Chapter 1

The Logic of Engineering Design

A scientific theory takes the form of an equation or a set of equations and inequa-
tion, usually expressed in the language of mathematics. We will use the general
logical term predicate to stand for such mathematical descriptions. The purpose of
the predicate is to describe and therefore predict all possible observations that can
be made directly or indirectly of any system from a given reproducible class. The
values obtained by physical measurement are denoted by free variables occurring
in the formulae. An example is Einstein’s famous equation

e =mc?
where e is the energy of the system

m is its mass
and ¢ is the speed of light.

Considerable familiarity with physics is needed to correlate the variables e and
m and the constant ¢ with the physical reality which they refer to. Nothing but
confusion would result if the names of these variables were replaced by arbitrary
alternatives, for example: f = nd?.

The same physical system may be described at many different levels of ab-
straction and granularity; for example, physics can describe the material world as
a collection of interacting quarks, or elementary particles, or atoms, or molecules,
or crystal structures. All these descriptions lie well below the common-sense level
of the physical objects which we see and touch in the everyday world. Science has
discovered independent theories for reasoning at each of these levels of abstraction.
But even more impressive is the demonstration that each theory is logically based
on the more detailed theory below it. This is the strongest argument for the sound-
ness of each separate theory, and also for the coherence of the entire intellectual
structure of modern physics.

22

The Logic of Engineering Design 23

Mathematical theories expressed as predicates play an equally decisive role in
engineering. A significant engineering project begins with a specification describ-
ing as directly as possible the observable properties and behaviour of the desired
product. The design documents, formulated at various stages of the project, are
indirect descriptions of the same behaviour. They are expressed in some restricted
notation, at a level of abstraction appropriate to guide the physical implementa-
tion. This implementation is correct if its detailed description logically implies
its specification; for then any observation of the product will be among those de-
scribed and therefore permitted by the specification. The success of the whole
project depends not only on correct reasoning at each level of design, but also on
the soundness of the transition between the decreasing levels of abstraction appro-
priate to the successive stages of specification, design and implementation.

An engineering product is usually delivered as an assembly of components,
which in general operate concurrently. The operation of each component can be de-
scribed scientifically by a specific predicate, describing all its possible behaviours,
including all its possible interactions with any other components which may be
connected to it in an assembly. For this reason, the joint behaviour of many
components in the assembly can often be described by the conjunction of these
predicates describing the components separately. If some aspect of the component
cannot be fully determined in advance, it may be described by the disjunction of
predicates describing its alternative modes of behaviour. Finally, the links between
predicates describing behaviour at different levels of granularity and abstraction
can be formalised by quantification. In summary, the elementary operators of
propositional and predicate logic provide all the basic concepts needed for a sys-
tematic engineering design methodology.

The goal of this book is to apply the philosophy and methods of modern
science and engineering to the study and practice of computer programming. A
computer program, and each of its components, is treated as a mathematical for-
mula, describing the experimental observations which may be made by executing it
in any variety of circumstances. The same phenomena may be described at several
different levels of abstraction; the consistency of the various presentations can be
assured by mathematical calculation and proof. The theory is developed first for
a very simple programming language, which is then extended piecemeal; at each
stage, it is hoped to preserve the validity and simplicity of what has gone before.
The eventual goal is to develop theories which may be useful in the engineering of
computer software, from specification of requirements through modular design to
reliable implementation, installation and subsequent maintenance.

The full treatment of a simple programming language starts in Chapter 2.
The remainder of this chapter develops the general philosophy of our approach to
the science of programming and its application to software engineering.

24 The Logic of Engineering Design
1.1 Observations and alphabets

The first task of the scientist is to isolate some interesting class of reproducible
system for detailed study. At the same time, a selection must be made of those
properties which are regarded as observable or controllable or generally relevant
to understanding and prediction of system behaviour. For each property, a name
is chosen to denote its value, and instructions are given on how and when that
property is to be observed, in what unit it is to be measured, etc. The list of
names is usually accompanied by a declaration of the type of value over which
each of them ranges, for example

x: integer, y: real, ..., z: Boolean

This collection of names is known as an alphabet, and the names will occur as
free variables, together with physical constants and other mathematical symbols,
in any predicate describing the general properties of the system. They are called
variables because their values vary from one experiment to another, conducted on a
different system at a different place and time. Each theory in each branch of science
is determined and delimited by its own choice of alphabet, and every formula and
predicate of the theory has its free variables restricted to that alphabet.

We therefore require that every predicate P has associated with it (usually
implicitly) a known set of free variables which it is allowed to contain. This is
known as the alphabet of the predicate, abbreviated as aP. Often the predicate
will contain all the variables of its alphabet, but there is no compulsion for it to
do so. If the predicate has nothing to say about an observation z in its alphabet,
that variable does not have to occur; or if preferred, it may be included vacuously
by adding the trivial equation (z = z). Of course, it is always forbidden for a
predicate to contain free variables outside its alphabet.

An observation of a particular example of the chosen class of system can be
expressed as a very limited kind of predicate. It consists only of a set of equations,
ascribing particular constant values to each of the variables in the alphabet, for
example

r=4 AN y=373 A...A z=Talse

In logic, such observations are called valuations or interpretations; in computing,
the instantaneous state of a machine executing a program is often recorded in
this way as a “symbolic dump” of the values of all its variables at the time the
observation is made.

Most of the dynamic variables treated in the physical sciences are functions
which map a continuously varying time to a continuum of possible values. Consider
for example a simple tank containing a liquid. The variables of its alphabet selected
to describe the state of the system might be:

1.1 Observation and alphabets 25

t (measured in seconds) is the time since the start of the apparatus (¢ = 0),
v; stands for the measurable volume of liquid in the tank (in litres),

x; is the total amount of liquid poured into the tank up to time ¢,

y: is the total amount drained from the tank up to time ¢,

a; is the setting of the input valve at time ¢ (in degrees),

b: is the setting of the output valve at time ¢.

The relationship between the symbolic variables and the real measurements that
they denote is often illustrated by an annotated picture (Figure 1.1.1).

5.

Figure 1.1.1 The water tank

In constructing a simple theory for a sequential programming language, we
decide that the only relevant times at which observations can be made of its state
are before the program starts and after it terminates; the decision to ignore all
intermediate values of the variables is based on the reasonable hope that they
will not be needed in the formulation of the theory. At the relevant times it is
possible to record the values of all the global variables accessed or updated by the
program. We will therefore need two names for each variable z: the final value
will be recorded under the dashed name z’, whereas the name z itself will stand
for the initial value. An observation of a single completed execution of a particular
program will give both the values observed, before and after; for example

T =5A =TANy =2
may be an observation of a particular run of the program
T:=r+y

The criterion of successful choice of an appropriate set of observations is
nothing less than the success of the scientific theory that predicts their values. As
Einstein remarked, it is the theory that determines what is observable. If there are
too many observables, the theory gets too complicated; too few variables will make
the theory inaccurate or restrict its range of application; and in general, the wrong
choice will incur both penalties. In the following chapters, there will be examples
of such failure, from which useful lessons will be drawn.

26 The Logic of Engineering Design
1.2 Behaviour and predicates

The normal discourse of scientists and engineers is wholly dependent on an
agreed interpretation in reality of the alphabet of names used to describe observa-
tions or measurements. Only this makes it possible to perform experiments and
record the observations against the relevant observation name. Scientific investiga-
tion often starts with a long, detailed and accurate record of particular observations
of particular systems, and actual individual observations continue to play a deci-
sive role throughout the later development of scientific knowledge. But the real
purpose and goal of science are to replace this merely historical record by a the-
ory of sufficient accuracy and power to predict the observations that will be made
in experiments that remain to be performed in the future. A scientific theory is
usually expressed as a mathematical predicate — an equation or an inequation or a
collection of such formulae — which contain as free variables the names which have
been selected to denote observations. Consider an observation

=12 A y=373 A...A z= false

A predicate P(z,y, ..., z) correctly describes this particular observation if substi-
tution of each variable by its observed value makes the predicate true (satisfies it)

P(12, 37.3, ..., false)

But the purpose of the predicate is to describe in general a whole class of system,
and it does so correctly if it describes every possible observation of every possible
experiment made on any member of the class.

A useful scientific predicate is one that is as strong as possible, subject to the
constraint of correctness: in general, it should be false exactly when its variables
take combinations of values which in reality never occur together. This recommen-
dation is violated by the weakest possible predicate, namely true (or equivalently,
z =z Ay = y), which is satisfied by every conceivable observation. It therefore
correctly describes every system, and it is useless because it does so. The strongest
predicate false is equally useless for the opposite reason: there is no system which
it describes. (If there were, it would necessarily have no observations, and there-
fore be inaccessible to science.) All of science is concerned with predicates that
lie strictly between the two extremes of absolute logical truth and absolute falsity.
Only such intermediate predicates convey useful information about what goes on
in the world that we happen to live in.

Predicates describing the world are sometimes called Laws of Nature. They
often take the form of a conservation principle or a differential equation. In the
example of the water tank, the obvious law of conservation of liquid defines an
invariant relationship between total inflow, total outflow and retained volume

1.2 Behaviour and predicates 27

Tr+vo=y+uvttxe forallt>0

where € < €4, the maximum rate of accumulation of errors due to seepage,
evaporation, precipitation, condensation, overflow, etc.

Other physical constraints may be imposed as inequations on the setting of the
valves

0<a;<amar, 0<b <bmaz

Finally, the relationship between the valve settings and the flow of liquid may be
expressed by differential equations, say

T=kxa and y=kxb+dxwv

where & accounts for extra outflow due to pressure of water in the tank,
and £ and g are the rates of change in z and y.

This collection of mathematical equations and inequations is strong enough to make
a prediction about future water volumes, given sufficiently precise knowledge of the
valve settings and the other variables and constants in the system.

The fundamental constituent of a sequential program is an assignment state-
ment, for example

T:=x+Yy

This causes the final value of = to be equal to the sum of the initial values of z
and y. The effect is formally described by the predicate

’=z+y

No restriction is placed on the initial or final values of any other global variables.
Since no assignment is made to y, we choose to say nothing of the final value 3'.
Later, we will even exclude y’ from the alphabet of the predicate. But still, the
predicate can be used to help predict the final value of z on every single execution
of the program.

A multiple assignment evaluates a list of expressions, and assigns their values
to corresponding members of a list of variables; for example, the assignment

T,y=z+3, y—«z
is captured by the predicate
r=c+3 ANyY=y-=z

This clearly states that all the expressions on the right of the assignment must be
evaluated with the initial values of all the variables that they contain, and only

28 The Logic of Engineering Design

then is it allowed to assign the new values to the variables on the left of the as-
signment. In the interests of consistency, we require that all the assigned variables
(on the left of :=) be distinct. The simplicity of this treatment of general assign-
ment justifies the use of undashed variables to stand for initial values, and dashed
variants (which are not allowed in the programming language itself) to stand for
final values.

Scientists and engineers are entirely familiar with the practice of describing
systems by predicates with an understood alphabet of free variables. They habitu-
ally transform, manipulate, differentiate and integrate textual formulae containing
free variables, which have an external meaning independent of the formulae in
which they occur. Such practices have been decried by pure mathematicians and
logicians, who tend to use bound variables and closed mathematical abstractions
like sets, functions and (less commonly) relations. But the conflict is only one of
style, not of substance. Every predicate P(z,y,...,2) can be identified with the
closed set of all tuples of observations that satisfy it

{(x7y7“"z) I P(x’y""’z)}

Conversely, every formula S describing a set of observations can be rewritten as a
predicate

(z,9,...,2) €S

A preference for the closed or open style of presentation of theories can influ-
ence a lifelong choice between specialisation as a pure or an applied mathematician.
The preferences of pure mathematicians are explained by their main concern, which
is the proof of mathematical theorems — formulae without free variables which are
equivalent to the predicate true. Since our concern is primarily with descriptions of
physical systems, we shall prefer to use predicates containing free variables selected
from an alphabet whose existence, composition and meaning can only be explained
informally by relating them to reality. In fact we have already begun to identify
systems with descriptions of their behaviour, so that we can combine, manipulate
and transform the descriptions in a manner which corresponds to the assembly and
use of the corresponding systems in the real world. In this, we will see that the
universal truth of abstract mathematical theorems, so useless for direct description
of reality, plays an essential role in validating the transformations applied to such
descriptions by scientists and engineers, and among them the engineers of software.

1.3 Conjunction

Propositional logic provides many ways of constructing complex predicates
from simpler ones; the first and most important of these is undoubtedly conjunc-
tion, which we write as A. If it needs definition, the following will suffice:

1.3 Conjunction 29

1. An observation satisfies a conjunction (P A Q) iff it satisfies both P and Q.
2. The alphabet of (P A Q) is the union of the separate alphabets of P and Q.

Conjunction is extremely useful in describing the behaviour of a product that is
constructed from (say) two components with known behaviour, described individ-
ually by the two predicates P and Q. Consider first the simple but important case,
when the alphabets of P and Q are disjoint, containing no variable in common,
for example aP = {z} and aQ = {z}. Then their conjunction (P A Q) de-
scribes the behaviour of two completely separate components, the first of which
is described by P(z) and the second by Q(z). There is no connection between
the components, and no synchronisation or coordination of their behaviour. Each
observation (say, z =7 A z = 3) of their joint behaviour can be split in two: one
part (z = 7) involves only variables from the alphabet of P, and this part satisfies
P(z); the rest of the observation (z = 3) similarly satisfies Q(z). That is exactly
the condition under which the whole observation satisfies (P A Q).

As an example, consider two programs operating on entirely disjoint collec-
tions of global variables. The two programs can be executed together in either
order, or even in parallel. The combined effect of their execution is most simply
described as the conjunction of the separate effects of each component. We use I
to denote parallel execution of two assignments

zi=z+4+z || y=y—w

Their combined behaviour is precisely described by the conjunction of their sepa-
rate behaviours

@=z+2) A (¥ =y—w)
It can be seen that the effect is the same as the multiple assignment
T,y =r+z y—w

In most cases of interest, components of an engineering product are connected
together in such a way that they can interact and thereby affect each other’s be-
haviour. In principle, such an interaction can also be observed from the outside,
and the observation can be recorded in some variable, say y. The interaction and its
observation belong simultaneously to the behaviour of both the components which
participate in it. The physical possibility of interaction is therefore represented by
the fact that the variable y belongs to the alphabet of both of the predicates P and
@ that describe them. In order for an observation (say,z = 7 A y = 12) of one
component P to be coupled with an observation (say, y = 12 A z = 3) from the
other component @, it is essential that both observations give the same value to
all the variables they share (in this case, just y), so that the coupling gives (say)
z=T7T A y=12 A z = 3. Such a coupled observation can still be split into
two overlapping parts, one of which contains only the variables in the alphabet of

30 The Logic of Engineering Design

P, and this part satisfies P(z,y); and the same for the other part, which satisfies
Q(y, 2). That is the exact condition for the whole observation to satisfy the con-
junction (P(z,y) A Q(y, 2)) of the component descriptions; its alphabet is clearly
still the union of their separate alphabets.

A simple example of conjunction has already been given in the previous sec-
tion. The three components of the water system are the tank, which obeys the
conservation law, and the input valve and output valve, which regulate the flow
in accordance with separate differential equations. The behaviour of the whole
system is described exactly by the conjunction of the predicates describing the
behaviour of its components. The variables in common to the three parts must
obviously take the same value wherever they occur.

Conjunction is the general method of modelling connection and interaction
in an assembly constructed from two or more components. But in practice, not all
combinations of predicates are physically realisable in the available technology, for
example by connection of wires in hardware, or by execution of programs in some
software system. Any scientific theory which is to be useful in engineering prac-
tice must clearly state the general conditions under which assembly of components
with non-disjoint alphabets will be physically realisable. If these conditions are vi-
olated, the resulting conjunction of specifications could be contradictory, yielding
the predicate false, which is a logical impossibility and could never be implemented
in practice. Avoidance of such inconsistency is a necessary goal of the more com-
plex theories described later in this book.

A very effective way of achieving the necessary consistency is to distinguish
which variables in the alphabet of each subsystem are “controlled” by that sub-
system itself, rather than the environment in which it may be connected. These
are called dependent variables or outputs, and form the output alphabet (outaP)
of the subsystem P. The necessary constraint is that each variable of a complete
subsystem can be controlled by only one of its components. So the conjunction
(P A Q) is forbidden unless the output alphabets are disjoint

outaP Nouta@ = {}
A variable controlled by any subsystem is controlled in the combined system
outa(P A Q) = outaP U outaQ

The input alphabet is just defined as the rest of the variables, often called indepen-
dent variables, controlled by the experimenter or the environment of the system

inaP = «aP)\ outaP

The output alphabet of a sequential program consists of all its dashed vari-
ables; that is those that are allowed to appear on the left of an assignment within

1.4 Specifications 31

it. The restriction on sharing the output variables is sufficient to ensure consis-
tency of the conjunction of the predicates describing any two parallel programs.
We can therefore relax the usual constraint against one component using variables
updated by another parallel component. For example, we can allow

@=z-ylly=2xy) = (@=z-y) A (Y =2xy)

This again gives the same result as a multiple assignment. When one of the com-
ponent expressions refers to a variable (e.g. y) updated by the other, our theory
requires that it is the initial value of that variable that is obtained. In general, an
implementation might have to make a private copy of such variables before exe-
cuting the programs in parallel, as is standard when forking a process in UNIXTM
[157]). Consequently in this theory parallel components can never interact with
each other by shared variables. We will see that such interactions can lead to
highly non-deterministic effects. These may well be worth avoiding, even at the
cost of extra copying (which is needed anyway on a distributed implementation,
one with disjoint stores). A general theory for parallel programs which interact by
updating the same variables is considerably more complicated, because it needs to
take into account the intermediate values of program variables during execution.

1.4 Specifications

We have seen the role of predicates in describing the actual behaviour of
individual components of an assembly. In suitable circumstances, the behaviour
of the whole assembly is described by the conjunction of the predicates describing
its components. The result can be used by the scientist to predict or even con-
trol the outcome of individual experiments on the assembly. But once the theory
has been confirmed by experiment, it has an even more valuable role in reasoning
about much more general properties of much wider classes of system: there is no
longer any need to amass more data by individual experiment. In software engi-
neering, lengthy experimentation is the usual method to determine the properties
of a program — it is called program testing. As in natural science, the main reason
for theoretical studies is to replace the bulk of tests by mathematical calculations
based on the theory, and verified by just a few crucial experiments.

In engineering practice, predicates have an additional role as specifications,
which define the purpose of a product by describing the desired properties of a
system which does not yet exist in the real world, but some client, with money to
pay, would like to see it brought into existence. A predicate used as a specification
should describe the desired system as clearly and directly as possible, in terms of
what behaviour is to be exhibited and what is to be avoided. The specification
often defines part of a formal or informal contract between the client and the team
engaged on implementation of the product.

32 The Logic of Engineering Design

In an industrial control system, a primary requirement is to hold some con-
trolled variable within certain safety limits. In the example of the water tank, we
impose a lower limit minv and an upper limit mazv on the volume of liquid held

minv < v, < marv, for all ¢
These express absolute limits on v, which must be maintained at all times.

Sometimes there are undesirable states which are permitted occasionally, but
only for a relatively short proportion of the total time. For example, we may wish
that the volume should not be above (mazv — §) for more than 10% of any consecu-
tive interval of ten seconds. The undesirable condition can be defined as a Boolean
function of time (taking values 0,1)

risks =g (v:+0 > maw)
Now the requirement is expressed using integrals

JE0 risk,de < 1, forallt

The overall safety specification includes the conjunction of the two requirements
displayed above. A complete specification will usually be a conjunction of a much
larger number of separately expressible requirements.

Another lesson that may be drawn from this example is that, in the formali-
sation of a specification, one should not hesitate to use notations like those of real
numbers and integrals, chosen from the entire conceptual armoury of mathematics:
whatever will express the intention as clearly and directly as possible. Often, the
notations cannot be executed or even represented on a computer, but they are well
understood by the process physicists and control engineers, who must carry the
ultimate responsibility for approving the statement of requirements before imple-
mentation begins.

An example more familiar to programmers is sorting. One of the require-
ments of a program that sorts data held in an array A is that the result A’ should
be sorted in ascending order of key. An array is regarded as a function from its
indices to its elements. Let key be the function which maps each element to its
key. The desired condition is

(key o A’) is monotonic

where o denotes function composition. A second requirement on the program is
that the result should be a permutation of the initial value

(3p : pis apermutation ® A" = Ao p)

The overall specification is the conjunction of these two requirements. Note that

1.4 Specifications 33

the alphabet constraints described in the previous section prevent the program
from being implemented as a conjunction of components which meet the two re-
quirements separately.

Again, this example uses fairly sophisticated concepts from pure mathematics
to achieve brevity at a high level of abstraction. For example, one must know the
definition of a monotonic function, that it preserves the ordering of its arguments

z<y = Ax) <A(y), for all z,y in the domain of A’

Other more diffuse formulations of the sorting concept may be shown to be equi-
valent to it. And they should be, if that increases confidence that the specification
describes exactly what the customer has in mind. Even when safety is not involved,
it is extremely wasteful and embarrassing to implement and deliver a product which
turns out to do what was never wanted.

Knuth has claimed that every interesting concept in computing science can
be illuminated by the example of the greatest common divisor [111]. The most
direct way of specifying the greatest common divisor z of two numbers z and y is
that it must be a divisor of both its operands, and the greatest such. This can be
formalised as

z,y>1 = zmodz = 0A
ymodz = 0A
(Vw : zmodw = ymodw = 0 e w<2)

This specification has the form of an implication, where the antecedent (z,y > 1)
states the general condition under which it is reasonable to ask for calculation of
the greatest common divisor. The user of the product must undertake to make
the antecedent true, because if it fails, there is no constraint whatsoever on the
behaviour of the product.

In all the examples described above, individual requirements placed on the
system have been formalised as separate predicates; like the components of an as-
sembly, these are collected together by simple conjunction, but now unrestricted by
the constraints of implementation technology. As a result, the conjunctive struc-
ture of a clear specification is usually orthogonal to the structure of its eventual
implementation. The essential intellectual content of engineering design lies in cor-
rectly transforming the conjunctive structure of a specification to the orthogonally
structured conjunction of components assembled to implement the specification.
Engineering would be essentially trivial if a fast and economical product could be
assembled from two components, one of which was fast and the other one econom-
ical.

34 The Logic of Engineering Design

1.5 Correctness

The previous two sections have shown both systems and specifications are
(conjunctions of) predicates, describing all actual behaviour and all desired be-
haviour respectively. This gives a particularly convenient definition of the concept
of correctness: it is just logical implication. Let S be a specification, composed
perhaps as a conjunction of many individual requirements placed on the behaviour
of a system yet to be delivered. Let P be a description of all the possible behaviours
of the eventually delivered implementation, composed perhaps as the conjunction
of the description of its many components. Assume that P and S have the same
alphabet of variables, standing for the same observations. We want assurance that
the delivered implementation meets its specification, in the sense that none of the
possible observations of the implementation could ever violate the specification.
In other words, every observation that satisfies P must also satisfy S. This is
expressed formally by universally quantified implication

Yv,w,--- ¢ P = §

where v,w, - -- are all the variables of the alphabet. Dijkstra and Scholten [52]
abbreviate this using square brackets to denote universal quantification over all
variables in the alphabet

[P = 9]

Logical implication is the fundamental concept of all mathematical reasoning; it
plays a crucial role in deducing testable consequences from scientific theories, so it
should not be a matter of surprise or regret that it is the basis of all correct design
and implementation in engineering practice.

As a trivial example, consider the specification
>z ANy =y ...S

which specifies that the value of z is to be increased, and the value of y is to re-
main the same. No restriction is placed on changes to any other variable. There
are many programs that satisfy this specification, including the assignment

T,y:=x+1,y ...P

Correctness of a program means that every possible observation of any run of the
program will yield values which make the specification true; for example, the speci-
fication is satisfied by the observation (z = 4 A2’ = 5Ay = y = 7), because
the predicate S is true when its free variables are replaced by their observed values

5>4ANT =7

In fact, the specification is satisfied not just by this single observation but by every

1.5 Correctness 35

possible observation of every possible run of the program
(x,y:=2+1y) = >z Ay = 9]

This mixture of programming with mathematical notations may seem unfamiliar;
it is justified by the identification of each program with the predicate describ-
ing exactly its range of possible behaviours. Both programs and specifications
are predicates over the same set of free variables, and that is why the concept of
program correctness can be so simply explained as universally quantified logical
implication between them.

Logical implication is equally interesting as a relation between two products
or between two specifications. If S and T are specifications, [S = T] means that T
is a more general or abstract specification than S, and at least as easy to implement.
Indeed, by transitivity of implication, any product that correctly implements S will
serve as an implementation of T, though not necessarily the other way round. So
a logically weaker specification is easier to implement, and the easiest of all is the
predicate true, which can be implemented by anything.

Similarly, if P and @ are products, [P => @] means that P is a more specific
or determinate product than @, and it is (in general) more useful. Indeed, by
transitivity of implication, any specification' met by @ will be met by P, though
not necessarily the other way round. So for any given purpose a logically weaker
product is less likely to be any good, and the weakest product true is the most
useless of all.

Explanation of correctness as implication gives a strangely simple treatment
of the perplexing topic of non-determinism. Let P and Q be product descriptions
with the same alphabet. Their disjunction (P V Q) may behave like P or it may
behave like @, with no indication which it will be. In order to be sure that this is
correct, both P and Q must be correct. Fortunately, this is also a sufficient condi-
tion; this is justified by appeal to the fundamental logical property of disjunction
as the least upper bound of the implication ordering

[PVvR=S] iff [P=S]and [Q= 9]

The progress of a complex engineering project is often split into a number of
design stages. The transition between successive stages is marked by signing off
a document, produced in the earlier stage and used in the later stage. A design
document D can also be regarded as a predicate: it describes directly or indirectly
the general properties of all products conforming to the design. But before em-
barking on final implementation, it is advisable to ensure the correctness of the
design by proving the implication

[D = 9]

36 The Logic of Engineering Design

Now the implementation of the product itself reduces to the simpler task of finding
a predicate P, expressed in technologically feasible notations, which satisfies the
implication

[P = D]

Transitivity of implication then ensures the validity of the original goal that the
product should meet the starting specification

P = 9

This is a very simple justification of the widespread engineering practice of
stepwise design. It is also a vindication of our philosophy of interpreting speci-
fications, designs and implementations all as predicates describing the same kind
of observable phenomena. However, these predicates are usually expressed in very
different notations at each different stage of the engineering process. For exam-
ple, the notations of a programming language are deliberately restricted in the
interests of feasibility and efficiency of implementation. Satisfaction of notational
constraints is an essential feature also for the solution of any mathematically de-
fined problem: the answer must be expressed in notations essentially more primi-
tive than the problem, for example as numerals rather than formulae, as explicit
functions rather than differential equations. Otherwise a trivial restatement of the
problem itself could be offered as a solution.

Stepwise design is even more effective if it is accompanied by decomposition
of complex tasks into simpler subtasks. Let D and E be designs of components
that will be assembled to meet specification S. The correctness of the designs can
be checked before their implementation by proof of the implication

[DANE = 9

The two designs can then be separately implemented as products P and @Q that
conform individually to the two design descriptions

[P = D] and [@ = E]
Their assembly will then necessarily satisfy the original specification
P AQ =S5

The correctness of the final step does not depend on lengthy integration testing
after assembly of the components, but rather on a mathematical proof completed
before starting to implement the components. The validity of the method of step-
wise decomposition follows from a fundamental property of conjunction: that it is
monotonic in the implication ordering.

1.5 Correctness 37

The principle of monotonicity plays an essential role in engineering practice.
Let X stand for a component, and let Y stand for a component that is claimed to
be better than X in all relevant respects: as explained above, this can be expressed
formally as an implication between their descriptions

Y = X]

Now let F(X) be a description of the behaviour of an assembly in which X has
been inserted as a component. Replacement of component X by Y in the physical
assembly corresponds to replacement of the description of X by the description
of Y, and the resulting overall description is therefore F(Y). If Y is really better
than X, the engineer would expect the resulting assembly to be better too. This
expectation is expressed by the implication

Y = X] = [FY) = F(X)
But this is exactly what is meant by the statement that F' is monotonic.

For any theory to be useful in engineering, all methods of connection of com-
ponents into an assembly should be monotonic in this sense. Of course, in practice,
the principle will occasionally be violated, in cases when a supposed local improve-
ment leads to worse global performance. This kind of failure is one of the most
worrying problems to the engineer, because it is not just a failure of a single com-
ponent or a single product, but rather a failure in the underlying theory on which
its whole design has been based. Until the theory has been mended, there is no
reason to suppose that the design can be.

A major problem in the account we have given of stepwise decomposition is
that the designer must simultaneously formalise the designs of both the components
D and E. That is like trying to split an integer s into two integer factors before
the invention of division: it was necessary then to guess both the factors d and e,
checking the guesses by multiplication

dxe = s

But after the invention of long division, all that is needed is to guess only one of
the numbers, say d; the other can be calculated by the formula

e = s+d

Provided there is no remainder (which is also checked by calculation), this is guar-
anteed to give the other factor. Fortunately, a similar principle is in general avail-
able in engineering design.

The principle is especially helpful in planning the reuse of existing assemblies
and designs. Suppose it is decided to use a known design or available component
Q in the implementation of a specification S. So it remains only to design another

38 The Logic of Engineering Design

component X which will be connected to @, adapting its behaviour to meet this
particular requirement. More formally, X must satisfy the implication

XAQ = 9]

There are many answers to such an inequation, of which (X = false) is the most
trivial. It is also the most difficult to implement — in fact impossible! There can
never be any way of expressing the universally false predicate in any notation that
claims to be implementable. What we want is at the other extreme, the answer
that is easiest to implement, the one which preserves all design options and choices,
so that these can be made later, when it is possible to assess their implications.

That is why we ask: What is the weakest specification [92] that should be
met by the designers of X? In a top-down design, it is much better to calculate
X from Q and S, rather than attempting to find it by guesswork. Fortunately,
propositional calculus gives a very simple answer

X = -QvVS
This is guaranteed by the law of propositional logic
XAQ = 8] if [X = (-Q Vv 9)]

The specification (—Q V S) is often written as an implication (Q = §), and will
be in general easier to implement than S. The formula permits calculation rather
than guesswork to aid in the top-down search for an implementation of X that
works with @) to achieve S. Such replacement of guesswork by calculation is the
main practical goal of the development of a mathematical theory for engineering.

1.6 Abstraction

Our simple explanation of correctness assumes that the alphabets of speci-
fication, design and implementation are all the same. In many cases, the alphabets
are different, and for good reason: they reflect different levels of abstraction, gran-
ularity and scale at which the observations are made. The whole task of design
and implementation is to cross these levels of abstraction, and to do so without
introducing error. A simple case of abstraction is when the alphabet of the speci-
fication is a subset of that of the implementation. For example, specifications will
usually exclude mention of any variable introduced to describe only the internal
interactions of the components of the implementation. Such a variable serves as
a local variable in a program, similar to a bound variable in a mathematical for-
mula. What is observable inside the assembly is of no concern to its customer, and
is usually hidden by physical enclosure in its casing. The corresponding logical
operation must remove the free variable from the predicate and from its alphabet.

1.6 Abstraction 39

For the implementation to work, such a hidden variable describing an inter-
nal property must indeed have some value, but we do not care what it is. It should
therefore be hidden by existential quantification. The quantification is justified by
the 3-introduction rule of the predicate calculus

[P => S iff [(FveP) = 3 if v does not occur in §

The variable is removed from the alphabet of (3v e P). Existential quantification
over internal interactions of an assembly often leads to considerable simplification
of the descriptions, without affecting the range of specifications that will be satis-
fied.

Universal quantification plays a complementary role to the existential: it as-
sists in the top-down design of systems with reusable components. Recall the task
described at the end of the previous section, to find the weakest X such that

X AQ = 8]

But of course the condition of implementability of the conjunction (X A Q) re
quires that X must not mention any of the output variables (say z’ and y') of
®. So the answer must hold for all values which Q may give to them, as in the
universally quantified formula,

X = (Vo'\yeQ = S)

where outaQ = {2’,y'}. This answer has been called the residual [15] of S by Q,
because it describes what remains to be implemented in order to achieve S with
the aid of @. The answer is justified again by a simple law of the predicate calculus

X AQ =8 if [X = (Vo/,yy e Q= 39)
whenever 2/, 4 do not occur in X.

As an example, suppose it is required to maintain a constant value for the
expression (z — y). This task is expressed in the specification that its value after-
wards is the same as its value before

§ = ([@-y=z-y)
Suppose for other reasons it is desirable to double the value y by
Q = (y:=2xy)

What simultaneous change must be made to the value of z in order to re-establish
the truth of S? The required answer is given by the residual.

40 The Logic of Engineering Design

(Wey=2xy= (@ -y =z-y)
= (@-2xy =z-y)
=z

= z:=zx+Yy

The answer, which is not totally obvious, has been derived by pure calculation,
and has not required the dubious aid of intuition.

Of course, not all design decisions are sensible. An ill-conceived design may
be expensive, difficult or even impossible to implement. Suppose the specification
is to make the product of z and y into an odd number with the help of a program
that doubles y. So the required residual is

(Vy'ey =2xy = (2’ xy is odd))
= 'x2xyisodd

= false

This is, of course, unimplementable: there is no way that an odd product can be
obtained by doubling one of the factors, and the situation cannot be remedied by
changing the value of the other factor. It was clearly foolish to think that it would
help to double y. Fortunately, the calculation of the residual as false gives clear
warning of the impossibility of implementation.

In general, the transitions between engineering specifications and designs, or
between various levels of design, present conceptual gaps far greater than can be
bridged by just hiding some of the details of the interaction between components
of the implementation. In fact, there is often an abrupt change in the nature, scale
and granularity of all the observations involved and therefore of the alphabet used
to denote them. We have a hierarchy of abstraction levels analogous to that found
in the branches of a mature science, and there is an even more urgent practical
need to demonstrate the soundness of the transitions between them.

A simple but quite general way of solving the problem is to describe math-
ematically the relationship between observations at the two levels, for example
specification and design. At the design level, let D(c) be a predicate with alphabet
{c} denoting a concrete observation relevant to implementation, and let S(a) be
a specification with alphabet {a} denoting a more abstract observation relevant
to the customer’s use of the product (our reasoning will apply equally to much
larger alphabets). The problem cannot be solved by plain universally quantified
implication [D(c) = S(a)] is equivalent to [Ic.D(c) = Va.S(a)]; except in the
most trivial cases this is just false, and most certainly does not define the proper
notion of correctness, relating the design to the specification. The solution is to
understand and formalise the relationship between an individual observation c of
the design, and the corresponding values of a to which it may give rise at the

1.7 The ideal and the reality of engineering 41

higher level. This relationship can be described in the usual way by some linking
predicate L(c,a). Now the set of all abstract observations that may be made of the
design is described by a predicate in which all concrete observations are hidden

Jce D(c) A L(c,a)

This construction lifts the abstraction level of the design to that of the specification.
More precisely, it gives the strongest specification with alphabet {a} that is satis-
fied by the design D. Proceeding from the top down, the specification describing
the higher level observation a can be converted into a design describing the more
concrete observations

(Vae L(c,a) = S(a))

This actually gives the weakest design with alphabet {c} that is guaranteed to sat-
isfy the specification. Either the existential or the universal transformation may
be used to define correctness, as shown by the equivalence

[(3ce D(c) A L(c,a)) = S(a)] iff [D(c) = (VaeL(c,a) = S(a))]

Equivalences of this form are very common in constructing links between theories:
the two transformations are often known as Galois connections. They will play a
central role in the unification of theories of programming.

1.7 The ideal and the reality of engineering

The preceding sections have painted an ideal picture of an engineering project,
as an abstract exercise in pure logic. It is a picture that is as far from the day-
to-day reality of engineering practice as could be expected of any other branch of
pure speculative philosophy. The first idealisation is that the true requirements
and qualities of a product can be accurately captured in a precise logical descrip-
tion of the way that it should behave. Requirements capture is in fact the most
challenging of all the engineers’ tasks, because there is no way of checking that
they describe what the customer actually is going to want when the product is
actually delivered. Even the best specifications are peppered with qualifications
like “reasonably” and “normally” and “approximately” and “preferably”, which
cannot be made more precise until much later in the investigation of the design,
or even after delivery.

Another bold idealisation is that the specification, once formalised, will re-
main constant. In fact specifications are subject to a constant series of changes,
before, during, and even after delivery of the product. In principle, the slightest
change can invalidate the entire structure and all the details of the whole design,
but in practice the engineer usually finds some ingenious way of preserving and

42 The Logic of Engineering Design

maintaining the greater part of the work progressed so far. Indeed, the experienced
engineer often has a way of anticipating the most likely changes from the start.
Changes made even after initial delivery of the product are particularly significant
in software engineering. The lifelong task of many programmers is to make a suc-
cession of adaptations to some existing program, to meet new or changing needs
that were never envisaged in the original specification. In principle, the rigorous
documentation of the design should be the most valuable aid in identifying where
to make the necessary changes and how to make them correctly. Unfortunately, in
practice the design documentation goes rapidly out of date, and even becomes too
dangerous to use. The only safe way to find out what the program actually does
is by testing and tracing example runs, by trial and more frequently by error.

A project that starts from scratch can suffer from even greater problems.
The absence of a previous program to adapt usually means that this is the first
application of some new and comparatively immature technology to a problem for
which there is no current solution. These are just those cases where the standard
calculations do not apply, and greatest reliance must be placed on guesswork and
experimentation. In the top-down progression from specification through design,
the earliest decisions on the structure of the product are the most irreversible, and
yet they must be taken at the time of greatest ignorance of their consequences on
the cost and performance and acceptability of the product. Mistakes are inevitable,
and can be recovered only by judicious backtracking. If success is possible at all,
it is only by the experience, judgement and ingenuity of the engineer. No amount
of mathematical calculation or logical proof can ever be a substitute for that.

Finally, all other problems of engineering design must be subordinate to the
overriding imperative to deliver the promised product at the due time, and at a
cost within the allocated budget. All the ideals of philosophy and logic are of no
avail if the engineer fails in this, the most important of all engineering duties. And
in fact, this is where the true engineer finds his or her greatest intellectual and
personal reward — not just the pursuit of an ideal of accuracy, but also a justified
pride in the working product and the satisfied customer.

The stark contrast between ideals and reality has been noted and deplored by
philosophers, moralists and theologians through the centuries; there is no general
reconciliation, and each individual must continually find a resolution appropriate
to the needs of the moment. In engineering, some will ignore theoretical ideals,
and rely exclusively on experience of their craft, but others will on occasion find
guidance from their understanding and pursuit of an ideal, which is shared by other
members of a recognised profession. The ideal suggests an integrated approach to
the overall task, and enables deviations to be isolated and controlled separately. In
the longer term, a theoretical understanding provides a basis for the emergence of
professional standards, methods and techniques for uniformly reliable solution of
technical problems, independent of the area of application. These in turn provide

1.7 The ideal and the reality of engineering 43

material for a sound education for new entrants to the profession, who respond
favourably to the inspiration of a unifying ideal, even before understanding the
many compromises necessary to put it into practice.

Finally, the privilege of the purest allegiance to an ideal is that of the re-
searcher, seeking to build a scientific foundation which will contribute simultane-
ously to the advancement of knowledge and education, as well as the continuous
improvement of professional practice of the accredited engineer. One final appeal
to an analogy with the physical sciences: it is the pursuit of an ideal of truth that
in the long run has led to the development of modern technology and engineering
methods, and these have been of outstanding success in solving problems which
continue to face the modern world.

	22.tif
	23.tif
	24.tif
	25.tif
	26.tif
	27.tif
	28.tif
	29.tif
	30.tif
	31.tif
	32.tif
	33.tif
	34.tif
	35.tif
	36.tif
	37.tif
	38.tif
	39.tif
	40.tif
	41.tif
	42.tif
	43.tif
	44.tif

