
Quiz Solutions Outline
Synthesis, Analysis, and Verification 2015

for the quiz given on Wednesday, April 22nd, 2015

PLEASE SIGN AND PRINT YOUR NAME ABOVE

This exam has 5 questions.
When handing in, please hand in the sheets with questions as well as any additional sheets with solutions.

Problem 1: Relations ([14 points])

Task a) (4 points)
Not true. Consider A = {a, b, c, d}, r = {(a, b), (b, c)}, and s = {(c, d)}. Then clearly (a, d) ∈ (r∪s)∗.
On the other hand, we can compute each elements of the right-hand side. We have

r∗ = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (b, c), (c, a)}

and
s∗ = {(a, a), (b, b), (c, c), (d, d), (c, d), (d, c)}

Then we have (r ◦ s) = {(c, d)}, and (s ◦ r) = ∅. None of them nor their transitive closure contains
(a, d).

Task b) (4 points)
We prove both directions.

(r ∪ s)∗ ⊆ (r∗ ◦ s∗)∗ We show that (r ∪ s) ⊆ (r∗ ◦ s∗) and the result follows by monotonicity of the ∗
operator. We have that r ⊆ r∗ = r∗ ◦∆ ⊆ r∗ ◦ s∗. We can prove that s ⊆ r∗ ◦ s∗ in a similar way.

(r∗ ◦ s∗)∗ ⊆ (r ∪ s)∗ We show that (r∗ ◦ s∗) ⊆ (r ∪ s)∗. Then we get the result by taking transitive
closures of both side and using ((r∪s)∗)∗ = (r∪s)∗. We have r∗◦s∗ ⊆ (r∪s)∗◦(s∪r)∗ = (r∪s)∗.

Task c) (3 points)
True. We have that r ∩ s ⊆ r, which implies that (r ∩ s)∗ ⊆ r∗. Similarly we get (r ∩ s)∗ ⊆ s∗, and we
conclude that (r ∩ s)∗ ⊆ r∗ ∩ s∗.

Task d) (3 points)
Not true. Consider r = {(a, b), (b, c)}, s = {(a, c)}. We can compute r∗ ⊇ {(a, b), (b, c), (a, c)} and
s∗ ⊇ {(a, c)}, so that the left-hand side contains {(a, c)}. But r ∩ s = ∅.

Problem 2: Loop Semantics with Relations ([20 points])

Task a) (4 points)
We define the precondition to execute the body CF as x < n. The formula BF represents the body and
can be defined as

x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n

Note that we need to specify that variables m′ and n′ do not change.
Task b) (9 points)
Task b.1) (3 points)

x < n =⇒ (x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n)

1

Repetitive applications of F lead to x ≥ n and then the premise of the implication becomes false and the
transitive closure can build the set of all transitions such that x ≥ n, which is much bigger ∆C ◦B.
Task b.2) (3 points)

x < n ∧ (x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n)

Transitive closure of F corresponds to ∆C ◦B.
Task b.3) (3 points)

x < n =⇒ (x′ = x + 1 ∧ y′ = y ·m ∧m′ = m ∧ n′ = n)

x ≥ n =⇒ (x′ = x ∧ y′ = y ∧m′ = m ∧ n′ = n)

Transitive closure of F corresponds to ∆C ◦B.

Task c) (3 points)

• (7, 2, 2, 49)

• (5, -2, 0, 1)

• (2, 3, 3, 64)

Task d) (6 points)

m′ = m ∧ n′ = n ∧ x′ = max(x, n) ∧ y′ = y ·mmax(n−x,0)

Task e) (8 points)
The precondition sets the initial values of the computation variables x and y as well as the precondition
on the exponent n:

x = 0 ∧ y = 1 ∧ n > 0

The postcondition that follows:

y = mn

A sufficient loop invariant is:

x ≥ 0 ∧ x ≤ n ∧ y = mx

It is initially true since x = 0 < n and m0 = 1 = y. For each iteration, x increases so is still greater
than 0, it only increased by one if it is stricly smaller than n so will remain smaller than n. Also we have
y′ = y ·m = mx ·m = mx+1 = mx′

. The invariant is sufficient because on exit we can additionally
assume x ≥ n, which combined with x ≤ n implies that x = n and finally y = mx = mn, the
postcondition.

2

Problem 3: Hoare Triples and Loop Invariants ([20 points])

Task a) (5 points)

{length > 0} r = max(m, length) {∀i.(0 ≤ i < length) =⇒ r ≥ m(i) ∧ ∃i.(0 ≤ i < length) ∧ r = m(i)}

Task b) (15 points)
The loop invariant is:

i ≥ 0 ∧ i ≤ length ∧ ∀k.(0 ≤ k < i) =⇒ r ≥ m(k) ∧ ∃k.(0 ≤ k ≤ i) ∧ r = m(k)

The invariant holds initially because i = 0, length > 0, and r = map(0). The forall holds vacuously
and the existential is true for k = 0.
The invariant is enough to prove the postcondition. At the end of the loop, we can further assume
i ≥ length, and combined with i ≤ length we get i = length. Instantiating the quantifier with the value
of i gives us the postcondition.
Finally we need to prove the inductive step. Suppose the invariant is true when entering the body of the
loop, we know that i < lenght so i′ = i + i ≤ length and i′ > 0. We need to prove that

(∀k.(0 ≤ k < i) =⇒ r ≥ m(k)) =⇒ (∀k.(0 ≤ k < i + 1) =⇒ r ≥ m(k))

which can be reduced to proving that r ≥ m(i + 1) at the end of the body. That fact is obvious from the
if expression. The last part of the proof is to show

(∃k.(0 ≤ k < i) ∧ r = m(k)) =⇒ (∃k.(0 ≤ k < i + 1) ∧ r = m(k))

Which follows trivially from the assumption (there already exists such a k).

Problem 4: Lattices ([21 points])

Task a) (9 points)
First we prove that the new ordering is a partial order:

Reflexivity We have ∀i ∈ I. f(i) v f(i), thus f � f .

Antisymmetry Take i ∈ I , then if by antisymmetry of (L,v) we have that f(i) v g(i) ∧ g(i) v
f(i) =⇒ f(i) = g(i), and thus f � g ∧ g � f =⇒ f = g.

Transitivity If f � g ∧ g � h, we have for any i ∈ I that f(i) v g(i) ∧ g(i) v h(i) and by transitivity
of the underlying order we get f(i) v h(i) for any i, which is the definition of f � h.

We can define the least upper bound as f t g = h, where h(i) = f(i) t g(i). Similarly f u g = h, with
h(i) = f(i) u g(i).
We prove that the definition of t is correct, proving for u follows the exact same technique. First we
need to show that f t g is an upper bound of {f, g}. We have for any i that f(i) v f(i) t g(i). Same
goes for g(i). So h is an upper bound to f and g.
Let us we prove that it is the least upper bound. Suppose an arbitrary upper bound h′ such that f � h′

and g � h′. So for any i, f(i) v h′(i) ∧ g(i) v h′(i), and so h′(i) is an upper bound of f(i) and

3

g(i). Since f(i) t g(i) is the least upper bound, it follows that f(i) t g(i) v h′(i), and, by definition,
f t g � h′, showing that f t g is the least upper bound.

Task b) (2 points)
The size of this lattice is the number of functions from I to L, which can be computed by |L||I|.

Task c) (10 points)
Suppose h((L,v)) = N . Given f and g, we have f ≺ g only if f � g and ∃i ∈ I. f(i) < g(i).
Notice that we only need one index i such that g(i) is greater than f(i) in order to have a greater function
g. Given a chain of L with x0 < x1 < . . . < xN , we can build a chain of functions where each
function is only ”bumped” by one element from the chain of xis. Formally, given fk, we define fk+1 by
selecting an element i such that fk(i) = xj < xN and replace it by fk+1(i) = xj+1. We define f0 with
f0(i) = x0, for all i. The length of such a chain is the number of time we can bump a value, which is
clearly M = N · |I|.
We now prove this is the longest chain. Suppose there exists a longer chain g0 < g1 < . . . < gM < gM+1

of length M + 1. By definition, gk < gk+1 if and only if ∃i ∈ I. gk(i) < gk+1(i). So we can clearly
build a chain of size at least N + 1 along one of the |I| indices. This would be a contradiction to the
height of the lattice (L,v).

Problem 5: Predicate Abstraction ([15 points])

a) sp#({0 ≤ x, 0 ≤ y, x ≤ y}, x = x + 1) = {0 ≤ y}

b) sp#({0 ≤ x, 0 ≤ y, x ≤ 10, x ≤ y}, (x = x + 1;x = x + 1)) = {0 ≤ x, 0 ≤ y}

c) sp#(sp#({0 ≤ x, 0 ≤ y, x ≤ 10}, x = x + 1), x = x + 1) = {0 ≤ y}

d) sp#({0 ≤ x, 0 ≤ y, x ≤ y}, (x = x + 1; y = y + 1)) = {}.
We are also losing x ≤ y since y could overflow while x does not.

4

