Chapter 0

The Challenge of Unification

The study of science has long been split into many branches, and within each
branch there are many specialisations. Each specialisation concentrates on some
narrowly defined natural process, and hopes to discover the laws which govern it.
In the early days of a new branch of science, these laws are very specific to the
outcome of a particular experiment, but as the range of experiment broadens, a
collection of laws are found to be special cases of some more general theory, and in
turn these theories are comprehended within some theory of yet greater generality.
This constant tendency in science towards unifying theories has as ultimate goal
the discovery of a clear and convincing explanation of the entire working of the
natural universe.

A classical example of a unifying theory is Newton’s theory of gravitation,
which assimilates the motion of the moon or planets in the sky with the trajectories
of apples or cannon balls falling to earth. Unification often begins more simply
than that, with just a humble classification: Mendeleev’s periodic table of elements
classified them by their chemical properties, and these were only later explained by
the unifying theory of atomic valences. A unifying theory is usually complemen-
tary to the theories that it links, and does not seek to replace them. Physicists still
hope to find a Grand Unified Theory, which underlies the four known fundamental
forces of nature; when found, this will further reinforce our understanding of the
separate theories. It certainly will not replace them by abolishing the forces or
repealing the laws that govern them.

The drive towards unification of theories that has been so successful in science
has achieved equal success in revealing the clear structure of modern mathemat-
ics. For example, topology brings order to the study of continuity in all the many
forms and applications discovered by analysis. Algebra classifies and generalises
the many properties shared by familiar number systems, and succinctly codifies
their differences. Logic and set theory formalise the common principles that gov-
ern mathematical reasoning in all branches of the subject. Category theory makes

1

2 | The Challenge of Unification

yet further abstraction from logic, set theory, algebra and topology. Computing
science is a new subject, and we have not yet achieved the unification of theories
that should support a proper understanding of its structure. In meeting this chal-
- lenge, we may find inspiration and guidance even from quite superficial analogies
with better established branches of knowledge. Our main appeal will be to thought
experiments rather than physical observation; this suggests that mathematics will
provide closer analogies than the physical sciences.

A proposed unification of theories occasionally receives spectacular confirma-
tion and reward by the prediction and subsequent discovery of new planets, of new
elements or of new particles. In the timespan of decades and centuries, the result-
ing improvement of understanding may lead to new branches of technology, with
new processes and products contributing to the health and prosperity of mankind.
But at the start of the research and on initial study of its results, such benefits
are purely speculative, and are best left unspoken. The real driving force for the
scientist is wonderment about the complexity of the world we live in, and the hope
that it can be described simply enough for us to understand, and elegantly enough
to admire and enjoy. Computing scientists need no excuse to indulge and cultivate
their genuine curiosity about the complex world of computers, and the languages
in which their programs are written.

In satisfying this curiosity, we face the challenge of building a coherent struc-
ture for the intellectual discipline of computing science, and in particular for the
theory of programming. Such a comprehensive theory must include a convincing
approach to the study of the range of languages in which computer programs may
be expressed. It must introduce basic concepts and properties which are common
to the whole range of programming methods and languages. Then it must deal
separately with the additions and variations which are particular to specific groups
of related programming languages. The aim throughout should be to treat each
aspect and feature in the simplest possible fashion and in isolation from all the
other features with which it may be combined or confused. Just as the study of
chemical molecules is based upon an understanding of their constituent atoms,
the study of programming languages should be based on a prior analysis of their
constituent features. Simplification and isolation are the very essence of scientific
‘method, and need no apology.

On the other hand, any practical programming language must include a great
many features, together with many ad hoc compromises needed to reconcile them
with efficient implementation and to maintain compatibility with many previously
released implementations. The construction of an effective conceptual framework
to understand and control the complexity of currently fashionable programming
languages is a continuing challenge and stimulus to productive research. If progress
is slow, this should be remedied by more rigorous isolation of the fundamental and
more general issues. By concentrating on theory, the pursuit of pure science aims

0.‘1 Progmmming pagadigms 3

to convey a broader and deeper understanding of the whole range of the subject,
and to contribute a foundation, a structure and an intellectual framework for fur-
ther and more specialised studies of its individual branches.

In this introductory chapter we survey the immensity of the task of unifica-
tion, and the general methods proposed for tackling it. Theories of programming
may be classified along three independent axes.

1. Firstly, there is the vast number of programming languages already invented
and yet to come. They can be classified under a smaller range of general
computational paradigms, based on the structure and technology of their
implementation.

2. Each of these paradigms can be described at different levels of abstraction or
detail, with a corresponding trade-off between simplicity and accuracy.

3. Finally, there is a choice of mathematical techhique for presenting the foun-
dations of each theory in-a simple and convincing fashion.

Unification of theories must study their variation along all these axes. To char-
acterise a particular theory in programming (as in science generally), we need to
describe the primitive concepts of the theory, and the way that these are related
to the real world by observation or experiment. The technical terms chosen to
denote these concepts are called the alphabet of the theory. Next, there is a choice
of primitive statements of the theory and methods of combining them into more
complex descriptions of experiments and products. The symbols chosen for this
purpose are called the signature of the theory. Finally, the results of a theory
are expressed by a set of equations or other laws that are both mathematically
provable and useful in the design of programs and prediction of the results of their
execution. Theories are unified by sharing elements of their alphabet, signature
and laws. They are differentiated by what they do not share.

This introductory chapter concludes with a survey of challenging tasks which
have not been completed in this book, and which are recommended as topics for
future research and development.

0.1 Programming paradigms

Programming languages may be classified in accordance with their basic con-
trol structures, or computational paradigm. The earliest and most widespread
paradigm is that of conventional imperative programming. Design of an impera-
tive program requires planned reuse of computer storage by assigning new values
to its individual locations. Examples of imperative languages are machine code,
FORTRAN, COBOL, ALGOL 60, PASCAL and C. The functional programming
paradigm makes no reference to updatable storage. It specifies a function by a for-
mula that describes how to compute its result from its arguments. This paradigm

4 The Challenge of Unification

“is embodied in the languages LISP [122], ML [128, 182] and Haskell [95]. The log-
ical paradigm specifies the answer to a question by defining the predicates which
the answer must satisfy; search for an answer may involve backtracking, as in the
language PROLOG [115], or in more recent constraint logic languages such as CLP
[100] and CHIP [53].

The parallel programming paradigm permits a program to exploit the power
of many processing units operating concurrently and cooperating in the solution of
the same problem. There are many variations of this paradigm; they correspond to
the different kinds of mechanism which are implemented in hardware for the con-
nection of separate processors, and the different kinds of channel through which
they communicate and interact with each other. Many of the fastest computers
are designed with multiple processing units working out of a single homogeneously
addressed main store. In the study of program complexity, this is known as the
PRAM model [58], and it is finding application in BSP (the Bulk Synchronous
Paradigm) [123, 183] for high performance computing; its characteristic feature
is an occasional global synchronisation. At a much lower level of granularity, a
similar kind of lockstep progression is standard in hardware design, and its theory
is embodied in SCCS [125].

The other main class of parallel programming paradigm is suited to dis-
tributed systems. It replaces shared storage by communication of messages, output
by one process and input by another. An early example was the actor paradigm
[8, 9], in which any message output by any process could be collected at any sub-
sequent time by any other process, or even by the same one. A similar scheme
underlies Linda [63, 65, 64]. Most subsequent message passing models require
them to be directed through channels, which connect exactly two processes. In
the data flow variation [33, 75, 106, 107], messages which have been output by one
process will be stored in the correct sequence until the inputting process calls for
them. In versions designed for asynchronous hardware design [105, 181], the wires
have no storage, so the outputting process must undertake not to send a second
message until the first has been consumed. Finally, the most widely researched
variant is that of fully synchronised communication, where the output and input
of a message occur virtually simultaneously, as in the theories CCS [125, 126], ACP
[23] and CSP [88], and in the programming language occam [97]. The component
processes of a distributed parallel program play the role of objects in the object-
oriented programming paradigm [41, 44, 74, 124].

Certain language properties and features can be included or omitted from any
language, independently of its underlying paradigm. For example, non-determinism
is a property of a language by which a program leaves unspecified the exact actions
to be performed, or the exact result produced [50, 83, 137]. Non-determinism tends
to arise implicitly in parallel languages, but it is easier to study in isolation as an
explicit choice operator, independent of the language in which it is embedded.

0.2 Levels of abstracgion 5

Another capability is that of higher order [154] programming, which allows
a program to treat other programs as data or results. It is a common feature of
a functional programming language. Data structures containing programs provide
another approach to object-oriented programming, and communication of such
data models the program distribution capability of Java [12]. Timing [10] can be
introduced as a facility for synchronising with a clock, measuring either resource
usage or the passage of real or simulated time, and hybrid systems [71] include
. an element of continuous change, perhaps modelling an analog computer or even
the real world. A surprisingly powerful feature in programming is probability [54],
which permits the actions of a computer to be selected by random choice with
specified (or unspecified) probabilities. This is widely used in simulation studies;
it also promises to solve problems of fault tolerance and self-stabilisation, particu-
larly in distributed systems.

/
0.2 Levels of abstraction

This survey of the branches and specialisations in the science of programming
has classified them according to their choice of paradigm, language and feature.
Classification by topic of study is characteristic of any branch of science in its early
stages. But as our understanding matures, there often appears an orthogonal clas-
sification, by which the same materials and phenomena are treated by different
theories, at different scales and different levels of complexity or abstraction. The
most mature branch of science is physics, which explains the properties of matter
by theories at four (or more) levels: chromodynamics deals with the interactions
of quarks, quantum theory with elementary particles, nuclear physics with atoms
and molecular dynamics with molecules. Above this, the theories of chemistry
begin to diversify according to the choice of material studied. At each level the
theory is self-contained, and can be studied in isolation. But the most spectacular
achievement of physics is the discovery that the theory at each level can in principle
be fully justified by embedding it in the theory below: with the aid of plausible
definitions of its concepts, its laws are provable at least as approximations to the
underlying reality. The necessary calculations have been checked in detail for the
case of the simpler particles and atoms, and there is no reason to doubt the scien-
tists’ faith in extrapolation of their results to the cases that are too complicated
for practical computation. Clarification of the hierarchical structure of physical
theories is what gives the study of physics its pride of place among all the branches
of science.

A similar hierarchy of theories is evident in mathematics, where set theory is
the basis of topology, which provides a foundation for analysis; in its turn, analysis
derives and justifies the laws of the differential calculus, which are then applied to
the solution of practical problems by engineers and scientists from a broad range of

6 The Challenge of Unification

disciplines. Different concepts, notations, theorems and problem solving methods
are available at each of these levels. Fortunately, the successful application of each
theory does not require any knowledge of its more abstract foundations.

A goal for a unified theory of programming is to suggest a very similar hierar-
chical approach to software engineering. Even for a single programming paradigm,
a unified theory should link a family of related subtheories at various levels of
abstraction. A subtheory at a macroscopic level of granularity and at a high level
of abstraction will be useful for capture and analysis of the requirements of the
eventual user of a software product. A theory at an intermediate level will help in
the definition of the components of the product itself, and the interfaces between
its subassemblies and parts. At the lowest level, a theory must fully explain the
behaviour of programs written in a particular programming language. The links
between all the theories at these different levels must be based on mathematical
calculations and proof; without that, it is impossible to establish with confidence
that the delivered program will meet the originally specified requirements.

0.3 Varieties of presentation

Even confining attention to a single theory defining a single class of phe-
nomenon at a single level of abstraction, there is scope for wide variation in the
manner in which the theory is presented. For example, the theory of gravitation
may be presented in its original form as governing the effect of forces acting at
a distance. A more modern presentation is in terms of field theory; yet another
uses Einsteinian geodesics. All these presentations may be proved to be equally
valid, because they are formally equivalent. A branch of mathematics often enjoys
a similar range of styles of definition. For example, a particular topology may be
defined as a family of open sets, subject to certain conditions. Alternatively it
can be specified as a closure operation mapping any set onto its smallest contain-
ing closed set. Or it may be specified as a collection of neighbourhoods. Each
presentation may be suitable for a different purpose; because they are known to
be equivalent, an experienced mathematician will move effortlessly between them
as required to solve the current problem. Understanding the relationship between
the presentations ensures that the diversity is only beneficial; it is an excellent
indicator of the value and maturity of the theory as a whole.

A similar diversity of presentation is seen in a theory of programming, which
has to explain the meaning of the notations of a programming language. The
methods of presenting such a semantic definition may be classified under three
headings. The denotational [155, 164, 167, 172, 176] method defines each notation
and formula of the language as denoting some value in a mathematical domain
which is understood independently, say as a function, or as a set of trajectories,

0.3 Varieties of preseptation 7

or in general as some kind of observation of the properties and behaviour of the
program when executed. The algebraic (82, 83, 93, 137, 138, 161] style is more
subtle and abstract. It does not say what programs actually mean, but if two
differently written programs happen to mean the same thing, this can be proved
from the equations of an algebraic presentation. An operational [73, 126, 151] pre-
sentation describes how a program can be executed by a series of steps of some
abstract mathematical machine. As in the hardware of current general-purpose
. stored-program computers, the text of the program itself is often taken as part of
_ the state of the machine.

The denotational style of definition is closest to that used most normally in
mathematics, for example, to define complex numbers or matrices and operations
upon them. In the case of programs and other engineering products, we can relate
the definitions immediately to more or less direct observations of the execution of
the program. A specification too is nothing but a description of the observations of
the product which the customer will regard as acceptable. This gives an extraor-
dinarily simple definition of the central concept of the theory, namely program
correctness. To be correct, a program must be just a subset of the observations
permitted by the specification. The definition of a non-deterministic union of two
programs is equally simple — just the union of all the observations that might be
made of either of the alternatives. Other connectives of propositional logic and
predicate calculus also play an important role.

The great merit of algebra is as a powerful tool for exploring family relation-
ships over a wide range of different theories. For example, study of the foundations
of mathematics has given denotations to a wide variety of number systems — in-
tegers, reals, complex, etc. Deep distinctions are revealed in the structure and
content of each kind of number so defined. It is only their algebraic properties that
emphasise the family likenesses across the range of number systems. That is why
we are justified in calling them all numbers, and using the same symbols for all
the arithmetic operators. There are practical advantages too: the same theorems
can be reused without proof in all branches of mathematics which share the same
axioms. And algebra is well suited for direct use by engineers in symbolic calcula-
tion of parameters and structure of an optimal design. Algebraic proofs by term
rewriting are the most promising way in which computers can assist in the process
of reliable design.

The operational style of definition of a programming language is distinctive
to the study of theoretical computing science, and it also plays an essential practi-
cal role. For example, the search for program efficiency and the study of abstract
complexity are wholly dependent on counting the number of steps in program ex-
ecution. In analysing the faults of an incorrect program, it is common to obtain
information dumped from an intermediate step of the running program, and this
can be interpreted only in the light of an understanding of operational semantics.

8 The Challenge of Unification

Furthermore, the existence (or at least the possibility) of implementation is the
only reason for taking an interest in a particular set of notations, or dignifying
them with the title of a programming language.

Each of these three styles of presentation has its distinctive advantages for a
study of the theory of programming. To combine these advantages, a comprehen-
sive theory of programming treats a programming language in all three styles, and
proves that the definitions are consistent with each other in the appropriate sense.
In this book, the denotational definition is given first; it provides a basis for proof
of the laws needed in the algebraic presentation. At a certain stage, the laws are
sufficiently powerful to derive and prove correctness of the step (transition relation)
of an operational semantics. This is a natural and fairly easy progression, from
abstract definitions through mathematical proof to one or more concrete imple-
mentations. But many excellent treatments of semantics [184, 73] proceed in the
opposite direction, from the concrete to the abstract. Starting with an operational
semantics, one can derive from it a collection of valid algebraic laws and even a
denotational semantics. The derivations in this direction use methods based on the
concept of simulation in automata theory. These have been further developed by
computing scientists under the name bisimulation; this has been very successfully
applied in the context of CCS [126], and can be extended to other languages.

Caution: The original presentations of the denotational semantics of a pro-
gramming language made clear a notational distinction between its syntax and
its semantics, and the semantics was wholly presented within the mathematical
domain of partial functions. These characteristics came to be regarded by later
authors as definitive of the nature of denotational semantics. The style which we
call denotational has been given many alternative names: “predicative” (77, 90],
“specification-oriented” [139], “application-oriented”, “observational” or even “re-
lational” [16, 117]. A pioneer of our direct style of denotational definition is Mosses
[132]. The decision to return to the original term “denotational” is justified by ap-
peal to its original significance [172, 173]:

1. Each component of the program has a meaning which is independent of its
text or the manner of its execution.

2. The meaning of a larger program can be determined as a mathematical func-
tion of the meaning of its syntactic constituents, not of their syntactic form.

0.4 Alphabets

Our primary subject of study is a new branch of science, the science of com-
puter programming. Like other sciences, its study requires a specialised language
for describing the class of relevant phenomena arising from a well-conducted experi-
ment, and introduces a formal framework for deducing consequences from these

0.4 Alphabets 9

descriptions. In well-established branches of natural science, the observable results
of an experiment are described by a collection of equations or inequations or other
mathematical relations. These descriptions will be called by the general logical
term predicate. The theory of programming uses predicates in the same way as a
scientific theory, to describe the observable behaviour of a program when it is exe-
cuted by computer. In fact, we will define the meaning of a program as a predicate
which describes as exactly as possible the full range of its possible behaviour, when
. executed in any possible environment of its use.

Scientific predicates contain many mathematical symbols whose meaning has
been defined by pure mathematicians; the laws of reasoning that govern them
are ultimately based on the axioms of set theory and logic. But any scientifically
meaningful predicate also contains free variables like z, y, v, 9, standing for possible
results of measurements taken from an experiment in the real world; for example,
the position of some particle, its velocity and acceleration. The relationship be-
tween these free variables and the method of observing their values can never be
. formalised: an understanding can be conveyed only by informal description and
practical demonstration. Theories developed for individual branches of science are
differentiated by their selection of relevant observations, measurements and nam-
ing conventions; the chosen collection of names will be called the alphabet of the
theory. It is by their alphabets that we shall relate our various theories of pro-
gramming. Obviously, we will choose the same names for observations that are the
same in all the different theories.

Predicates are used in engineering not just to describe the behaviour of an
existing product that has already been designed, produced, delivered and put into
service. They are also used to specify the requirements on a new product that has
not yet even been designed. Such a specification will use the agreed alphabet of
free variables to describe the desired behaviour of the eventual product. It may
also use any other concept that has a clearly defined or axiomatised mathematical
meaning; in software engineering, we may include even the notations of the even-
tual programming language. The eventual program is, of course, wholly restricted
to these notations. The program is correct if its interpretation as a predicate de-
scribing its behaviour on execution logically implies its original specification. That
will ensure that no execution of the program can ever give rise to an observation
that violates the specification.

Observations of an experiment may be made at various times during its
progress; but the most important time is at the beginning, when the initial settings
are made for the controlled variables. We adopt the convention that any observa-
tion made at this time will be denoted by an undecorated variable (z, y, ok, trace),
whereas observations made on later occasions will be decorated. For example, the
variable £ may stand for the initial value of a global variable updated by the pro-
gram, and the final value of that variable on termination will be denoted z'.

10 The Challenge of Unification

Once an experiment has started, it is usual to wait for some initial transient
behaviour to stabilise before making any further observation, and under certain
initial conditions, this may never happen. To represent this possibility, we intro-
duce a Boolean variable ok (and its decorated version ok’), which takes the value
true just when the program has reached a stable and therefore observable state.
Consequently, ok is true of any program that has started, and ok’ is true of any
program that has successfully terminated. In a simple theory of sequential pro-
gramming, initiation and termination are the only occasions on which the state of
executing mechanism may be observed. '

A programming language is called reactive if the behaviour of its programs
can be observed or even altered at stable states intermediate between initiation
and termination. To distinguish intermediate states from final ones, we introduce
another Boolean variable wait, which is true when the program is in a stable inter-
mediate state, and which is false if the program has terminated; after termination,
further intermediate observations are of course impossible. A sequential language
does not need a wait variable, because there are no intermediate observations, and
so it would always be false.

We take a view shared with quantum theory that each intermediate observa-
tion is an event that may change the subsequent behaviour both of the experiment
and of the observer. We introduce the name A to stand for the set of all possible
events that may occur at intermediate stages of the program execution, together
with any values that may be measured or observed on that occasion. A typical
event may be the exchange of some message with the environment within which
the program is running. The value of the message will be observed and recorded,
together with the identity of the channel along which it is communicated. A con-
tains or consists of the set of all such records of communication events.

We use the name trace to stand for a cumulative record of all observations
that have been made of a program so far. This may be organised as a finite se-
quence of observations from it, corresponding to the temporal order of occurrence
of these events: simultaneous events have to be recorded in arbitrary order. In
theories of so-called true concurrency, strict interleaving is not needed because the
trace is regarded as partially rather than totally ordered. For reasoning about
fairness, infinite traces also have to be admitted.

Programming languages of the reactive class offer a facility for synchronisa-
tion with the observer on the occasion of each observation. When the program
has reached a stable intermediate state (i.e. wait is true), it will.remain in this
state until the environment actually makes the relevant observation, for example
by accepting an output message or providing an input message. But not all obser-
vations are always possible: on any given occasion, a certain subset of events will
be refused, even if the environment is ready and willing to engage in them. Such

0.4 Alphabets 11

a subset of events is known as a refusal. Constraints on the refusal set permit an
analysis of the responsiveness or liveness of a distributed system.

The lowest level of programming language is known as machine code, because
its programs are directly executed by a particular brand of computing machinery.
Execution of the program is controlled by the value of a program pointer held in
a special hardware sequence control register. This will be denoted by the special
global variable control, ranging over values in a set al. This set contains the loca-
tion numbers of those memory cells which actually store the binary instructions of
a given segment of the machine code program. By convention, termination of the
program results whenever control first takes a value outside al. The control vari-
able is also relevant in a higher level language with jumps and labels. In this case,
al contains the symbolic names of all the labels placed within the program text.
We use the control constants start and finish to stand for implicit labels placed
before the beginning and after the end of the program. They are the initial value
and final value taken by control when the program starts and finishes smoothly,
without a jump. /

One of the main goals of programming theory is to abstract from the notion
of real time; this ensures that the correctness of a program will be unaffected by
running it on a faster computer or even a slower one. For many important pro-
grams known as real-time programs, this abstraction is impossible, because the
speed of response is part of the very specification of the program. For describing
the behaviour of these programs, we use the variable clock (or c) to stand for the
real global time at which an observation is made. Real time is distinguished from
resource time, which keeps a record of the utilisation of processor cycles during
the execution of a program; in general, it does not increase while the program is
waiting. In a multiprocessor implementation resource is a vector quantity, record-
ing utilisation of the various resources available.

That concludes our survey of the main common naming conventions for ob-
servations that can be made before, during and after execution of a program. Just
as in other branches of science, a specialised theory will select as its alphabet only
a subset of all possible observations of the world, as summarised in Appendix 0.
At the same time specialisation restricts the range of experimental designs to en-
sure that all the relevant phenomena can still be predicted within its deliberately
limited conceptual framework. In the case of a programming language, a successful
restriction will guarantee that programs and their components can be safely speci-
fied and designed and proved correct within the restricted alphabet, in confidence
that the delivered program will not fail as a result of factors left out of consider-
ation. The benefit of ignoring irrelevant concerns is an obvious gain in simplicity
of reasoning but it may also bring benefits in efficiency of implementation of the
program and of the more restricted programming language.

12 The Challenge of Unification

'The remaining sections of this chapter summarise the methods and conclu-
sions of this book for the benefit of readers who already have some exposure to the
mathematical treatment of programming. Other readers may prefer to return to
them at a later stage, say after Chapter 4.

0.5 Signatures

Suppose a fixed alphabet has been selected for investigation of a particular
programming language. The first task of the theory is to define the meaning of
every program in the language as a predicate, with free variables restricted to the
alphabet of the language. The predicate should describe as accurately as desired
the entire range of observations that could be made of the program when executed.
The primitive statements of the language are defined directly by such a predicate.
A composite program is built from simpler components by means of the various
operators of the language. Each programming operator is therefore defined as an
operator on the predicates that describe its operands; this delivers a predicate that
describes, again with all appropriate accuracy, the observations of an execution
of the larger composite program; each such observation is usually an amalgam of
single observations derived from each of the component programs.

The set of operators and atomic components (constants) of a programming
theory are known as its signature. Essentially, the signature defines the syntaz
of a simple programming language, though a practical language based on the the-
ory may have a much more elaborate syntax, with convenient abbreviations for a
number of common idioms. There is a close correlation between the choice of a
signature of a theory and its alphabet. Choice of a smaller alphabet restricts the
choice of operators to those that can be defined and explained by predicates using
only the restricted alphabet.

The concept of a signature is one that is familiar to students of algebra. The
signature is the first part of the definition of which branch of algebra is selected
for study. For example, the first four rows of Table 0.5.1 contain the operators
and constants relevant to lattice theory. The columns of the table give alterna-
tive notations which are used in different applications of the algebra, for example
propositional calculus or set theory. (Note that the square operators are the other
way up from the angular and round ones.) These examples happen also to be
Boolean algebras, in which negation is also a valid operation (row 5). A com-
plete lattice is one in which even infinite sets have bounds; they are denoted by
the limit operators of rows 6 and 7. They correspond to existential and universal
quantification in the predicate calculus. The last three rows of the table extend
the signature to that of a relational algebra. Relational algebra lies at the basis
of our unification of theories of programming, and its mathematical properties are
common to all branches.

0.5 Signatures 13

1 greatest lower bound | M| V] union
2 least upper bound uj| A n intersection
3 bottom L | true U universe
4 top T | false {} empty
5 negation -~ | overbar complement
6 lower limit ni 3 U join
7 upper limit ufl v N meet
8 composition ; product
9 converse ”
10 unit, skip of r identity

Table 0.5.1 Signatures for relations/predicates/sets

A predicate used for specification may be structured with the aid of any of
these operators, and indeed any other operator definable in mathematics. Any
mathematically sound proof technique may be applied to reasoning about speci-
fications, but there is considerable advantage in restricting predicates to those
expressed in smaller sets of notations. This is because notationally restricted predi-
cates are susceptible to a more powerful range of simpler proof techniques. These
include familiar methods of symbolic calculation using just the algebraic proper-
ties of the chosen operators. Sometimes the algebra permits reduction to a normal
form; perhaps there is even a decision procedure that can be implemented on a
computer. The need for a proof is strongest in the design phase of a project. A
language intended for this phase will therefore omit some of the symbols of a speci-
fication language. Negation is usually the first operator to go, together with the
infinitary limit operators. At the same time, a design calculus introduces other op-
erators which begin to model the global structure of the eventual target program,
and thereby provide facilities for programming-in-the-large. These new operators
can be defined with the aid of the more abstract operators, even ones that have
been deliberately excluded from the signature. However, the excluded operators
are used in carefully disciplined ways that do not invalidate the more powerful
proof techniques of the design calculus.

In the design of a programming language there is an even stronger reason
for restricting the signature of permitted operators yet further: all expressible pro-
grams must be computable in the sense of Turing and Church, and preferably they
should be implemented with reasonable efficiency on available computing equip-
ment. This requires the exclusion not only of negation but also of conjunction and
false, for false cannot correctly describe any system whatsoever.

14 The Challenge of Unification

The signature of a programming theory at the lowest level of abstraction
must obviously include all the notations and operators for the target programming
language. Table 0.5.2 gives the signature of basic notations common to nearly all
languages treated in this book. Again, they can all be defined in terms of the more
abstract operators that have been excluded from the language, but again they use
them in such a disciplined way that computability is preserved.

T:=e assignment of the value of expression e to the variable z
P;Q sequential composition: Q is executed after P has terminated
Pab>Q | conditional: P is executed if b is true initially, otherwise Q
PNQ non-determinism: P or Q is executed, but it is not specified which
I parallel execution of processes with disjoint alphabets
var z introduces a new variable z
end r terminates the scope of the variable x
pX o F(X) | call a recursive procedure which has name X and body F(X)

Table 0.5.2 Signature of a programming language

In general programming theory, each program and each part of a program
may have its own different alphabet selected from the alphabet of the theory. For
example, we have already seen that each block of program has its own local vari-
ables; each process in a distributed system has a different set A of events in which
it can participate; and in machine code, each segment of the program must have a
disjoint set ol of locations in which its instructions are stored. In principle, each
constant and operator of the signature should be subscripted by the alphabets of
its operands and of its results, giving a heterogeneous or multi-sorted algebra [42].
In practice the alphabets are omitted, but in a way that permits a compiler to
restore them automatically from the context. In exploring the theory, a knowledge
of the alphabet is sometimes essential to a definition of the meaning, especially of
primitive components like assignments.

Parallel programming languages are those that provide some mechanism for
executing two or more programs at the same time, in a way that permits them
to interact by sharing one or more global variables in their alphabet. But there
is considerable variation in the ways in which the components P and Q may be
connected together for mutual interaction. We therefore give a general definition of
parallel composition as a ternary operator (P||»Q), where M is a third predicate
describing the way in which observations of P and @ are merged to give an observa-
tion of their parallel execution. For example, a particular choice of M will give the
independent interleaving operator (||| of CSP), and others will give the more tightly

0.6 Laws 15

coupled parallel composition (|) of CCS or ACP. A reactive parallel language will
also provide an external choice operator | (or +), which enables the choice between
two alternative courses of action to be taken by other processes running in parallel.

|la | parallel composition of type M s |l

| | external choice +
c?z | input a new value of = from channel ¢ | c.z
cle | output the value of e on channel z Ce

l | parallelism with interleaving of actions

Table 0.5.3 Parallelism and communication in CSP and CCS

A selection from the signatures of these more complex programming lan-
guages is given in Table 0.5.3. Each of these new operators is definable in terms
of the more basic notations of Table 0.5.2. The definitions involve reference and
assignment to special observational variables, such as trace, refusal or wait, which
are included in the alphabet of the language. It is essential, both to the theory and
to its implementation, that these variables are manipulated only by means of the
operators of the signature. The programmer cannot be allowed to access or change
these variables by arbitrary assignment, because it would be clearly impossible
to implement (for example) an assignment that moves time backwards or cancels
an event that has already occurred. The more complex languages, which need a
larger alphabet of concepts to capture and reason about specifications, also need a
larger signature of operators to conceal this alphabet from the programmer. But
when the definitions of the operators are expanded, it turns out that the complex
programs are just a subset of programs expressible in the simple language, in the
same way that programs are just a subset of the predicates expressible in a design
language or a specification.

0.6 Laws

The main purpose of the mathematical definition of a programming opera-
tor is to deduce its interesting mathematical properties. These are most elegantly
expressed as algebraic laws — equations usually, but sometimes inequations, with
implication between predicates rather than equivalence. For a newly defined binary

¥

16 The Challenge of Unification

operator, the first questions are: Is it associative or commutative? Does it have
a unit or a zero? And how does it distribute through other operators? Sequen-
tial composition clearly should be associative; it has II as its unit and distributes
through disjunction. Many forms of parallel composition share these properties,
and are also commutative. '

The primary goal of theorists at this stage is to prove a collection of laws
which is sufficiently comprehensive that any other true inequation between pro-
grams can be derived from the laws alone by algebraic reasoning, without ever
again expanding the definition of the operators. This is achieved by defining a
highly restricted subset of the programming language, known as a normal form;
such a form may be defined by excluding many of the operators of the language,
and requiring a fixed order of application of the others. Then a proof is given
that every program in the language can be reduced by the laws to a normal form
(though in practice it is more usually an expansion).

An important goal of a normal form is to help in a test whether two arbitrary
programs are equal (or related by implication). Suppose a simple test is available
for comparing normal forms. Then the test may be applied to any pair of pro-
grams, by first reducing them both to normal form. The reduction may be within
the capability of a computer. For human benefit, the task of understanding the
whole theory is simplified by separately understanding the simple normal form and
the laws by which it may be derived.

The laws for a language may be powerful enough for reduction to several
different normal forms, each of them useful for a different purpose. One important
purpose of an algebraic transformation is to match the structure of a program to
the architecture of the computer on which it will be executed. This is done by a
compiler for the language whenever it translates a high level program to machine
code. All the control structures of the program are translated to jumps, the data
structures are replaced by single-dimensional array references, the local data are
held in machine registers, and the expressions and assignments are translated to
sequences of commands selected from the very limited range of available machine
instructions. Defining this as the normal form, a proof that every program can be
transformed to it is simultaneously a proof of correctness of a compiling algorithm
that carries out the transformation.

A final advantage to be derived from a normal form is an easy proof of certain
additional algebraic properties that are true for all normal forms, and therefore for
all programs reducible to that kind of normal form. But such laws are not true
for all predicates in general. A predicate that happens to satisfy such a law is
called healthy, and the law is called a healthiness condition. Predicates expressed
in intermediate design languages tend to satisfy many but not all of the healthiness
conditions of the eventual target programs.

0.6 Laws 17

There are often sound physical reasons why programs will always satisfy a
given healthiness condition. For example, no program can ever make time go back-
wards or change the history of what happens before it starts. Let B be a predicate
describing all physically possible observations, for example

= (clock < clock’) A (trace < trace’) A...

No physically realisable program P can ever give rise to an observation that vio-
lates this, a fact that is expressed by the healthiness condition

P= B (orequivalently P = PAB), for all programs P

At the other extreme, there are certain observations that a given theory regards as
irrelevant. They are perfectly feasible, and nothing can prevent such observations
being made: they just violate the rules of experimentation that make the the-
ory applicable. Typical examples could be observations made before the program
starts, or observations taken when the program is still in a transient or unstable
state. Let T' be a predicate describing all such improper observations. Since they
cannot be prevented, every program must allow them, as expressed in the healthi-
ness condition

T= P (orequivalently P=TV P), for all programs P

Clearly T and B are a new top and bottom of the lattice of those predicates which
satisfy both conditions.

Similarly, let J be a description of the way a program should be initialised,
and let K be a description of the way in which the final observation of the program
should be taken. Let us suppose (not unreasonably) that repeated initialisation or
finalisation has the same effect as just once, that is

J=J;J and K=K;K

Since every program P should have been properly initialised and finalised, it must
satisfy the healthiness conditions

P=J;P and P=P;K

Healthiness conditions play much the same role in programming theory as
principles of symmetry and conservation in science. They are not themselves
testable by experiment; they are accepted because they are preserved by all known
theories that do predict testable results. A well-established principle is then used
as a preliminary screen to prevent waste of time considering a theory that violates
it. Similarly, a healthiness condition can be used to test a specification or design
for feasibility, and reject it if it makes implementation demonstrably impossible in
the target programming language.

18 The Challenge of Unification

All the healthiness conditions described above have the same general shape
P=P®X (xP=XOP)

where ® is an associative operator (e.g. N, U, ;) and X itself satisfies the same
healthiness condition

X=X0X

As a consequence of this idempotence principle for X, an arbitrary predicate P
can be made more healthy by application of the function

H(P)=¢ POX

Such a function is called a coercion, and it plays an important role in linking theo-
ries, which may be ranked according to the healthiness conditions that they satisfy.
At a level closer to specification they satisfy few; at a level close to the program
they satisfy all. Coercions are potentially helpful in making the transition between
the stages of a design project, to transform a design document from one level to
the next in the hierarchy.

Healthiness conditions are summarised in Appendix 3. They have an impor-
tant role in unification of theories of programming. They are used to differentiate
programming paradigms, to classify them in families, and to clarify the choices
that should be made by a programming language designer. The observance of
healthiness conditions is the main cause and motivation for complexity in the def-
initions of a programming theory, and their isolation for independent study is a
vital contribution to mastering this complexity.

0.7 Challenges that remain

Unifying theories of programming is an activity that has dominated the au-
thors’ research for over ten years. This book concentrates on those theories that
have been found most amenable to unification. The study is far from complete.
So far, it uses only the simplest methods to treat the most elementary aspects of
the basic programming paradigms. To complete the study will require the dedi-
cated cooperation of many theorists, exploring more deeply and far more widely
the topics in which they have specialist skills and interests. To bring the results of
the study to bear upon the practical problems of software engineering will require
long term investment from the builders and suppliers of design automation tools.
This section suggests a number of the important challenges that remain.

The first challenge is to extend the range of programming paradigms and fea-

0.7 Challenges that remain 19

tures defined and studied within the unifying network. The omissions of this book
include: the actor paradigm for parallel programming [8, 9], the process algebra
CCS [126], and all varieties of temporal logic [113, 118, 136, 152]. True concurrency
(146, 147, 148] and fairness [60, 144] have been unfairly neglected. The treatment
of time and object orientation [10, 41, 44, 73, 74, 84] is only cursory, and the prob-
abilistic paradigm [54] is altogether omitted. No attempt has been made to pursue
analogies with computer hardware design, which offers an excellent example of a
design hierarchy, ranging over transistor switching circuits, asynchronous circuits,
combinational logic, and clocked sequential circuits. A good test for a unifying
theory would be to formalise and validate all these interfaces. A more demanding
test is to integrate them with the underlying continuous universe at one end [61],
and the discrete world of programming at the other [62]. The results could be
beneficial to reliable design of hybrid systems, involving a mixture of hardware,
software and real-world components.

There are also many newer programming languages, practices and concepts
which have not yet been investigated by programming theory. These include lan-
guages designed for more specific tasks, such as the calculation and display of
spreadsheets, the control of graphical interfaces, the generation of menus, or the
maintenance and interrogation of large scale data bases. Many critical comput-
ing systems are already implemented in these languages, possibly in combination
with each other or with some general-purpose language. As in other branches of
engineering, it is such combination of technologies that can present the gravest
problems of design and maintenance. The responsible engineer needs to under-
stand the science which underlies each of the pure technologies, as well as that
which explains the possible interactions across their interfaces, because the inter-
faces provide a breeding ground for the most elusive, costly and persistent errors.
Avoidance of such errors may be a long term benefit from study of the common
theory which underlies all the technologies involved.

The level of exposition in this book is essentially introductory. Each new
feature and concept is treated in isolation and in the simplest possible approach,
ignoring many known complexities and perhaps some unknown ones as well. These
complexities will be discovered, studied and hopefully remedied by those who take
up the challenge of applying the theories in combination to complete programming
languages. ' Priority should be given to languages that are already supported by
recognised design methods and widely used support tools. Examples from hard-
ware are Verilog [141] and VHDL [163]. On the software side, similar support is
given by state charts for embedded systems, SDL [36, 37) for telecommunications,
and UML (Unified Modeling Language) [59] for general data processing.

The mathematical methods used in the book are taken from logic, algebra
and discrete mathematics. The only real novelty is that these branches of pure
mathematics have been turned into applied mathematics. This has been accompa-

20 The Challenge of Unification

nied by a shift in emphasis away from the pure functions that feature so strongly
in mathematical tradition. Their primary role has been taken over by the more
general concept of a relation. But for deeper investigation of programming the-
ory, mathematicians and computing scientists have developed a range of more
sophisticated techniques. Examples from this book include operational semantics,
bisimulation and predicate transformers. Further contributions to unifying theories
may be expected from the 7-calculus [127], from type theory [39, 166], and from
game-theoretic modelling [4]. Of particular promise are the classificatory concepts
of abstract algebra and category theory [22, 96, 116, 170).

The final and most critical challenge is to bring the contributions of the the-
ory of programming to the aid of programmers engaged in the almost impossible
task of reliable design, development and maintenance of computer systems. Such
aid is especially needed for very large programs, and for applications in which the
consequences of design error could be critical. But first, the methods recommended
by the theory should be widely tested on much smaller case studies. These should
still be large enough that it is realistic to formalise a specification at a higher level
of abstraction than the eventual implementation. The real benefit of a unifying
theory will be most appropriately tested if there is more than one stage of design,
or more than one implementation paradigm, selected as alternatives or even used in
combination. Such case studies are completely absent from this book. The largest
example program is about three lines. Fortunately, this does not detract from the
value of the theory, which is inherently scalable. Its results are expressed as for-
mulae with variables ranging over all programs, with no limit to their size. The
glory of all of mathematics is that its truths are independent of the magnitude and
accuracy of numbers, the dimensions of matrices, or the complexity of functions.

But when mathematics first finds application in industry, the problem of
scale cannot be ignored. With increasing complexity of case studies, and even
more in live application, the size of the programs, formulae and proofs are such
that computer assistance is needed to manage them. In hardware design, the use
of a range of design automation tools is now considered essential to the production
of ever more complex devices at ever shortening intervals, with ever increasing re-
quirement for accuracy. Software design is more complex and less generally well
understood, and the state of the art is well behind that of hardware. Nevertheless,
there are very promising developments. A good example is provided by symbolic
algebra systems (Maple [3], Mathematica [186]), which are routinely used for con-
tinuous mathematical symbol processing in science and engineering. In hardware
design, new and improved model-checkers (SPIN [94], FDR [159]) are capable of
detecting errors in high level algorithms well in advance of implementation. Term
rewriting systems (OBJ3 [67]) can reliably calculate the details of a transition from
one level of abstraction to another, or reliably optimise a design at a single level.
Decision procedures (PVS [143]) can check the validity of the individual steps of
a design at the time that they are taken. More difficult tasks can be delegated

0.7 Challenges that remain 21

to a proof search engine [56]. Increased hardware speeds and main store sizes are
reinforcing the benefits of improved algorithms for symbol manipulation, and the
rate of progress is not decreasing.

At present, the main available mechanised mathematical tools are program-
med for use in isolation, and many of them are targeted towards general use in
logical and mathematical proof. To extend them to meet the needs of software
engineering, it will be necessary to build within each tool a structured library of
programming design aids which take the advantage of the particular strengths of
that tool. To ensure that the tools may safely be used in combination, it is es-
sential that these theories be unified. In the long run, the tools also should be
unified. Only then will we overcome the main barrier to industrial acceptance of
both tools and theories: that there are too many of them and they all compete for
attention by individual claims of universal applicability, exclusive of all the others.
Achievement of a proper balance of healthy competition with eager cooperation of
specialist researchers and schools has always been necessary for progress in science,
and it has often been the result of unifying previously unconnected theories. Let
it be so for programming too.

	1.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	2.tif
	20.tif
	21.tif
	3.tif
	4.tif
	5.tif
	6.tif
	7.tif
	8.tif
	9.tif

