Quiz Solutions Outline

Synthesis, Analysis, and Verification 2015 for the quiz given on Wednesday, April 22nd, 2015

PLEASE SIGN AND PRINT YOUR NAME ABOVE

This exam has 5 questions.

When handing in, please hand in the sheets with questions as well as any additional sheets with solutions.

Problem 1: Relations ([14 points])

Task a) (4 points)

Not true. Consider $A = \{a, b, c, d\}$, $r = \{(a, b), (b, c)\}$, and $s = \{(c, d)\}$. Then clearly $(a, d) \in (r \cup s)^*$. On the other hand, we can compute each elements of the right-hand side. We have

$$r^* = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (b, c), (c, a)\}$$

and

$$s^* = \{(a, a), (b, b), (c, c), (d, d), (c, d), (d, c)\}$$

Then we have $(r \circ s) = \{(c, d)\}$, and $(s \circ r) = \emptyset$. None of them nor their transitive closure contains (a, d).

Task b) (4 points)

We prove both directions.

- $(r \cup s)^* \subseteq (r^* \circ s^*)^*$ We show that $(r \cup s) \subseteq (r^* \circ s^*)$ and the result follows by monotonicity of the * operator. We have that $r \subseteq r^* = r^* \circ \Delta \subseteq r^* \circ s^*$. We can prove that $s \subseteq r^* \circ s^*$ in a similar way.
- $(r^* \circ s^*)^* \subseteq (r \cup s)^*$ We show that $(r^* \circ s^*) \subseteq (r \cup s)^*$. Then we get the result by taking transitive closures of both side and using $((r \cup s)^*)^* = (r \cup s)^*$. We have $r^* \circ s^* \subseteq (r \cup s)^* \circ (s \cup r)^* = (r \cup s)^*$.

Task c) (3 points) True. We have that $r \cap s \subseteq r$, which implies that $(r \cap s)^* \subseteq r^*$. Similarly we get $(r \cap s)^* \subseteq s^*$, and we conclude that $(r \cap s)^* \subseteq r^* \cap s^*$.

Task d) (3 points) Not true. Consider $r = \{(a, b), (b, c)\}, s = \{(a, c)\}$. We can compute $r^* \supseteq \{(a, b), (b, c), (a, c)\}$ and $s^* \supseteq \{(a, c)\}$, so that the left-hand side contains $\{(a, c)\}$. But $r \cap s = \emptyset$.

Problem 2: Loop Semantics with Relations ([20 points])

Task a) (4 points)

We define the precondition to execute the body C_F as x < n. The formula B_F represents the body and can be defined as

$$x' = x + 1 \land y' = y \cdot m \land m' = m \land n' = n$$

Note that we need to specify that variables m' and n' do not change. **Task b)** (9 points) **Task b.1**) (3 points)

 $x < n \implies (x' = x + 1 \land y' = y \cdot m \land m' = m \land n' = n)$

Repetitive applications of F lead to $x \ge n$ and then the premise of the implication becomes false and the transitive closure can build the set of all transitions such that $x \ge n$, which is much bigger $\Delta_C \circ B$. **Task b.2**) (3 points)

$$x < n \land (x' = x + 1 \land y' = y \cdot m \land m' = m \land n' = n)$$

Transitive closure of F corresponds to $\Delta_C \circ B$. Task b.3) (3 points)

$$x < n \implies (x' = x + 1 \land y' = y \cdot m \land m' = m \land n' = n)$$
$$x \ge n \implies (x' = x \land y' = y \land m' = m \land n' = n)$$

Transitive closure of F corresponds to $\Delta_C \circ B$.

Task c) (3 points)

- (7, 2, 2, 49)
- (5, -2, 0, 1)
- (2, 3, 3, 64)

Task d) (6 points)

$$m' = m \wedge n' = n \wedge x' = \max(x, n) \wedge y' = y \cdot m^{\max(n-x, 0)}$$

Task e) (8 points)

The precondition sets the initial values of the computation variables x and y as well as the precondition on the exponent n:

$$x = 0 \land y = 1 \land n > 0$$

The postcondition that follows:

$$y = m^n$$

A sufficient loop invariant is:

$$x \ge 0 \land x \le n \land y = m^x$$

It is initially true since x = 0 < n and $m^0 = 1 = y$. For each iteration, x increases so is still greater than 0, it only increased by one if it is stricly smaller than n so will remain smaller than n. Also we have $y' = y \cdot m = m^x \cdot m = m^{x+1} = m^{x'}$. The invariant is sufficient because on exit we can additionally assume $x \ge n$, which combined with $x \le n$ implies that x = n and finally $y = m^x = m^n$, the postcondition.

Problem 3: Hoare Triples and Loop Invariants ([20 points])

Task a) (5 points)

 $\{length > 0\}\ r = \max(m, \text{length})\ \{\forall i.(0 \le i < \text{length}) \implies r \ge m(i) \land \exists i.(0 \le i < \text{length}) \land r = m(i)\}$

Task b) (*15 points*) The loop invariant is:

$$i \ge 0 \land i \le \mathsf{length} \land \forall k. (0 \le k < i) \implies r \ge m(k) \land \exists k. (0 \le k \le i) \land r = m(k)$$

The invariant holds initially because i = 0, length > 0, and r = map(0). The forall holds vacuously and the existential is true for k = 0.

The invariant is enough to prove the postcondition. At the end of the loop, we can further assume $i \ge \text{length}$, and combined with $i \le \text{length}$ we get i = length. Instantiating the quantifier with the value of i gives us the postcondition.

Finally we need to prove the inductive step. Suppose the invariant is true when entering the body of the loop, we know that $i < \text{lenght so } i' = i + i \leq \text{length and } i' > 0$. We need to prove that

$$(\forall k. (0 \le k < i) \implies r \ge m(k)) \implies (\forall k. (0 \le k < i+1) \implies r \ge m(k))$$

which can be reduced to proving that $r \ge m(i+1)$ at the end of the body. That fact is obvious from the if expression. The last part of the proof is to show

 $(\exists k. (0 \le k < i) \land r = m(k)) \implies (\exists k. (0 \le k < i+1) \land r = m(k))$

Which follows trivially from the assumption (there already exists such a k).

Problem 4: Lattices ([21 points])

Task a) (9 points)

First we prove that the new ordering is a partial order:

Reflexivity We have $\forall i \in I$. $f(i) \subseteq f(i)$, thus $f \preceq f$.

- **Antisymmetry** Take $i \in I$, then if by antisymmetry of (L, \sqsubseteq) we have that $f(i) \sqsubseteq g(i) \land g(i) \sqsubseteq f(i) \implies f(i) = g(i)$, and thus $f \preceq g \land g \preceq f \implies f = g$.
- **Transitivity** If $f \leq g \wedge g \leq h$, we have for any $i \in I$ that $f(i) \sqsubseteq g(i) \wedge g(i) \sqsubseteq h(i)$ and by transitivity of the underlying order we get $f(i) \sqsubseteq h(i)$ for any *i*, which is the definition of $f \leq h$.

We can define the least upper bound as $f \sqcup g = h$, where $h(i) = f(i) \sqcup g(i)$. Similarly $f \sqcap g = h$, with $h(i) = f(i) \sqcap g(i)$.

We prove that the definition of \sqcup is correct, proving for \sqcap follows the exact same technique. First we need to show that $f \sqcup g$ is an upper bound of $\{f, g\}$. We have for any i that $f(i) \sqsubseteq f(i) \sqcup g(i)$. Same goes for g(i). So h is an upper bound to f and g.

Let us we prove that it is the least upper bound. Suppose an arbitrary upper bound h' such that $f \leq h'$ and $g \leq h'$. So for any $i, f(i) \equiv h'(i) \land g(i) \equiv h'(i)$, and so h'(i) is an upper bound of f(i) and g(i). Since $f(i) \sqcup g(i)$ is the least upper bound, it follows that $f(i) \sqcup g(i) \sqsubseteq h'(i)$, and, by definition, $f \sqcup g \preceq h'$, showing that $f \sqcup g$ is the least upper bound.

Task b) (2 points)

The size of this lattice is the number of functions from I to L, which can be computed by $|L|^{|I|}$.

Task c) (10 points)

Suppose $h((L, \sqsubseteq)) = N$. Given f and g, we have $f \prec g$ only if $f \preceq g$ and $\exists i \in I$. $f(i) \sqsubset g(i)$. Notice that we only need one index i such that g(i) is greater than f(i) in order to have a greater function g. Given a chain of L with $x_0 \sqsubset x_1 \sqsubset \ldots \sqsubset x_N$, we can build a chain of functions where each function is only "bumped" by one element from the chain of x_i s. Formally, given f_k , we define f_{k+1} by selecting an element i such that $f_k(i) = x_j \sqsubset x_N$ and replace it by $f_{k+1}(i) = x_{j+1}$. We define f_0 with $f_0(i) = x_0$, for all i. The length of such a chain is the number of time we can bump a value, which is clearly $M = N \cdot |I|$.

We now prove this is the longest chain. Suppose there exists a longer chain $g_0 \sqsubset g_1 \sqsubset \ldots \sqsubset g_M \sqsubset g_{M+1}$ of length M + 1. By definition, $g_k \sqsubset g_{k+1}$ if and only if $\exists i \in I$. $g_k(i) \sqsubset g_{k+1}(i)$. So we can clearly build a chain of size at least N + 1 along one of the |I| indices. This would be a contradiction to the height of the lattice (L, \sqsubseteq) .

Problem 5: Predicate Abstraction ([15 points])

- a) $sp^{\#}(\{0 \le x, 0 \le y, x \le y\}, x = x + 1) = \{0 \le y\}$
- b) $\mathbf{sp}^{\#}(\{0 \le x, 0 \le y, x \le 10, x \le y\}, (x = x + 1; x = x + 1)) = \{0 \le x, 0 \le y\}$
- c) $sp^{\#}(sp^{\#}(\{0 \le x, 0 \le y, x \le 10\}, x = x + 1), x = x + 1) = \{0 \le y\}$
- d) $sp^{\#}(\{0 \le x, 0 \le y, x \le y\}, (x = x + 1; y = y + 1)) = \{\}.$ We are also losing $x \le y$ since y could overflow while x does not.