that the logical equality

$$
\begin{equation*}
x=\left(i f\left(b_{1}\right) t_{1} \text { else } t_{2}\right) \tag{*}
\end{equation*}
$$

is equivalent to

$$
\left(b_{1} \wedge x=t_{1}\right) \vee\left(\neg b_{1} \wedge x=t_{2}\right)
$$

as well as to:

$$
\left(\left(b_{1} \rightarrow x=t_{1}\right) \wedge\left(\neg b_{1} \rightarrow x=t_{2}\right)\right)
$$

Translating if

From two one-point rule translations of val, we can thus transform

$$
\left\{\text { val } x=\left(i f\left(b_{1}\right) t_{1} \text { else } t_{2}\right) ; F\right\}
$$

into any of these:

$$
\begin{aligned}
& \exists x .\left[\left(\left(b_{1} \wedge x=t_{1}\right) \vee\left(\neg b_{1} \wedge x=t_{2}\right)\right) \wedge F\right] \\
& \exists x .\left[\left(\left(b_{1} \rightarrow x=t_{1}\right) \wedge\left(\neg b_{1} \rightarrow x=t_{2}\right)\right) \wedge F\right] \\
& \forall x .\left[\left(\left(b_{1} \wedge x=t_{1}\right) \vee\left(\neg b_{1} \wedge x=t_{2}\right)\right) \rightarrow F\right] \\
& \forall x .\left[\left(\left(b_{1} \rightarrow x=t_{1}\right) \wedge\left(\neg b_{1} \rightarrow x=t_{2}\right)\right) \rightarrow F\right]
\end{aligned}
$$

This translates if-else without duplicating sub-formulas (thanks to boolean variable b_{1}).

Integer Division by a Constant

Consider

$$
\{\text { val } q=p / K ; F\}
$$

The corresponding equality $q=p / K$ is equivalent to

$$
K q \leq p \wedge p<K(q+1)
$$

Which gives corresponding translations:

$$
\begin{aligned}
& \exists q .[K q \leq p \wedge p<K(q+1) \wedge F] \\
& \forall q .[(K q \leq p \wedge p<K(q+1)) \rightarrow F]
\end{aligned}
$$

Remainder Modulo a Constant

$$
\{\text { val } r=p \% K ; F\}
$$

Remainder Modulo a Constant

$$
\{\text { val } r=p \% K ; F\}
$$

One way:

$$
\{\text { val } r=p-K(p / K) ; F\}
$$

Quantifier-Free Polynomial-Sized VC

```
deff(\overline{x}:||\mp@subsup{t}{}{n}): |nt ={
    b(\overline{x})
} ensuring (res => Post(\overline{x},res))
```

VC in quantifier-free PA extended with val, if, /, \% :

$$
\text { res }=b(\bar{x}) \rightarrow \operatorname{Post}(\text { res, } \bar{x})
$$

Quantifier-Free Polynomial-Sized VC

```
deff(\overline{x}:||\mp@subsup{t}{}{n}): |nt ={
    b(\overline{x})
} ensuring (res => Post(\overline{x},res))
```

VC in quantifier-free PA extended with val, if, /, \% :

$$
\text { res }=b(\bar{x}) \rightarrow \operatorname{Post}(\text { res, } \bar{x})
$$

Eliminate extensions, choosing always existential quantifiers for new variables \bar{z}. Moreover, such existentials can be pulled to top-level, because we only introduced \vee, \wedge and never \neg for sub-formulas. We obtain:

$$
(\exists \bar{z} . F(\text { res, } \bar{x}, \bar{z})) \rightarrow \operatorname{Post}(\text { res, } \bar{x})
$$

which is equivalent to

$$
\forall \bar{z} .[F(r e s, \bar{x}, \bar{z}) \rightarrow \operatorname{Post}(r e s, \bar{x})]
$$

So, all variables are universally quantified.

Explaining $(\exists F) \rightarrow G$

Indeed, from first-order logic we have these equivalent formulas:

$$
\begin{aligned}
& (\exists \bar{z} . F(\text { res, } \bar{x}, \bar{z})) \rightarrow \operatorname{Post}(\text { res, } \bar{x}) \\
& \neg(\exists \bar{z} . F(\text { res }, \bar{x}, \bar{z})) \vee \operatorname{Post}(\text { res }, \bar{x}) \\
& (\forall \bar{z} . \neg F(\text { res }, \bar{x}, \bar{z})) \vee \operatorname{Post}(\text { res, } \bar{x}) \\
& \forall \bar{z} .[\neg F(\text { res }, \bar{x}, \bar{z}) \vee \operatorname{Post}(\text { res }, \bar{x})] \\
& \forall \bar{z} .[F(\text { res }, \bar{x}, \bar{z}) \rightarrow \operatorname{Post}(\text { res }, \bar{x})]
\end{aligned}
$$

Checking validity is same as showing that

$$
F(\text { res, } \bar{x}, \bar{z}) \rightarrow \operatorname{Post}(\text { res }, \bar{x})
$$

is true for all values of variables, or that

$$
F(r e s, \bar{x}, \bar{z}) \wedge \neg \operatorname{Post}(r e s, \bar{x})
$$

has no satisfying assignments.

Adding State and Non-Determinism

VC Generation for Imperative Non-Deterministic Programs

Program can be represented by a formula relating initial and final state. Consider program with variables x, y, z
program:

$$
x=x+2 ; y=x+10
$$

relation: $\left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\}$
formula:

$$
x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z
$$

Specification: $z=\operatorname{old}(z) \wedge(\operatorname{old}(x)>0 \rightarrow(x>0 \wedge y>0))$ Adhering to specification is relation subset:

$$
\begin{aligned}
& \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\subseteq & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)\right\}
\end{aligned}
$$

or validity of the following implication:

$$
\begin{aligned}
& x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z \\
\rightarrow \quad z^{\prime} & =z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)
\end{aligned}
$$

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$ Imperative statements:

- $\mathbf{x}=\mathbf{t}$: change $x \in V$ to have value given by t; leave vars in $V \backslash\{x\}$ unchanged
- if(F) $\mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: if F holds, execute c_{1} else execute c_{2}
- $\mathbf{c}_{\mathbf{1}} ; \mathbf{c}_{\mathbf{2}}$: first execute c_{1}, then execute c_{2}

Statements for introducing and restricting non-determinism:

- havoc(\mathbf{x}): non-deterministically change $x \in V$ to have an arbitrary value; leave vars in $V \backslash\{x\}$ unchanged
- if $(*) \mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: arbitrarily choose to run c_{1} or c_{2}
- assume(F): block all executions where F does not hold Given such loop-free program c with conditionals, compute a polynomial-sized formula $R(c)$ of form: $\exists \bar{z} . F\left(\bar{x}, \bar{z}, \bar{x}^{\prime}\right)$ describing relation between initial values of variables x_{1}, \ldots, x_{n} and final values of variables $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Construction Formula that Describe Relations

c - imperative command
$R(c)$ - formula describing relation between initial and final states of execution of c

If $\rho(c)$ describes the relation, then $R(c)$ is formula such that

$$
\rho(c)=\left\{\left(\bar{v}, \bar{v}^{\prime}\right) \mid R(c)\right\}
$$

$R(c)$ is a formula between unprimed variables \bar{v} and primed variables \bar{v}^{\prime}

Formula for Assignment

$$
x=t
$$

Formula for Assignment

$$
x=t
$$

$R(x=t):$

$$
x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Note that the formula must explicitly state which variables remain the same (here: all except x). Otherwise, those variables would not be constrained by the relation, so they could take arbitrary value in the state after the command.

Formula for if-else

After flattening,
if $(b) c_{1}$ else c_{2}

Formula for if-else

After flattening,

$$
\text { if }(b) c_{1} \text { else } c_{2}
$$

$R\left(i f(b) c_{1}\right.$ else $\left.c_{2}\right)$:

$$
\left(b \wedge R\left(c_{1}\right)\right) \vee\left(\neg b \wedge R\left(c_{2}\right)\right)
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?
$R\left(c_{1} ; c_{2}\right) \equiv$

$$
\exists \bar{z} . \quad R\left(c_{1}\right)\left[\bar{x}^{\prime}:=\bar{z}\right] \wedge R\left(c_{2}\right)[\bar{x}:=\bar{z}]
$$

where \bar{z} are freshly picked names of intermediate states.

- a useful convention: \bar{z} refer to position in program source code

havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:

havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:

$$
\bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

This again illustrates "politically correct" approach to describing the destruction of values of variables: just do not mention them.

Non-deterministic choice
if $(*) c_{1}$ else c_{2}

Non-deterministic choice

$$
\text { if }(*) c_{1} \text { else } c_{2}
$$

$R\left(\right.$ if $(*) c_{1}$ else $\left.c_{2}\right):$

$$
R\left(c_{1}\right) \vee R\left(c_{2}\right)
$$

- translation is simply a disjunction - this is why construct is interesting
- corresponds to branching in control-flow graphs

assume

$$
\operatorname{assume}(F)
$$

assume

$$
\operatorname{assume}(F)
$$

$R($ assume $(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

assume

$$
\operatorname{assume}(F)
$$

$R($ assume $(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

- This command does not change any state.

assume

$$
\operatorname{assume}(F)
$$

$R($ assume $(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

- This command does not change any state.
- If F does not hold, it stops with "instantaneous success".

Example of Translation

$$
\begin{aligned}
& \text { (if }(b) x=x+1 \text { else } y=x+2) \text {; } \\
& 1 \\
& x=x+5 \\
& 2 \\
& (\text { if }(*) y=y+1 \text { else } x=y)
\end{aligned}
$$

becomes
$\exists x_{1}, y_{1}, x_{2}, y_{2} .\left(\left(b \wedge \mathbf{x}_{\mathbf{1}}=\mathbf{x}+\mathbf{1} \wedge y_{1}=y\right) \vee\left(\neg b \wedge x_{1}=x \wedge \mathbf{y}_{\mathbf{1}}=\mathbf{x}+\mathbf{2}\right)\right)$

$$
\begin{aligned}
& \wedge\left(\mathbf{x}_{\mathbf{2}}=\mathbf{x}_{\mathbf{1}}+\mathbf{5} \wedge y_{2}=y_{1}\right) \\
& \wedge\left(\left(x^{\prime}=x_{2} \wedge \mathbf{y}^{\prime}=\mathbf{y}_{2}+\mathbf{1}\right) \vee\left(\mathbf{x}^{\prime}=\mathbf{y}_{2} \wedge y^{\prime}=y_{2}\right)\right)
\end{aligned}
$$

Think of execution trace $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ where

- $\left(x_{0}, y_{0}\right)$ is denoted by (x, y)
- $\left(x_{3}, y_{3}\right)$ is denoted by $\left(x^{\prime}, y^{\prime}\right)$

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$ Imperative statements:

- $\mathbf{x}=\mathbf{t}$: change $x \in V$ to have value given by t; leave vars in $V \backslash\{x\}$ unchanged
- if(F) $\mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: if F holds, execute c_{1} else execute c_{2}
- $\mathbf{c}_{\mathbf{1}} ; \mathbf{c}_{\mathbf{2}}$: first execute c_{1}, then execute c_{2}

Statements for introducing and restricting non-determinism:

- havoc(\mathbf{x}): non-deterministically change $x \in V$ to have an arbitrary value; leave vars in $V \backslash\{x\}$ unchanged
- if $(*) \mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: arbitrarily choose to run c_{1} or c_{2}
- assume(F): block all executions where F does not hold Given such loop-free program c with conditionals, compute a polynomial-sized formula $R(c)$ of form: $\exists \bar{z} . F\left(\bar{x}, \bar{z}, \bar{x}^{\prime}\right)$ describing relation between initial values of variables x_{1}, \ldots, x_{n} and final values of variables $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)=F \wedge R(c)$
2. $R(c ; \operatorname{assume}(F))$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)=F \wedge R(c)$
2. $R(c$; assume $(F))=R(c) \wedge F\left[\bar{x}:=\bar{x}^{\prime}\right]$
where $F\left[\bar{x}:=\bar{x}^{\prime}\right]$ denotes F with all variables replaced with primed versions

Expressing if through non-deterministic choice and assume

Expressing if through non-deterministic choice and assume

```
if (b) c1 else c2
    ||
if (*) {
    assume(b);
    c1
} else {
    assume(!b);
    c2
}
```

Indeed, apply translation to both sides and observe that generated formulas are equivalent.

Expressing assignment through havoc and assume

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume $(x==e)$

Under what conditions this holds?

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume $(x==e)$

Under what conditions this holds? $x \notin F V(e)$

Illustration of the problem: havoc (x); assume $(x==x+1)$

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume ($x==e$)

Under what conditions this holds? $x \notin F V(e)$

Illustration of the problem: havoc (x); assume $(x==x+1)$
Luckily, we can rewrite it into $x_{\text {fresh }}=x+1 ; x=x_{\text {fresh }}$

