
Lecture 8
More Recursion. Bounded Model Checking

Viktor Kuncak

Summary: Least Fixpoint as Meaning of Recursion

A recursive program is a recursive definition of a relation E (r) = r

We define the intended meaning as s =
⋃

i≥0 E (∅), which satisfies
E (s) = s and also is the least among all relations r such that
E (r) ⊆ r (therefore, also the least among r for which E (r) = r)

We picked least fixpoint, so if the execution cannot terminate on a
state x , then there is no x ′ such that (x , x ′) ∈ s.
This model is simple (just relations on states) though it has some
limitations: let q be a program that never terminates, then

I ρ(q) = ∅ and ρ(c q) = ρ(c) ∪ ∅ = ρ(c)
(we cannot observe optional non-termination in this model)

I also, ρ(q) = ρ(∆∅) (assume(false)), so the absence of results
due to path conditions and infinite loop are represented in the
same way

Alternative: special error states for non-termination

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

What does it mean that E (r) ⊆ r ?

Plugging r instead of the recursive call results in something that
conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies
specification r , show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r

Procedure Meaning is the Least Relation

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

What does it mean that E (r) ⊆ r ?
Plugging r instead of the recursive call results in something that
conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies
specification r , show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function
below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be
q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Prove E (q) ⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function
below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be
q = {((x , y), (x ′, y ′)) | y ′ ≥ y}

Prove E (q) ⊆ q - given by a quantifier-free formula

Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function
below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆ ˜x>0 ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆ ˜x≤0

Solution: let specification relation be
q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Prove E (q) ⊆ q - given by a quantifier-free formula

Formula for Checking Specification

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

Specification: q = {((x , y), (x ′, y ′)) | y ′ ≥ y}
Formula to prove, generated by representing E (q) ⊆ q:[

(x > 0 ∧ x1 = x − 1 ∧ y1 = y ∧ y2 > y1 ∧ y ′ = y2 + 2)
∨(¬(x > 0) ∧ x ′ = x ∧ y ′ = y)

)
→ y ′ ≥ y

I Because q appears as E (q) and q, the condition appears twice.

I Proving this is always sound, whether or not function
terminates; it talks about properties of all terminating
executions (unlike e.g. Leon, we never rely on termination;
relations can be partial)

Multiple Procedures

Two mutually recursive procedures r1 = E1(r1, r2), r2 = E2(r1, r2)

Extend the approach to work on pairs of relations:

(r1, r2) = (E1(r1, r2),E2(r1, r2))

Define Ē (r1, r2) = (E1(r1, r2),E2(r1, r2)), let r̄ = (r1, r2)

Ē (r̄) v r̄

where (r1, r2) v (r ′1, r
′
2) iff r1 ⊆ r ′1 and r2 ⊆ r ′2

Even though pairs of relations are not sets, we can analogously
define set-like operations on them, e.g.

(r1, r2) ∪ (r ′1, r
′
2) = (r1 ∪ r ′1, r2 ∪ r ′2)

The entire theory works when we have a partial order v with some
“good properties”. Lattices as a generalization of families of sets.

Bounded Model Checking and k-Induction

Concrete program semantics and verification

For each program there is a (monotonic, ω-continuous) function
F : Cn → Cn such that

c̄∗ =
⋃
n≥0

F n(∅, . . . , ∅)

describes the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics
remains within the set of good states G , that is c∗ ⊆ G , or⋃

n≥0
F n(∅, . . . , ∅)

 ⊆ G

which is equivalent to

∀n. F n(∅, . . . , ∅) ⊆ G

Unfolding for Counterexamples: Bounded Model Checking

∀n. F n(∅, . . . , ∅) ⊆ G

The above condition is false iff there exists k and c̄ ∈ Cn such that

c̄ ∈ F k(∅, . . . , ∅) ∧ c̄ /∈ G

For a fixed k this can often be expressed as a quantifier-free
formula.
Example: replace a loop ([c]s)∗ [!c] with finite unrolding ([c]s)k [!c]
Specifically, for n = 1, S = Z2, C = 2S , and F : C → C describes
the program: x=0;while(*)x=x+y

F (B) = {(x , y) | x = 0} ∪ {(x + y , y) | (x , y) ∈ B}

We have F (∅) = {(x , y) | x = 0} = {(0, y) | y ∈ Z}

F 2(∅) = {(0, y) | y ∈ Z} ∪ {(y , y) | y ∈ Z}

F 3(∅) = {(x , y) | x = 0 ∨ x = y ∨ x = 2 ∗ y}

Formula for Bounded Model Checking

Let PB(x , y) be a formula in Presburger arithmetic such that
B = {(x , y) | PB(x , y)} then the formula

x = 0 ∨ (∃x0, y0.x = x0 + y0 ∧ y = y0 ∧ PB(x0, y0))

describes F (B). Suppose the set F k(B) can be described by a PA
formula Pk . If G is given by a formula PG then the program can
reach error in k steps iff

Pk ∧ ¬PG

is satisfiable.
Suppose PG is x ≤ y . For k = 3 we obtain

(x = 0 ∨ x = y ∨ x = 2 ∗ y) ∧ ¬(x ≤ y)

By checking satisfiability of the formula we obtain counterexample
values x = −1, y = −2.

Bounded Model Checking Algorithm

B = ∅
while (∗) {

checksat(!(B ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat =>
B ′ = F (B)
if (B ′ ⊆ B) return Valid
else B = B ′

}

Good properties

I subsumes testing up to given depth for all possible initial
states

I for a buggy program k , can be small, Leon and other tools
can find many bugs fast

I a semi-decision procedure for finding all possible errors:

Bounded Model Checking is Bounded

Bad properties

I can prove correctness only if F n+1(∅) = F n(∅)
I errors after initializations of long arrays require unfolding for

large n. This program requires unfolding past all loop
iterations, even if the property does not depend on the loop:

i = 0
z = 0
while (i < 1000) {

a(i) = 0
}
y = 1/z

I For large k formula F k becomes large, so deep bugs are hard
to find

Transition Relation and CFG
(V ,E , L) where L : E → Formula and variables are Vars
Formula T (x̄ , v , x̄ ′, v ′) describing one step of execution:

I from CFG node v and values of variables x̄
I to CFG node v ′ and values of variables x̄ ′

T (x̄ , v , x̄ ′, v ′) ≡ (L(v , v ′))(x̄ , x̄ ′)

≡
∨

(w ,w ′)∈E

(v = w ∧ v ′ = w ′ ∧ L(w ,w ′)(x̄ , x̄ ′))

If I (x̄ , v) is a formula describing states reachable in some number
of steps, then states reachable in one more step are given by this
formula

∃x̄ , v . (I (x̄ , v) ∧ T (x̄ , v , x̄ ′, v ′)

whose free variables are x̄ ′, v ′.
Execution fragment x̄i , vi , x̄i+1, vi+1, . . . , x̄i+k , vi+k is given by
formula Pi ,k :

k−1∧
j=0

T (x̄i+j , vi+j , x̄i+j+1, vi+j+1)

Bounded Model Checking for Transition Relation

We have derived formula Pi ,k describing paths by iterating
transition relation T
To check whether

I starting from the program entry point ventry
with initial variables satisfying Init(x̄0)

I the program can reach in k steps control flow graph point
verror
with values of variables satisfying Error(x̄)

we check the satisfiability of the formula

(v0 = verror ∧ Init(x̄0)) ∧ P0,k ∧ (vk = verror ∧ Error(x̄k))

Unfolding for Proving Correctness: k-Induction

Goal: ∀n. F n(∅, . . . , ∅) ⊆ G (1)

Suppose that, for some k ≥ 1

F k(G) ⊆ G (2)

By induction on p,
F pk(G) ⊆ G

Suppose also
∀q < k . F q(∅̄) ⊆ G (3)

By monotonicity of F pk then for every p ≥ 0 and q < k

F pk+q(∅̄) = F pk(F q(∅̄)) ⊆ F pk(G) ⊆ G

Every non-negative integer can be decomposed as pk + q, so (1)
holds.
Algorithm: check (2) and (3) for increasing k

k-induction Algorithm
Prove or find counterexample for:

∀n. F n(∅, . . . , ∅) ⊆ G

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

F ′(c) can be F (c) or F (c) ∩ G
Saving work: preserve the state of solver in both checksats across
different k
Lucky test:
if (!(lfp(F)(initState(v0)) ⊆ G)) return Counterexample(v0)

Divergence in k-Induction

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
Often cannot find proofs when lfp(F) ⊆ G . Then G may be too
weak to be inductive, (F ′)n(G) may remain too weak:

F n(∅̄) ⊆ lfp(F) ⊆ (F ′)n(G)

Need weakening of F n(∅) or strengthening of (F ′)n(G)

Taking Approximate Postcondition
Suppose we did not find counterexample yet and we have sequence

c0 ⊆ c1 ⊆ . . . ck ⊆ G

where ci = F i (∅̄), so
F (ci) = ci+1

Instead of simply increasing k , we try to obtain larger values by
finding another solution a0 of constraints

c0 ⊆ a0, F k−1(a0) ⊆ G

so we obtain a sequence

a0 ⊆ F (a0) ⊆ . . . ⊆ F k−1(a0) ⊆ G

I if F (F k−1(a0)) ⊆ F k−1(a0), then F k−1(a0) is inductive
invariant

I if F (F k−1(a0)) ⊆ G , repeat the process: find a new initial
element a1 by solving a0 ⊆ a1, F k−1(a1) ⊆ G

I if not F (F k−1(a0)) ⊆ G , then we “overshot” the specification
G . We then increase k and restart.

Solving Inclusion Constraints

The previous procedure also finds all counterexamples of length up
to k, and uses specification in a different way than k-induction.
Key question: how to obtain interesting solutions of inequality
constraints

Solution: abstraction

