
Background Review

1 Propositional Logic Informally
Propositional logic is the core part of most logical formalisms (such as first-order and
higher-order logic). It also describes well digital circuits that are the basis of most
modern computing devices.

1.1 Importance of Propositional Logic
Many search problems can be encoded using propositional formulas

Checking equivalence of logical combinatorial circuits in hardware directly reduces
to SAT

Can encode integer arithmetic with fixed bitwidth (e.g. operations on 16-bit inte-
gers)

An important class of logics can be obtained by giving meaning to propositional
variables

1.2 Propositional Formulas
Propositional logic studies propositional formulas.

Propositional formulas are expressions built from
constants true and false
propositional variables, such as p, q, p1, q1,
logical operators (∧,∨,¬,→,↔) that combine propositional formulas into larger

propositional formulas (we define their meaning below)
Analogy with mathematical expressions: Just like a mathematical expression such

as 2 · x+ 3 · y specifies a binary function from values of x and y to the value 2x+ 3y,
a propositional formula such as p ∧ (¬q) specifies a function from the values of p and
q to the value p ∧ (¬q).

1.3 Definitions of Logical Operations (Logical Connectives)
We specify a binary logical operation by a truth table: for each combination of argu-
ments we indicate the result of the operation. For binary operation, the rows indicate
the first argument, the columns indicate the second argument.

1

1.3.1 Negation (logical ’not’)

p ¬p
false true
true false

1.3.2 Conjunction (logical ’and’)

∧ false true
false false false
true false true

1.3.3 Disjunction (logical ’or’)

∨ false true
false false true
true true true

1.3.4 Implication (’if’)

→ false true
false true true
true false true

Check validity of these implications:
(1 = 2) → (7 is an even number)
(1 = 1) → (7 is an even number)
(1 = 2) → (

√
2 is a rational number)

Logical Eqivalence (’if and only if’)

↔ false true
false true false
true false true

1.4 Evaluating Propositional Formulas
If we know values of variables in the formula, we can compute its value.

Let us evaluate formula

((p→ q) ∧ ((¬p)→ r))↔ ((p ∧ q) ∨ ((¬p) ∧ r))

for all values of its parameters. Let us draw formula as a tree. We introduce a
column for each tree node. We obtain the value of a tree node by looking at the value
of its children and applying the truth table for the operation in the node. The root gives
the truth value of the formula.

2

1.5 Validity, Satisfiability of Logical Formulas
Formula is valid if it evaluates to true for all values of its variables (all columns for
formula say true).

Formula is satisfiable if it evaluates to true for some values of its variables (true
appears in at least one column).

Formula is unsatisfiable if it evaluates to false for all values of its variables (all
columns for formula say false).

1.5.1 Observations

F is unsatisfiable if and only if F is not satisfiable
F is valid if and only if ¬F is unsatisfiable
SAT problem: given a propositional formula F , check whether F is satisfiable.
SAT is a well-known NP-complete problem.

1.6 Propositional Tautologies
Valid propositional formula is called propositional tautology, or tautology for short.
Tautologies are basic principles of logical reasoning. They are true regardless of how
complex the intended meaning of propositions is, as long as we are sure that each
proposition evaluates to true or false.

Here is a small list of tautologies.

(p→ q)↔ ((¬p) ∨ q)
(p↔ q)↔ ((p→ q) ∧ (q → p))
(p ∧ q)↔ (q ∧ p)
(p ∧ (q ∧ r))↔ ((p ∧ q) ∧ r))
(p ∨ q)↔ (q ∨ p)
(p ∨ (q ∨ r))↔ ((p ∨ q) ∨ r))
(p ∧ (q ∨ r))↔ ((p ∧ q) ∨ (p ∧ r))
(p ∨ (q ∧ r))↔ ((p ∨ q) ∧ (p ∨ r))
¬(¬p)↔ p
p ∨ (¬p)
¬(p ∧ q)↔ (¬p) ∨ (¬q)
¬(p ∨ q)↔ (¬p) ∧ (¬q)
(p→ (q → r))↔ ((p ∧ q)→ r)
(p→ (q ∧ r))↔ ((p→ q) ∧ (p→ r))
((p ∨ q)→ r)↔ ((p→ r) ∧ (q → r))
((p→ false)↔ (¬p)

Suggest another tautology.

2 Propositional Logic Syntax
Let V be a countable set of propositional variables, denoted by non-terminal V. The
context-free grammar of propositional logic formulas F is the following:

3

F ::= V | false | true | (F ∧ F) | (F ∨ F) | (¬F) | (F → F) | (F ↔ F)

We denote the set of all propositional formulas given by the above context-free
grammar by F . Each propositional formula is a finite sequence of symbols, given by
the above context-free grammar. The setF is a countable set: we can order all formulas
in this set in a sequence (for example, by writing them down in binary alphabet and
sorting the resulting strings alphabetically).

Omitting parentheses:
∧, ∨ associative
priorities, from strongest-binding: (¬) ; (∧,∨) ; (→,↔)
When in doubt, use parentheses.
Notation: when we write F1 ≡ F2 this means that F1 and F2 are identical formulas

(with identical syntax trees). For example, p ∧ q ≡ p ∧ q, but it is not the case that
p ∧ q ≡ q ∧ p.

In Isabelle theorem prover we use this
ASCII notation for Propositional Logic
Usually we work with syntax trees, as in Problem 3 in Homework 1.
FV denotes the set of free variables in the given propositional formula and can be

defined recursively as follows:

FV (p) = {p}, for p ∈ V
FV (¬F) = FV (F)
FV (F1 ∧ F2) = FV (F1) ∪ FV (F2)
FV (F1 ∨ F2) = FV (F1) ∪ FV (F2)
FV (F1 → F2) = FV (F1) ∪ FV (F2)
FV (F1 ↔ F2) = FV (F1) ∪ FV (F2)

If FV (F) = ∅, we call F a ground formula.

3 Propositional Logic Semantics
Let B = {true, false}.

Interpretation for propositional logic is a function I : V → B.
We next define evaluation function:

e : F → (I → B)

by recursion on formula syntax tree:
This definition follows one in the formula evaluator in homework01.
We denote e(F)(I) = true by

I |= F

and denote e(F)(I) = false by

I 6|= F

4

3.1 Validity and Satisfiability
Formula is valid iff ∀I.I |= F . We write this simply

|= F

Formula is satisfiable iff ∃I.I |= F
Formula is contradictory iff ∀I.I 6|= F

3.2 Satisfactory Of Sets Of Formulas
We next introduce sets of formulas as a way of talking about potentially infinite con-
junctions of formulas. We will need this when reducing reasoning in first-order logic
to reasoning in propositional logic.

We say that interpretation I is a model for a set of formulas S, written I |= S, iff for
each F ∈ S, I |= F . In other words, we view a set of formulas as a (potentially infinite)
conjunction; when S is finite then I |= S is the same condition as I |=

∧
F∈S F .

Example: the set {p1,¬p1 ∨ p2,¬p2 ∨ p3,¬p3 ∨ p4, . . .} is an infinite satisfiable
set. The example of one satisfying interpretation is the interpretation which evaluates
all variables to true.

Clearly, if I |= B and A ⊆ B, then also I |= A.
We say that a set of formulas S is satisfiable iff there exists an interpretation I such

that I |= S.

4 Normal Forms for Propositional Logic

4.1 Negation-Normal Form
In Negation-normal from, negations are only allowed on elementary proposition. More-
over, NNF formulas contain no implication, so the only binary operators are conjunc-
tions and disjunctions. The following rules can be used to turn arbitrary propositional
formulas into negation-normal form.

¬(p ∧ q)↔ (¬p) ∨ (¬q)
p↔ ¬(¬p)
(p→ q)↔ ((¬p) ∨ q)
¬(p ∨ q)↔ (¬p) ∧ (¬q)

Note that this transformation is linear in the size of the formula. No exponential
blow-up.

4.2 Disjunctive Normal Form
Formulas in Disjunctive-normal form look like this: (x1∧x2∧¬x3)∨(¬x1∧x3∧x4)∨...

More formally F =
∨n

i=1Di where n ≥ 0.
Each Di is a clause and is defined as Di =

∧ni

j=1 Lij .
Each Lij is a literal. It’s either an elementary proposition or its negation.

5

Solving the SAT problem for DNF formulas is in P, but transforming an arbitrary
propositional formula to DNF causes an exponential blow-up.

DNF formulas can be easily generated from truth tables. Each row of the truth table
that makes the formula true can be written as a clause. Here is an example:

x1 x2 F
0 0 0
1 0 1
0 1 1
1 1 0

The corresponding formula in DNF is (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)
For a formula over n variables, there are 2n rows in the truth table. Over n vari-

ables, there are 22
n

different (i.e. non-equivalent) formulas.

4.3 Conjunctive Normal Form
Formulas in Conjunctive-normal form look like this: (x1 ∨ x2 ∨ ∨x3) ∧ (¬x1 ∨ x3 ∨
x4) ∧ ...

It’s defined as F =
∧n

i=1

∨ni

j=1 Lij

Like for DNF, Lij are elementary propositions or their negation. The terminology
of clauses and literals also applies to CNF.

There is no polynomial-time equivalence preserving transformation to CNF or to
DNF.

4.4 Complete Sets of Connectives
If we can express every formula. Examples:
{∧,∨,¬} because every formula has DNF (or CNF)

{∧,¬}

{∨,¬}

{→, false}

{∧̄}

{∨̄}

6

4.5 Circuits
Formulas can be represented as abstract syntax tree (AST) where each node is labeled
with an operator that applies to the sub-tree(s). If two sub-trees are identical, instead of
duplicating the sub-tree in each place where its used, one can make all the references
to this sub-tree point to a unique representation of it. This is called a circuit.

The if-then-else primitive, written ite(p, q, r), that yields q whenever p is true and
r otherwise, can be encoded with the following propositional logic formula: (p ∧ q) ∨
(¬p ∧ r)

For each node of an AST, it is possible to replace it with a fresh variable, provided
that a clause is added that makes sure that the fresh variable and the sub-tree it rep-
resents are equivalent. Note that this transformation preserve equisatisfiability but not
equivalence, because it introduces new variables.

4.6 Satisfiability-Preserving Transformation
There exists a linear transformation from arbitrary formulas to CNF preserving equi-
satisfiability. The main idea is to use fresh variables as described above. For each
node of the AST, a representative (i.e. a fresh variable) will be introduced. We need
to add clauses to ensure that a sub-formula and its representative are equivalent. To
avoid exponential blow-up, we will not use the sub-formulas’ children directly, but
their representative when expressing this constraint.

The key transformation steps are:

F (pi ↔ (q ∧ r)) ∧ subst({q ∧ r 7→ pi}, F)
F (pi ↔ (q ∨ r)) ∧ subst({q ∨ r 7→ pi}, F)
F (pi ↔ (¬q)) ∧ subst({(¬q) 7→ pi}, F)

Each equivalence between a representative and the ones from the sub-formulas has
to be flatten to conjunctive-normal form. This can be done by splitting the equivalences
into two implications. Example:

p↔ q1 ∧ q2 becomes (¬p ∨ q1) ∧ (¬p ∨ q2) ∧ (¬q1 ∨ ¬q2 ∨ p)

5 Predicate Logic Informally

5.1 First Order Logic
First-order logic is a very powerful notation that extends propositional logic. Here we
give only an informal overview of first-order logic, which should be enough for you to
understand the meaning of first-order logic formulas based on mathematics and natural
language. In future lectures we study first-order logic as a formal system and discuss
algorithmic questions in more detail.

On top of propositional operations, first-order logic adds:

1. constructs to represent the structure of propositions:

(a) equality (=)

7

(b) predicate symbols (P , Q,)

(c) function symbols (f , g,)

(d) first-order variables (x, y,) denoting entities in some domain D

2. quantifiers forall (∀), exists (∃)

5.2 Uses of first-order logic
1. precisely describe arbitrary mathematical statements (theorems, conjectures, prop-

erties)

2. specify program properties

3. represent the meaning of programs

4. represent knowledge about the world (e.g. knowledge bases, semantic web)

5.2.1 Examples

1. An ancestor of my ancestor is also my ancestor: ∀x.∀y. ((ancestor(x, I) ∧
ancestor(y, x))→ ancestor(y, I))

2. Grandparent is the parent of a parent: ∀x.∀y. (grandparent(x, y)↔ (∃z.parent(x, z)∧
parent(z, y)))

3. Property P holds for infinitely many natural numbers: ∀n.∃m. m > n ∧ P (m)

4. f is continuous in point x0: ∀ε > 0.∃δ > 0.∀x. |x−x0| < δ → |f(x)−f(x0)| <
ε

5. first k array elements are strictly positive, remaining elements are zero: ∀i.((0 ≤
i ∧ i < k → a(i) > 0) ∧ ((k ≤ i ∧ i < N)→ a(i) = 0)

5.3 First-Order Logic Formulas
We build first-order logic formulas by starting from atomic formulas (defined below)
and applying propositional operators and quantifiers:

1. atomic formulas are first-order logic formulas

2. if P and Q are first-order formulas, so are ¬P , P ∧Q, P ∨Q, P → Q, P ↔ Q

3. if P is a first-order formula, so is ∀x.P and ∃x.P

For a given value of variables, each formula evaluates to true or false. The rules for
propositional operators are exactly as in propositional logic. Quantifiers can be seen
as a way of generalizing conjunction and disjunction. First-order variables range over
some domain D. In the special case of finite domain D = {d1, . . . , dk}, we have that

(∀x.P (x)) ↔ P (d1) ∧ . . . ∧ P (dk)
(∃x.P (x)) ↔ P (d1) ∨ . . . ∨ P (d2)

8

which corresponds to the intuitive definition of terms for all and there exists. Note,
however, that D can be infinite in general (for example: the set of integers or reals).

Atomic formulas evaluate to true or false. We build atomic formulas by applying
predicate symbols and equality to terms:

1. if t1 and t2 are terms, then t1 = t2 is an atomic formula;

2. if t1, , tn are terms and P is a predicate symbol that takes n arguments, then
P (t1, . . . , tn) is an atomic formula.

Predicates represent relations, for example, we can represent≤ as a binary relation.
Terms denote elements of the domain D. We build them starting from variables

and constants and applying function symbols:

1. each first-order variable is a term

2. a constant is a term

3. if t1, . . . , tn are terms and f is a function symbol that takes n arguments, then
f(t1, . . . , tn) is also a term.

Example of constants are numerals for natural numbers, such as 0, 1, 2, Exam-
ples of function symbols are operations such as +,−, /.

From above we see that the set of formulas depends on the set of predicate and
function symbols. This set is is called vocabulary or language.

5.4 Bounded Quantifiers
In general all quantifiers range over some universal domain D. To restrict them to
subsets of D, we can use bounded quantifiers:

1. ∃x ∈ S.P (x) means ∃x.(x ∈ S ∧ P (x))

2. ∀x ∈ S.P (x) means ∀x.(x ∈ S → P (x)) (note implication instead of conjunc-
tion)

More generally, if ρ is some binary relation written in infix form, such as <,≤, >
,≥ we write

1. ∃x ρ t.P (x) meaning ∃x.(x ρ t ∧ P (x))

2. ∀x ρ t.P (x) means ∀x.(x ρ t→ P (x)) (note implication instead of conjunction)

5.5 Evaluating First-Order Logic Formulas
To evaluate first-order logic formulas we need to know:

1. the domain set D

2. values of first-order variables in the formula

3. interpretation of predicate symbols and function symbols (e.g. does predicate
symbol R denote ≤ or < or >, does binary function symbol f denote + or −)

9

5.5.1 Examples

Consider formula F given by ∀x.(P (x) ∨ P (f(x)). The formula has one predicate
symbol P that takes one urgument (we call it unary) and one unary function symbol f .
Assume that the domain D is the set of integers and consider two possible interpreta-
tions:

1. P denotes property of being an even integer and f denotes the successor function
f(x) = x+ 1. Is formula true under this interpretation?

2. P denotes property of being an even integer and f denotes the squaring function
f(x) = x2. Is formula true under this interpretation?

Now consider formula ∀x.∀y.((P (x)∧x = f(y))→ P (f(y)) in each of these two
interpretations.

5.6 (Finite) Validity and Satisfiability of First-Order Logic Formu-
las

Formula is valid if and only if it evaluates to true for all domains, values of its variables
and interpretations of predicate and function symbols.

Formula is satisfiable if and only if it evaluates to true for some domains, values of
its variables, interpretation of predicate and function symbols.

Formula is unsatisfiable if and only if it is false for all domains, values of its vari-
ables and interpretations of predicate and function symbols.

Note

1. a formula F is unsatisfiable if and only if it is not satisfiable

2. a formula F is valid if and only if ¬F is unsatisfiable

Answers to some important algorithmic questions (not immediate):

1. There is no algorithm that given a first-order logic formula outputs yes when
the formula is valid and no otherwise - validity of first-order logic formulas is
undecidable

2. There exists an enumeration procedure that systematically lists all valid formulas
(and only valid formulas) - validity of first-order logic formulas is enumerable

If instead of considering all domains we only consider finite domains (no natural
numbers but only e.g. prefixes of natural numbers of the form {1, . . . , n}) then we
obtain notions of finite validity, finite satisfiability and finite unsatisfiability.

Note that because finite domains are a special case of possible domains, we have
the following:

1. if a formula is finitely satisfiable, then it is satisfiable

2. if a formula is valid, then it is also finitely valid

10

Answers to some important algorithmic questions about finite satisfiability:

1. There is no algorithm that given a first-order logic formula outputs yes when the
formula is satisfiable and no otherwise - finite satisfiability of first-order logic
formulas is undecidable

2. There exists an enumeration procedure that systematically lists all finitely sat-
isfiable formulas (and only finitely satisfiable formulas) - finite satisfiability of
first-order logic formulas is enumerable

5.7 Some Valid First-Order Logic Formulas
If we take a propositional tautology and replace equal propositional variables with
equal atomic formulas, we obtain a valid formula. Such formula is called an instance
of a tautology.

But there are many other valid formulas. Such formulas are valid laws of thinking
that we often use in mathematics (explicitly, or implicitly without mentioning them).

(∀x.(P (x) ∧Q(x))↔ ((∀x.P (x)) ∧ (∀x.Q(x)))
(∃x.(P (x) ∧Q(x))→ ((∃x.P (x)) ∧ (∃x.Q(x)))
(∃x.(P (x) ∨Q(x))↔ ((∃x.P (x)) ∨ (∃x.Q(x)))
((∀x.P (x)) ∨ (∀x.Q(x)))→ (∀x.(P (x) ∨Q(x))
(∃x.∀y.R(x, y))→ (∀y.∃x.R(x, y))
(¬(∃x.P (x)))↔ (∀x.(¬P (x))
(¬(∀x.P (x)))↔ (∃x.(¬P (x))
(¬(∃xρt.P (x)))↔ (∀xρt.(¬P (x))
(¬(∀xρt.P (x)))↔ (∃xρt.(¬P (x))
(∀x.(x = t→ F (x)))↔ F (t)
(∃x.(x = t ∧ F (x)))↔ F (t)

6 First-Order Logic Syntax
First order language L is a set of relation symbols R and function symbols f , each of
which comes with arity ar(R), ar(f), which are ≥ 0. Function symbols of arity 0 are
constants. Relation symbols of arity 0 are propositional variables.

The set V denotes countably infinite set of first-order variables, which is indepen-
dent of the language.

F ::= A | ¬F | (F ∧ F) | (F ∨ F) | (F → F) | (F ↔ F)
| ∀x.F | ∃x.F

A ::= R(T, . . . , T) | (T = T)
T ::= V | f(T, . . . , T)

Terminology summary:

1. F - first-order logic formula (in language L)

2. A - atomic formula

11

3. A,¬A - literals

4. T - term

5. f - function symbol

6. R - relation symbol

7. V - first-order variables

Omitting parentheses:

1. ∧, ∨ are associative

2. priorities, from strongest-binding: (¬) ; (∧,∨) ; (→,↔) ; (∀,∃)
When in doubt, use parentheses.
Example: Consider language L = {P,Q,R, f} with ar(P) = 1, ar(Q) = 1,

ar(R) = 2, ar(f) = 2. Then

¬∀x. ∀y.R(x, y) ∧Q(x)→ Q(f(y, x)) ∨ P (x)

denotes

¬(∀x. (∀y.((R(x, y) ∧Q(x))→ (Q(f(y, x)) ∨ P (x)))))

Often we use infix notation for relation and function symbols. In the example
above, if we write R and f in infix notation, the formula becomes

¬∀x.∀y.xR y ∧Q(x)→ Q(y f x) ∨ P (x)

Notation: when we write F1 ≡ F2 this means that F1 and F2 are identical formulas
(with identical syntax trees). For example, p ∧ q ≡ p ∧ q, but it is not the case that
p ∧ q ≡ q ∧ p.

In Isabelle theorem prover we use this
ASCII notation for First-Order Logic
Usually we treat formulas as syntax trees and not strings.
FV denotes the set of free variables in the given propositional formula and can be

defined recursively as follows:

FV (x) = {x}, for x ∈ V
FV (f(t1, . . . , tn)) = F (t1) ∪ . . . ∪ F (tn)
FV (R(t1, . . . , tn)) = F (t1) ∪ . . . ∪ F (tn)

FV (t1 = t2) = F (t1) ∪ F (t2)
FV (¬F) = FV (F)

FV (F1 ∧ F2) = FV (F1) ∪ FV (F2)
FV (F1 ∨ F2) = FV (F1) ∪ FV (F2)
FV (F1 → F2) = FV (F1) ∪ FV (F2)
FV (F1 ↔ F2) = FV (F1) ∪ FV (F2)

FV (∀x.F) = FV (F) \ {x}
FV (∃x.F) = FV (F) \ {x}

If FV (F) = ∅, we call F a closed first-order logic formula, or sentence.

12

7 First-Order Logic Semantics
An interpretation for first-order logic language L is the pair I = (D,α) where D is a
nonempty set, called the domain of interpretation, and α is the interpretation function,
which assigns

1. to each first-order variable x ∈ V , an element α(x) ∈ D

2. to each relation symbol R ∈ L with arity ar(R) = n, a relation α(R) ⊆ Dn

3. to each function symbol f ∈ Lwith arity ar(f) = n, a function α(f) : Dn → D

If I = (D,α) we denote D by DI and α by αI .
Because terms denote values from domain DI and formulas denote truth values

from B = {false, true}, we define two semantic evaluation functions:

1. eF : F → I → B

2. eT : T → I → DI

We evaluate terms by recursion on the structure of T :

eT (x)(I) = αI(x)
eT (f(t1, . . . , tn))(I) = αI(f)(eT (t1)(I), . . . , eT (t2)(I))

We evaluate formulas by recursion on the structure of F :

eF (R(t1, . . . , tn)(I) = (eT (t1)(I), . . . , eT (tn)(I)) ∈ αI(R)
eF (t1 = t2)(I) = (eT (t1)(I) = eT (t2)(I))
eF (F1 ∧ F2)(I) = eF (F1)(I) ∧ eF (F2)(I)
eF (F1 ∨ F2)(I) = eF (F1)(I) ∨ eF (F2)(I)

eF (¬F)(I) = ¬eF (F)(I)

How do we evaluate quantifiers?
We generalize this notion as follows: if I is an interpretation and T is a set of first-

order formulas, we write eS(T)(I) = true iff for every F ∈ T we have eF (F)(I) =
true (set is treated as infinite conjunction). This is a generalization because eS({F})(I) =
eF (F)(I).

A terminological note: in algebra, an interpretation is often called a structure. In-
stead of using α mapping language L = {f1, . . . , fn, R1, . . . , Rm} to interpretation of
its symbols, the structure is denoted by a tuple (D,α(f1), . . . , α(fn), α(R1), . . . , α(Rn)).
For example, an interpretation with domain N , with one binary operation whose in-
terpretation is + and one binary relation whose interpretation is ≤ can be written as
(N ,+,≤). This way we avoid writing α all the time, but it becomes more cumber-
some to describe correspondence between structures.

13

7.1 Examples
7.1.1 Example with Finite Domain

Consider language L = {s,<} where s is a unary function symbol (ar(s) = 1) and <
is a binary relation symbol (ar(<) = 2). Let I = (D,α) be given by

D = {0, 1, 2}
α(x) = 1
α(s) = {(0, 1), (1, 2), (2, 0)}
α(<) = {(0, 1), (0, 2), (1, 2)}

Let us evaluate the truth value of these formulas:

x < s(x)

∃x.¬(x < s(x))

∀x.∃y.x < y

7.1.2 Example with Infinite Domain

Consider language L = {s, dvd} where s is a unary function symbol (ar(s) = 1)
and dvd is a binary relation symbol (ar(dvd) = 2). Let I = (D,α) where D =
{7, 8, 9, 10, . . .}. Let dvd be defined as the strictly divides relation:

α(dvd) = {(i, j). ∃k ∈ {2, 3, 4, . . .}. j = k · i}

What is the truth value of this formula

∀x. ∃y. dvd(x, y)

What is the truth value of this formula

∃x.∀y.dvd(x, y)

7.1.3 Domain Non-Emptiness

Let I = (D,α) be an arbitrary interpretation. Consider formula

(∀x.P (x))→ (∃y.P (y))

What is its truth value in I? Which condition on definition of I did we use?
This formula is true with the assumption that D is not empty.
With an empty domain, this formula would be false. There are other problems, for

instance how to evaluate a variable?.

14

7.2 Satisfiability, Validity, and Semantic Consequence
Definition (satisfiability of set): If T is a set of formulas, a model of T is an interpre-
tation such that eS(T). A set T of first-order formulas is satisfiable if there exists a
model for T . A set T is unsatisfiable (contradictory) iff it is not satisfiable (it has no
model).

Note: taking T = {F} we obtain notion of satisfiability for formulas.
Definition (semantic consequence): We say that a set of formulas T2 is a semantic

consequence of a set of formulas T1 and write T1 |= T2, iff every model of T1 is also a
model of T2.

Definition: Formula is valid, denoted |= F iff ∅ |= F .
Lemma: |= F iff for every interpretation I we have eF (F)(I).
Lemma: A set T of formulas is unsatisfiable iff T |= false .
Lemma: Let T be a set of formulas and G a formula. Then T |= {G} iff the set

T ∪ {¬G} is contradictory.
One of the central questions is the study of whether a set of formulas is contradic-

tory, many basic questions reduce to this problem.

7.3 Consequence Set
Definition: The set of all consequences of T :

Conseq(T) = {F | T |= F}

Note T |= F is equivalent to F ∈ Conseq(T).
Lemma: The following properties hold:

T ⊆ Conseq(T)
T1 ⊆ T2 → Conseq(T1) ⊆ Conseq(T2)

Conseq(Conseq(T)) = Conseq(T)
T1 ⊆ Conseq(T2) ∧ T2 ⊆ Conseq(T1) → Conseq(T1) = Conseq(T2)

8 Normal Forms for First-Order Logic
Example Formula
We will look at the language L = {P,R, a, f} where

1. P is relation symbol of arity one

2. R is relation symbol of arity two

3. a is a constant

4. f is a function symbol of two arguments

15

Consider this formula in L:

(∀x.∃y. R(x, y)) ∧
(∀x.∀y. R(x, y)→ ∀z. R(x, f(y, z))) ∧
(∀x. P (x) ∨ P (f(x, a)))
→ ∀x.∃y. R(x, y) ∧ P (y)

We are interested in checking the validity of this formula (is it true in all interpre-
tations). We will check the satisfiability of the negation of this formula (does it have a
model):

¬
((

(∀x.∃y. R(x, y)) ∧

(∀x.∀y. R(x, y)→ ∀z. R(x, f(y, z))) ∧
(∀x. P (x) ∨ P (f(x, a)))

)
→ ∀x.∃y. R(x, y) ∧ P (y)

)
We will first consider a range of techniques that allow us to convert such formula

to simpler normal forms.

8.1 Negation Normal Form
In negation normal form of formula the negation applies only to atomic formulas.

Every FOL formula can be transformed in NNF using the formulas used for the
same purpose in PL extended by two new ones :

1. ¬¬F ⇔ F

2. ¬⊥ ⇔ >

3. ¬> ⇔ ⊥

4. ¬(F1 ∧ F2)⇔ ¬F1 ∨ ¬F2

5. ¬(F1 ∨ F2)⇔ ¬F1 ∧ ¬F2

6. F1→ F2⇔ ¬F1 ∨ F2

7. F1↔ F2⇔ (F1→ F2) ∧ (F2→ F1)

8. ¬∀x.F [x]⇔ ∃x.¬F [x]

9. ¬∃x.F [x]⇔ ∀x.¬F [x]

8.1.1 NNF of Example

(∀x.∃y. R(x, y)) ∧
(∃x.∃y. ¬R(x, y) ∨ ∀z. R(x, f(y, z))) ∧
(∀x. P (x) ∨ P (f(x, a))) ∧
(∃x.∀y. ¬R(x, y) ∨ ¬P (y))

16

8.2 Prenex Normal Form
Prenex normal form has all quantifiers in front.

Prenex normal form (PNF) is a formula of the form

Q1x1.Q2x2. . . . Qnxn.G

where Qi ∈ {∀,∃} and G has no quantifiers.
Any FOL formula can be transformed to PNF. First convert it to NNF, then if several

quantified variables or free variables have the same name rename them to fresh names,
and finaly use the following formulas :

1. (∀x.F) ∨G⇔ ∀x.(F ∨G)

2. (∀x.F) ∧G⇔ ∀x.(F ∧G)

3. (∃x.F) ∨G⇔ ∃x.(F ∨G)

4. (∃x.F) ∧G⇔ ∃x.(F ∧G)

8.2.1 PNF of Example

(∀x1.∃y1. R(x1, y1)) ∧
(∃x2.∃y2. ∀z. ¬R(x2, y2) ∨R(x2, f(y2, z))) ∧
(∀x3. P (x3) ∨ P (f(x3, a))) ∧
(∃x4.∀y4. ¬R(x4, y4) ∨ ¬P (y4))

8.3 Skolem Normal Form
Let P : D ×D → {true, false} be a predicate with two arguments.

Note that
∃x.∀y.P (y, x)→ ∀u.∃v.P (u, v)

but converse implication does not hold (take as P relation≤ or > on natural numbers).
In general, we have this theorem:

∀u.∃v.P (u, v)↔ ∃g.∀u.P (u, g(u))

where g : D → D is a function.
Proof: (←): For each u we take f(u) as the witness v.
(→): We know there exists a witness v for each u. We define f to map u to one such

witness v. (To prove that this is possible requires axiom of choice from set theory.)
Note also that satisfiability of formula F expresses existential quantification over

function symbols and relation symbols.
Definition: Skolemization is the result of applying this transformation

∀x1, . . . , xn.∃y.F ∀x1, . . . , xn.subst({y 7→ g(x1, . . . , xn)})(F)

to the entire PNF formula to eliminate all existential quantifiers. Above, g is a fresh
function symbol. Denote snf(F) the result of applying skolemization to formula F .

Lemma: A set of formulas S in prenex normal form is satisfiable iff the set {snf(F) |
F ∈ S} is satisfiable.

17

8.3.1 SNF for Example

(∀x.R(x, g(x))) ∧
(∀x.∀y.∀z. ¬R(x, y) ∨R(x, f(y, z))) ∧
(∀x. P (x) ∨ P (f(x, a))) ∧
(∀y. ¬R(c, y) ∨ ¬P (y))

Note: it is better to do PNF and SNF for each conjunct independently.

8.4 CNF and Sets of Clauses
Let snf(F) be ∀x1, . . . , xn.F . Convert F to conjunctive normal form C1 ∧ . . .∧Cm.
Then snf(F) is equivalent to

(∀x1, . . . , xn.C1) ∧ . . . ∧ (∀x1, . . . , xn.Cm)

where each Ci is a disjunction of first-order literals. We call Ci (first-order) clause.
For a given formula F , denote the set of such clauses in conjunctive normal form of
snf(pnf(F)) by clauses(F).

We omit universal quantifiers because all variables are universally quantified. We
use a convention to denote variables by x, y, z, . . . and constants by a, b, c,

Theorem: The set S is satisfiable iff the set⋃
F∈S

clauses(F)

is satisfiable.

8.4.1 Clauses for Example

1. C1 = R(x, g(x))

2. C2 = ¬R(x, y) ∨R(x, f(y, z)))

3. C3 = P (x) ∨ P (f(x, a))

4. C4 = ¬R(c, y) ∨ ¬P (y)

8.4.2 Another Example: Irreflexive Dense Linear Orders

Let L = {less} be binary relation (strictly less). We consider the following axioms for
irreflexive partial order that is total and dense:

IRef ≡ ∀x. ¬less(x, x)
Tra ≡ ∀x. ∀y. ∀z. less(x, y) ∧ less(y, z)→ less(x, z)

Total ≡ ∀x.∀y. x 6= y → less(x, y) ∨ less(y, x)
Dense ≡ ∀x.∀y. less(x, y)→ ∃z. less(x, z) ∧ less(z, y)

18

Let us find clauses for these axioms :

¬less(x1, x1)
¬less(x2, y2) ∨ ¬less(y2, z2) ∨ less(x2, z2)
¬(x3 6= y3) ∨ less(x3, y3) ∨ less(y3, x3)
¬less(x4, y4) ∨ less(x4, f(x4, y4))
¬less(x4, y4) ∨ less(f(x4, y4), y4)

9 Semantic Argument Method
Suppose we want to prove the validity of a propositional logic formula F . Several
methods to do this exists, one of which is called the semantic argument method.

We start the proof by assuming that a falsifying interpretation exists:

I 6|= F

and try to show that this leads to a contradiction by applying semantic definitions
of the logical connectives.

Thus, we obtain a set of proof rules:

I |= ¬F
I 6|= F

and
I 6|= ¬F
I |= F

I |= F ∧G
I |= F
I |= G

and
I 6|= F ∧G

I 6|= F | I 6|= G

I |= F ∨G
I |= F | I |= G

and
I 6|= F ∨G
I 6|= F and
I 6|= G

I |= F → G

I 6|= F | I |= G
and

I 6|= F → G

I |= F I 6|= G

I |= F ↔ G

I |= F ∧G | I 6|= F ∨G
and

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧G

I |= F
I 6|= F

I |= ⊥

9.1 Extension to First-order logic
The proof rules above apply in addition to the following proof rules for the quantifiers:

I |= ∀x.F
I C {x 7→ v} |= F

for any v in the domain of the interpretation.

19

I 6|= ∃x.F
I C {x 7→ v} 6|= F

for any v in the domain of the interpretation.

I |= ∃x.F
I C {x 7→ v} |= F

for a fresh v in the domain of the interpretation.

I 6|= ∀x.F
I C {x 7→ v} 6|= F

for a fresh v in the domain of the interpretation.

10 Sets and Relations

10.1 Sets
Sets are unordered collection of elements.

We denote a finite set containing only elements a, b and c by {a, b, c}. The order
and number of occurrences does not matter: {a, b, c} = {c, a, b} = {a, b, b, c}.

1. a ∈ {a, b, c}

2. d /∈ {a, b, c} iff d 6= a ∧ d 6= b ∧ d 6= c

Empty set: ∅. For every x we have x /∈ ∅.
To denote large or infinite sets we can use set comprehensions: {x. P (x)} is set of

all objects with property P .

y ∈ {x.P (x)} ↔ P (y)

Notation for set comprehension: {f(x)|x.P (x)} = {y.(∃x.y = f(x) ∧ P (x))}
Sometimes the binder x can be inferred from context so we write simply {f(x)|P (x)}.

In general there is ambiguity in which variables are bound. (Example: what does the a
in f(a, b) refer to in the expression:

{a} ∪ {f(a, b) | P (a, b)}

does it refer to the outerone a as in {a} or is it a newly bound variable? The notation
with dot and bar resolves this ambiguity.

Subset: A ⊆ B means ∀x.x ∈ A→ x ∈ B

A ∪B = {x.x ∈ A ∨ x ∈ B}

A ∩B = {x.x ∈ A ∧ x ∈ B}

A \B = {x.x ∈ A ∧ x /∈ B}

Boolean algebra of subsets of some set U (we define Ac = U \A):

20

1. ∪,∩ are associative, commutative, idempotent

2. neutral and zero elements: A ∪ ∅ = A, A ∩ ∅ = ∅

3. absorption: A ∪A = A, A ∩A = A

4. deMorgan laws: (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc

5. complement as partition of universal set: A ∩Ac = ∅, A ∪Ac = U

6. double complement: (Ac)c = A

Which axioms are sufficient?

10.2 Infinte Unions and Intersections
Note that sets can be nested. Consider, for example, the following set S

S = {{p, {q, r}}, r}

This set has two elements. The first element is another set. We have {p, {q, r}} ∈ S.
Note that it is not the case that

Suppose that we have a set B that contains other sets. We define union of the sets
contained in B as follows:⋃

B = {x. ∃a.a ∈ B ∧ x ∈ a}

As a special case, we have ⋃
{a1, a2, a3} = a1 ∪ a2 ∪ a3

Often the elements of the set B are computed by a set comprehension of the form
B = {f(i). i ∈ J}. We then write ⋃

i∈J
f(i)

and the meaning is ⋃
{f(i). i ∈ J}

Therefore, x ∈
⋃
{f(i). i ∈ J} is equivalent to ∃i. i ∈ J ∧ x ∈ f(i).

We analogously define intersection of elements in the set:⋂
B = {x.∀a.a ∈ B → x ∈ a}

As a special case, we have ⋂
{a1, a2, a3} = a1 ∩ a2 ∩ a3

21

We similarly define intersection of an infinite family⋂
i∈J

f(i)

and the meaning is ⋂
{f(i). i ∈ J}

Therefore, x ∈
⋂
{f(i). i ∈ J} is equivalent to ∀i. i ∈ J → x ∈ f(i).

10.3 Relations
Pairs:

(a, b) = (u, v) ⇐⇒ (a = u ∧ b = v)

Cartesian product:
A×B = {(x, y) | x ∈ A ∧ y ∈ B}

Relations r is simply a subset of A×B, that is r ⊆ A×B.
Note:

A× (B ∩ C) = (A×B) ∩ (A× C)

A× (B ∪ C) = (A×B) ∪ (A× C)

10.3.1 Diagonal relation

∆A ⊆ A×A, is given by
∆A = {(x, x) | x ∈ A}

10.4 Set operations
Relations are sets of pairs, so operations ∩,∪, \ apply.

10.5 Relation Inverse
r−1 = {(y, x) | (x, y) ∈ r}

10.6 Relation Composition
r1 ◦ r2 = {(x, z) | ∃y.(x, y) ∈ r1 ∧ (y, z) ∈ r2}

Note: relations on a set A together with relation composition and ∆A form a
monoid structure:

r1 ◦ (r2 ◦ r3) = (r1 ◦ r2) ◦ r3
r ◦∆A = r = ∆A ◦ r

Moreover,
∅ ◦ r = ∅ = r ◦ ∅

r1 ⊆ r2 → r1 ◦ s ⊆ r2 ◦ s
r1 ⊆ r2 → s ◦ r1 ⊆ s ◦ r2

22

10.7 Relation Image
When S ⊆ A and r ⊆ A×A we define image of a set S under relation A as

S • r = {y. ∃x.x ∈ S ∧ (x, y) ∈ r}

10.8 Transitive Closure
Iterated composition let r ⊆ A×A.

r0 = ∆A

rn+1 = r ◦ rn

So, rn is n-fold composition of relation with itself.
Transitive closure:

r∗ =
⋃
n≥0

rn

Equivalent statement: r∗ is equal to the least relation s (with respect to ⊆) that
satisfies

∆A ∪ (s ◦ r) ⊆ s

or, equivalently, the least relation s (with respect to ⊆) that satisfies

∆A ∪ (r ◦ s) ⊆ s

or, equivalently, the least relation s (with respect to ⊆) that satisfies

∆A ∪ r ∪ (s ◦ s) ⊆ s

10.9 Some Laws in Algebra of Relations
(r1 ◦ r2)−1 = r−12 ◦ r

−1
1

r1 ◦ (r2 ∪ r3) = (r1 ◦ r2) ∪ (r1 ◦ r3)

(r−1)∗ = (r∗)−1

Binary relation r ⊆ A×A can be represented as a directed graph (A, r) with nodes
A and edges r

Graphical representation of r−1, r∗, and (r ∪ r−1)∗ Equivalence relation r is rela-
tion with these properties:

1. reflexive: ∆A ⊆ r

2. symmetric: r−1 ⊆ r

3. transitive: r ◦ r ⊆ r

Equivalence classes are defined by

x/r = {y | (x, y) ∈ r

The set {x/r | x ∈ A} is a partition:

23

1. each set non-empty

2. sets are disjoint

3. their union is A

Conversely: each collection of sets P that is a partition defines equivalence class by

r = {(x, y) | ∃c ∈ P.x ∈ c ∧ y ∈ c}

Congruence: equivalence that agrees with some set of operations.
Partial orders:

1. reflexive

2. antisymmetric: r ∩ r−1 ⊆ ∆A

3. transitive

10.10 Functions
Example: an example function f : A→ B for A = {a, b, c}, B = {1, 2, 3} is

f = {(a, 3), (b, 2), (c, 3)}

Definition of function, injectivity, surjectivity.
2B = {A | A ⊆ B}
(A → B) = BA - the set of all functions from A to B. For |B| > 2 it is a strictly

bigger set than B.
(A→ B → C) = (A→ (B → C)) (think of exponentiation on numbers)
Note that A → B → C is isomorphic to A × B → C, they are two ways of

representing functions with two arguments. (CB)A = CB×A

There is also isomorphism between

1. n-tuples (x1, . . . , xn) ∈ An and

2. functions f : {1, . . . , n} → A, where f = {(1, x1), . . . , (n, xn)}

10.10.1 Function update

Function update operator takes a function f : A→ B and two values a0 ∈ A, b0 ∈ B
and creates a new function f [a0 7→ b0] that behaves like f in all points except at a0,
where it has value b0. Formally,

f [a0 7→ b0](x) =

{
b0, if x = a0
f(x), if x 6= a0

}

24

10.10.2 Domain and Range of Relations and Functions

For relation r ⊆ A×B we define domain and range of r:

dom(r) = {x. ∃y.(x, y) ∈ r}

ran(r) = {y. ∃x.(x, y) ∈ r}

Clearly, dom(r) ⊆ A and ran(r) ⊆ B.

10.10.3 Partial Function

Notation: ∃≤1x.P (x) means ∀x.∀y.(P (x) ∧ P (y))→ x = y.
Partial function f : A ↪→ B is relation f ⊆ A×B such that

∀x ∈ A.∃≤1y. (x, y) ∈ f

Generalization of function update is override of partial functions, f ⊕ g

10.10.4 Range, Image, and Composition

The following properties follow from the definitions:

(S • r1) • r2 = S • (r1 ◦ r2)

S • r = ran(∆S ◦ r)

25

