Lecture 8
More Recursion. Bounded Model Checking

Viktor Kuncak



Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation E(r) =r
E(UBN=UE(B) BB, W~ coutinuity
We define the intended meaning as s = (J;>¢ E‘(@ which satlsfles
E(s) = s and also is the least among all relations r such that
E(r) C r (therefore, also the least among r for which E(r) = r)

We picked least fixpoint, so if the execution cannot terminate on a
state x, then there is no x’ such that (x,x’) € s.
This model is simple (just relations on states) though it has some
limitations: let g be a program that never terminates, then
> p(q) =0 and p(cl q) = p(c) UD = p(c)
(we cannot observe optional non-termination in this model)
» also, p(q) = p(Ay) (assume(false)), so the absence of results
due to path conditions and infinite loop are represented in the
same way

Alternative: special error states for non-termination



Procedure Meaning is the Least Relation

def f =
if (x > 0) { E(r) = (A0 (
x=x—1 p(x =x—1)o
f rfo
}y:y+2 ply =y +2))
)UAxéo

What does it mean that E(r) C r ?



Procedure Meaning is the Least Relation

def f =
if (x > 0) { E(rr) = (Azoo (
x=x—1 p(x =x—1)o
f rfo
}y:y+2 ply =y +2))
)UAxio

What does it mean that E(r) C r ?
Plugging r instead of the recursive call results in something that
conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies
specification r, show

» E(r)Cr

» then because procedure meaning s is least, s C r



Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function

below, then

def f =
if (x >0) {

x=x—1

y=y+2

E(rf)

((y), (Xsy)es—=y >y

€5 < (?lxé)

(AxSo ° (
p(x=x—1)o
rfo
ply =y +2))



Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function

below, then
((y), (Xsy)es—=y >y
def f =
if (x > 0) { E(re) = (Bysoo(
x=x—1 p(x=x—1)o
f rfo
y=y+2 ply =y +2))
} ) UAxéO

Solution: let specification relation be
q={(Cey), < yN 1Y =y}



Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function

below, then
((y), (Xsy)es—=y >y
def f =
if (x > 0) { E(re) = (Bysoo(
x=x—1 p(x=x—1)o
f rfo
y=y+2 ply =y +2))
} ) UAxéO

Solution: let specification relation be

q={((xy). (<, y) 1y =y}
Prove E(q) C g - given by a quantifier-free formula



Formula for Checking Specification

def f =
if (x >0) {
x=x—1,—Xq Ys
fey,
y=y+2
¥
Specification: g = {((x,y), (x’,y')) | v' = v}
Formula to prove, generated by representlngr E(q) C gy

v \ 3\“..\{1_,*(;\,,_
x""*“f‘{[{;>0/\xlZX—lAn:y/\yzz_)/lAy =y2+2)

V(=(x > 0) A X :XI/\y/ :y)))—> y' > )_/}

» Because g appears as E(q) and g, the condition appears twice.

» Proving this is always sound, whether or not function
terminates; it talks about properties of all terminating
executions (unlike e.g. Leon, we never rely on termination;
relations can be partial)



Multiple Procedures

Two mutually recursive procedures r = Ei(r1, ), r = Ex(ri, r)
Extend the approach to work on pairs of relations:

(r,r2) = (Er(n, r2), Ex(r1, 2))
Define E(rl, rn) = (Ei(n, n), E2(n,r)), let 7 = (n, rn)

E(F)C T

where (r1, ) C (r{,r3) iff i Cr{ and rn C r}
Even though pairs of relations are not sets, we can analogously
define set-like operations on them, e.g.

(r,p)U(r,n)=(nUn, nUr)

The entire theory works when we have a partial order C with some
“good properties’. Lattices as a generalization of families of sets.



Bounded Model Checking and k-Induction



Concrete program semantics and verification

For each program there is a (monotonic, w-continuous) function
F:C"— C" such that

c.=|JF,....0)

n>0

describes the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics
remains within the set of good states G, that is ¢, C G, or

UF@®....00)ce
n>0
which is equivalent to

V. F(0,....0) C G



Unfolding for Counterexamples: Bounded Model Checking
UE (D) G
k

Vn. F"(0,...,0) C G
The above condition is false iff there exists k and ¢ € C” such that
ce FKO,...,0)nc¢ G

For a fixed k this can often be expressed as a quantifier-free
formula.

Example: replace a loop ([c]s) * [!c] with finite unrolding ([c]s)*[!c]
Specifically, forn=1, S = 72, C =25 and F: C — C describes
the program: x=0;while(*)x=x+y

F(B) ={(x,y) | x=0}U{(x+y,y) | (x,y) € B}
We have F(0) = {(x,y) | x =0} = {(0,y) | y € Z}
F(0) ={(0,y) |y € ZYyU{(y.y) | y € Z}

F30)={(x,y) [ x=0Vx=yVx=2xy}



Formula for Bounded Model Checking

Let Pg(x,y) be a formula in Presburger arithmetic such that
B ={(x,y) | Pe(x,y)} then the formula

x =0V (Ixo, y0.x =x0 + Yo ANy = Yo \ Pa(x0, o))

describes F(B). Suppose the set F¥(B) can be described by a PA
formula Pg. If G is given by a formula Pg then the program can
reach error in k steps iff

P N =Pg

is satisfiable.
Suppose Pg is x < y. For k = 3 we obtain

(x=0Vx=yVx=2xy)A=(x<y)

By checking satisfiability of the formula we obtain counterexample
values x = -1,y = —2.



Bounded Model Checking Algorithm

B=10
while () { ¢/
checksat(!(B C G)) match
case Assignment( ) => return Counterexample(v)

case Unsat = = (B) c BEG
(/ \
|f (B’ gBB)) return Valid F k*( @) < Fk (%)
} else B=B Fk(@ﬁ Q{:H' (6\

Good properties

» subsumes testing up to given depth for all possible initial
states

» for a buggy program k, can be small, Leon and other tools
can find many bugs fast

» a semi-decision procedure for finding all possible errors:



Bounded Model Checking is Bounded

Bad properties
» can prove correctness only if F™1(()) = F"())

» errors after initializations of long arrays require unfolding for
large n. This program requires unfolding past all loop
iterations, even if the property does not depend on the loop:
i=0
z=0
while (i < 1000) {

a(i)=0
}

y=1/z

» For large k formula FX becomes large, so deep bugs are hard
to find



Transition Relation and CFG
(V,E, L) where L: E — Formula and variables are Vars
Formula T(x,v,X’,v') describing one step of execution:
» from CFG node v and values of variables x
» to CFG node v/ and values of variables X’
T(x,v,x', V)= (L(v,V))(x,X)
= \/ (v=wAV =w A Lw,w)(x,X))
(w,w')eE
If /(x, v) is a formula describing states reachable in some number
of steps, then states reachable in one more step are given by this
formula
Ix,v. (I(x,v) A T(x,v,%, V)
whose free variables are X/, v'.
Execution fragment X;, v, Xi+1, Vi1, - - -, Xi+k, Vi+k iS given by
formula P; x:
k—1
/\ T (Xistjs Vitj Xitj+15 Vij+1)
j=0



Bounded Model Checking for Transition Relation

We have derived formula P; i describing paths by iterating
transition relation T
To check whether

» starting from the program entry point Ventry,
with initial variables satisfying Init(xo)

> the program can reach in k steps control flow graph point

Verror
with values of variables satisfying Error(x)

we check the satisfiability of the formula

(Vo = Verror A Init(X0)) A Pox A (Vk = Verror N Error(X))



Unfolding for Proving Correctness: k-Induction

Goal:  Vn. F"(0,...,0) C G (1)
Suppose that, for some k > 1
FK(G)C G (2)
By induction on p,
FPK(G)C G
Suppose also
Vg < k. F"( )C G (3)

By monotonicity of FP¥ then for every p > 0 and q < k
FPEEI(f) = FPE(FI(D)) € FPK(G) € G

Every non-negative integer can be decomposed as pk + g, so (1)
holds.
Algorithm: check (2) and (3) for increasing k



k-induction Algorithm

Prove or find counterexample for:

V. F'(0,...,0)C G

Fk=F
while (%) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =>
checksat(!(Fk(0) € G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fko F' // unfold one more

}

F'(c) can be F(c) or F(c)N G

Saving work: preserve the state of solver in both checksats across
different k

Lucky test:

if (!(/fp(F)(initState(v0)) C G)) return Counterexample(v0)



Divergence in k-Induction

Fk=F
while (%) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =>
checksat(!(Fk(@) C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fko F' // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
Often cannot find proofs when Ifp(F) € G. Then G may be too
weak to be inductive, (F')"(G) may remain too weak:

F"(0) C ifp(F) € (F')(G)

Need weakening of F"(()) or strengthening of (F')"(G)



Taking Approximate Postcondition
Suppose we did not find counterexample yet and we have sequence
wCcaC...cx CG
where ¢; = F(0), so
F(ci) = ciy1
Instead of simply increasing k, we try to obtain larger values by
finding another solution ag of constraints
¢ C ap, Fk_l(ao) CcG
so we obtain a sequence

a0 C F(ag) C...C FFl(a) C G

> if F(F*"Y(ap)) € FF(ap), then Fk~1(ap) is inductive
invariant

» if F(Fk~1(ap)) C G, repeat the process: find a new initial
element a; by solving ag C a1, FK"1(a1) C G

» if not F(F<=1(ap)) C G, then we “overshot” the specification

(— \We +then increace L and rectart



Solving Inclusion Constraints

The previous procedure also finds all counterexamples of length up
to k, and uses specification in a different way than k-induction.
Key question: how to obtain interesting solutions of inequality
constraints

Solution: abstraction



