
Lecturecise 5
Paths, Triples, Postconditions, Preconditions

Viktor Kuncak

Loop-Free Programs as Relations: Summary

command c R(c) ρ(c)

(x = t) x ′ = t ∧
∧

v∈V \{x} v
′ = v

c1 ; c2 ∃z̄ . R(c1)[x̄ ′ := z̄] ∧ R(c2)[x̄ := z̄] ρ(c1) ◦ ρ(c2)
if(∗) c1 else c2 R(c1) ∨ R(c2) ρ(c1) ∪ ρ(c2)

assume(F) F ∧
∧

v∈V v ′ = v ∆S(F)

ρ(vi = t) = {((v1, . . . , vi , . . . , vn), (v1, . . . , v
′
i , . . . , vn) | v ′i = t}

S(F) = {v̄ | F}, ∆A = {(~v , ~v) | ~v ∈ A} (diagonal relation on A)
∆ (without subscript) is identity on entire set of states (no-op)
We always have: ρ(c) = {(v̄ , v̄ ′) | R(c)}
Shorthands:

if(∗) c1 else c2 c1 c2
assume(F) [F]

Examples:

if (F) c1 else c2 ≡ [F]; c1 [¬F]; c2
if (F) c ≡ [F]; c [¬F]

Program Paths

Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes
are c1, . . . , cn

The relation ρ(c) is of the form E (ρ(c1), . . . , ρ(cn)); it composes
meanings of c1, . . . , cn using union (∪) and composition (◦)

(if (x > 0)
x = x − 1

else
x = 0

);
(if (y > 0)

y = y − 1
else

y = x + 1
)

([x > 0]; x = x − 1

([¬(x>0)]; x = 0)
);
([y > 0]; y = y − 1

[¬(y>0)]; y = x+1
)

(
∆S(x>0) ◦ ρ(x = x − 1)
∪

∆S(¬(x>0)) ◦ ρ(x = 0))
◦(
∆S(y>0) ◦ ρ(y = y − 1)
∪

∆S(¬(y>0)) ◦ ρ(y = x + 1))
Note: ◦ binds stronger than ∪, so r ◦ s ∪ t = (r ◦ s) ∪ t

Normal Form for Loop-Free Programs

Composition distributes through union:

(r1 ∪ r2) ◦ (s1 ∪ s2) = r1 ◦ s1 ∪ r1 ◦ s2 ∪ r2 ◦ s1 ∪ r2 ◦ s2

Example corresponding to two if-else statements one after another:(
∆1 ◦ r1
∪

∆2 ◦ r2)
◦(
∆3 ◦ r3
∪

∆4 ◦ r4)
≡

∆1 ◦ r1 ◦∆3 ◦ r3 ∪
∆1 ◦ r1 ◦∆4 ◦ r4 ∪
∆2 ◦ r2 ◦∆3 ◦ r3 ∪
∆2 ◦ r2 ◦∆4 ◦ r4

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.

Properties of Program Contexts

Some Properties of Relations

(p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

(p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

(p1 ∪ p2) ◦ q = (p1 ◦ q) ∪ (p2 ◦ q)

Monotonicity of Expressions using ∪ and ◦

For a program with k integer variables, S = Zk

Consider relations that are subsets of S × S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}

Let E (r) be given by any expression built from relation r and some
additional relations b1, . . . , bn, using ∪ and ◦.
Example: E (r) = (b1 ◦ r) ∪ (r ◦ b2)
E (r) is function C → C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2 → E (r1) ⊆ E (r2)

Prove of disprove.

Proof: induction on the expression tree defining E , using
monotonicity properties of ∪ and ◦

Monotonicity of Expressions using ∪ and ◦

For a program with k integer variables, S = Zk

Consider relations that are subsets of S × S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}

Let E (r) be given by any expression built from relation r and some
additional relations b1, . . . , bn, using ∪ and ◦.
Example: E (r) = (b1 ◦ r) ∪ (r ◦ b2)
E (r) is function C → C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2 → E (r1) ⊆ E (r2)

Prove of disprove.
Proof: induction on the expression tree defining E , using
monotonicity properties of ∪ and ◦

Union-Distributivity of Expressions using ∪ and ◦

Claim: E distributes over unions, that is, if ri , i ∈ I is a family of
relations,

E (
⋃
i∈I

ri) =
⋃
i∈I

E (ri)

Prove or disprove.

False. Take E (r) = r ◦ r and consider relations r1, r2. The claim
becomes

(r1 ∪ r2) ◦ (r1 ∪ r2) = r1 ◦ r1 ∪ r2 ◦ r2
that is,

r1◦r1 ∪ r1◦r2 ∪ r2◦r1 ∪ r2◦r2 = r1◦r1 ∪ r2◦r2
Taking, for example, r1 = {(1, 2)}, r2 = {(2, 3)} we obtain

{(1, 3)} = ∅ (false)

Union-Distributivity of Expressions using ∪ and ◦

Claim: E distributes over unions, that is, if ri , i ∈ I is a family of
relations,

E (
⋃
i∈I

ri) =
⋃
i∈I

E (ri)

Prove or disprove.
False. Take E (r) = r ◦ r and consider relations r1, r2. The claim
becomes

(r1 ∪ r2) ◦ (r1 ∪ r2) = r1 ◦ r1 ∪ r2 ◦ r2
that is,

r1◦r1 ∪ r1◦r2 ∪ r2◦r1 ∪ r2◦r2 = r1◦r1 ∪ r2◦r2
Taking, for example, r1 = {(1, 2)}, r2 = {(2, 3)} we obtain

{(1, 3)} = ∅ (false)

Union “Distributivity” in One Direction

Lemma:
E (
⋃
i∈I

ri) ⊇
⋃
i∈I

E (ri)

Proof. Let r =
⋃

i∈I ri . Note that, for every i , ri ⊆ r . We have
shown that E is monotonic, so E (ri) ⊆ E (r). Since all E (ri) are
included in E (r), so is their union, so⋃

E (ri) ⊆ E (r)

as desired.

Union “Distributivity” in One Direction

Lemma:
E (
⋃
i∈I

ri) ⊇
⋃
i∈I

E (ri)

Proof. Let r =
⋃

i∈I ri . Note that, for every i , ri ⊆ r . We have
shown that E is monotonic, so E (ri) ⊆ E (r). Since all E (ri) are
included in E (r), so is their union, so⋃

E (ri) ⊆ E (r)

as desired.

Union-Distributivity - Refined

Does distributivity

E (
⋃
i∈I

ri) =
⋃
i∈I

E (ri)

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?

Proof: Induction on expression for E (r). Only one branch of
the tree may contain r . Note previous counter-example uses r
twice.

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous counter-example
the largest relation will contain all other ri ◦ rj .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.
Induction. Generalizes the previous case.

Union-Distributivity - Refined

Does distributivity

E (
⋃
i∈I

ri) =
⋃
i∈I

E (ri)

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?
Proof: Induction on expression for E (r). Only one branch of
the tree may contain r . Note previous counter-example uses r
twice.

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous counter-example
the largest relation will contain all other ri ◦ rj .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.
Induction. Generalizes the previous case.

Union-Distributivity - Refined

Does distributivity

E (
⋃
i∈I

ri) =
⋃
i∈I

E (ri)

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?
Proof: Induction on expression for E (r). Only one branch of
the tree may contain r . Note previous counter-example uses r
twice.

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . .

Induction. In the previous counter-example
the largest relation will contain all other ri ◦ rj .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.
Induction. Generalizes the previous case.

Union-Distributivity - Refined

Does distributivity

E (
⋃
i∈I

ri) =
⋃
i∈I

E (ri)

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?
Proof: Induction on expression for E (r). Only one branch of
the tree may contain r . Note previous counter-example uses r
twice.

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous counter-example
the largest relation will contain all other ri ◦ rj .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.

Induction. Generalizes the previous case.

Union-Distributivity - Refined

Does distributivity

E (
⋃
i∈I

ri) =
⋃
i∈I

E (ri)

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?
Proof: Induction on expression for E (r). Only one branch of
the tree may contain r . Note previous counter-example uses r
twice.

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . . Induction. In the previous counter-example
the largest relation will contain all other ri ◦ rj .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.
Induction. Generalizes the previous case.

About Strength and Weakness

Putting Conditions on Sets Makes them Smaller

Let P1 and P2 be formulas (“conditions”) whose free variables are
among x̄ . Those variables may denote program state.
When we say “condition P1 is stronger than condition P2” it
simply means

∀x̄ . (P1 → P2)

I if we know P1, we immediately get (conclude) P2

I if we know P2 we need not be able to conclude P1

Stronger condition = smaller set: if P1 is stronger than P2 then
{x̄ | P1} ⊆ {x̄ | P2}

I strongest possible condition: “false” ; smallest set: ∅
I weakest condition: “true” ; biggest set: set of all tuples

Hoare Triples

About Hoare Logic

We have seen how to translate programs into relations. We will use these

relations in a proof system called Hoare logic. Hoare logic is a way of

inserting annotations into code to make proofs about (imperative)

program behavior simpler.

Example proof:

//{0 <= y}
i = y;
//{0 <= y & i = y}
r = 0;
//{0 <= y & i = y & r = 0}
while //{r = (y−i)∗x & 0 <= i}
(i > 0) (
//{r = (y−i)∗x & 0 < i}
r = r + x;
//{r = (y−i+1)∗x & 0 < i}
i = i − 1
//{r = (y−i)∗x & 0 <= i}

)
//{r = x ∗ y}

Hoare Triple and Friends

P,Q ⊆ S r ⊆ S × S
Hoare Triple:

{P} r {Q} ⇐⇒ ∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
{P} does not denote a singleton set containing P but is just a
notation for an “assertion” around a command. Likewise for {Q}.
Strongest postcondition:

sp(P, r) = {s ′ | ∃s. s ∈ P ∧ (s, s ′) ∈ r}

Weakest precondition:

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. {j = a} j :=j+1 {a = j + 1}

2. {i = j} i:=j+i {i > j}

3. {j = a + b} i:=b; j:=a {j = 2 ∗ a}

4. {i > j} j:=i+1; i:=j+1 {i > j}

5. {i != j} if i>j then m:=i−j else m:=j−i {m > 0}

6. {i = 3∗j} if i>j then m:=i−j else m:=j−i {m−2∗j=0}

Postconditions and Their Strength

What is the relationship between these postconditions?

{x = 5} x := x + 2 {x > 0}

{x = 5} x := x + 2 {x = 7}

I weakest conditions (predicates) correspond to largest sets

I strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition x > 0 ∧ y > 0 denotes one
quadrant in plane, whereas a weaker condition x > 0 denotes the
entire half-plane.)

Postconditions and Their Strength

What is the relationship between these postconditions?

{x = 5} x := x + 2 {x > 0}

{x = 5} x := x + 2 {x = 7}

I weakest conditions (predicates) correspond to largest sets

I strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition x > 0 ∧ y > 0 denotes one
quadrant in plane, whereas a weaker condition x > 0 denotes the
entire half-plane.)

Strongest Postconditions

Strongest Postcondition

Definition: For P ⊆ S , r ⊆ S × S ,

sp(P, r) = {s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}

This is simply the relation image of a set.

Weakest Preconditions

Weakest Precondition

Definition: for Q ⊆ S , r ⊆ S × S ,

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Note that this is in general not the same as sp(Q, r−1) when then
relation is non-deterministic or partial.

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

I {P}r{Q}
I P ⊆ wp(r ,Q)

I sp(P, r) ⊆ Q

Proof. The three conditions expand into the following three
formulas

I ∀s, s ′. [(s ∈ P ∧ (s, s ′) ∈ r)→ s ′ ∈ Q]

I ∀s. [s ∈ P → (∀s ′.(s, s ′) ∈ Q)]

I ∀s ′. [(∃s. s ∈ P ∧ (s, s ′) ∈ P)→ s ′ ∈ Q]

which are easy to show equivalent using basic first-order logic
properties.

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

I {P}r{Q}
I P ⊆ wp(r ,Q)

I sp(P, r) ⊆ Q

Proof. The three conditions expand into the following three
formulas

I ∀s, s ′. [(s ∈ P ∧ (s, s ′) ∈ r)→ s ′ ∈ Q]

I ∀s. [s ∈ P → (∀s ′.(s, s ′) ∈ Q)]

I ∀s ′. [(∃s. s ∈ P ∧ (s, s ′) ∈ P)→ s ′ ∈ Q]

which are easy to show equivalent using basic first-order logic
properties.

Lemma: Characterization of sp
sp(P, r) is the the smallest set Q such that {P}r{Q}, that is:

I {P}r{sp(P, r)}
I ∀Q ⊆ S . {P}r{Q} → sp(P, r) ⊆ Q

{P} r {Q} ⇔∀s, s ′ ∈ S . (s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q)

sp(P, r) ={s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then
reduce to:

I sp(P, r) ⊆ sp(P, r)

I ∀P ⊆ S . sp(P, r) ⊆ Q → sp(P, r) ⊆ Q

Lemma: Characterization of wp

wp(r ,Q) is the largest set P such that {P}r{Q}, that is:

I {wp(r ,Q)}r{Q}
I ∀P ⊆ S . {P}r{Q} → P ⊆ wp(r ,Q)

{P} r {Q} ⇔∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
wp(r ,Q) ={s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then
reduce to:

I wp(r ,Q) ⊆ wp(r ,Q)

I ∀P ⊆ S . P ⊆ wp(r ,Q)→ P ⊆ wp(r ,Q)

Exercise: Postcondition of inverse versus wp

Lemma:
S \ wp(r ,Q) = sp(S \ Q, r−1)

In other words, when instead of good states we look at the
completement set of “error states”, then wp corresponds to doing
sp backwards.

Note that r−1 = {(y , x) | (x , y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order
logic properties.

Exercise: Postcondition of inverse versus wp

Lemma:
S \ wp(r ,Q) = sp(S \ Q, r−1)

In other words, when instead of good states we look at the
completement set of “error states”, then wp corresponds to doing
sp backwards.

Note that r−1 = {(y , x) | (x , y) ∈ r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order
logic properties.

