Lecturecise 5
Paths, Triples, Postconditions, Preconditions

Viktor Kuncak

Loop-Free Programs as Relations: Summary

command c | R(c) | p(c)
(x=1) X' =tANengpg V' =v
c;c | 3z. R(a)[X =2zZ]AR(e)[x :=2] | p(c) o p(c2)
if(x) c1 else R(c1) V R(c) p(c1) U p(c)
assume(F) FAN,cyV =V Asr

plvi=1t) ={((vi,.. -, vi,.. o, vn), (vi, .., Vo ovn) | V) =t}
S(F)={v|F}, Aax={(V,V)|V e A} (diagonal relation on A)
A (without subscript) is identity on entire set of states (no-op)
We always have: p(c) = {(v,V') | R(c)}
Shorthands:
if(x) crelse o | a1 [
assume(F) ‘ [F]

Examples:

if(F)celsec, = [Flia [[-F]; e
if (F)c = [Flic [[-F]

Program Paths

Loop-Free Programs

¢ - a loop-free program whose assignments, havocs, and assumes

are ¢1,...,Cp

The relation p(c) is of the form E(p(c1), ...

meanings of ci, ..., ¢, using union (U) and composition (o)

(if (x > 0)
x=x-—1
else
x=0

(if (y > 0)
y=y-—1
else

y=x+1

)

(x>0 x=x-1

'([—|(x>0)]; x = 0)
(,[DY>0];y=y—1
[-(y>0)]; y = x+1

,p(cn)); it composes

(As(s0) 0 plx = x — 1)
U

As(-(x>0)) © p(x = 0)

)o

(Asysoyoply =y —1)
U

As—(ys0y o ply =x+1)

Note: o binds stronger than U, so rosUt = (ros)Ut

Normal Form for Loop-Free Programs

Composition distributes through union:
(r1Ur2)o(51U52) =rnosy Unos Umnos U mnos

Example corresponding to two if-else statements one after another:
(Al on
U

Apor
25102 AjorpolAzonrz U

)(O AjornolAsor U

Azor =

j 3 = ArornolAzory U
A20r20A4or4

A40f4

)

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.

Properties of Program Contexts

Some Properties of Relations

(p1 € p2) = (prLop) € (p2op)

(pr € p2) = (pop1) € (pop2)

(PLCp)AN (1S q) — (PPLUqL) C(p2UQq2)

(PrUp2)og=(proq)U(p20q)

Monotonicity of Expressions using U and o

For a program with k integer variables, S = Z*
Consider relations that are subsets of S x S (i.e. $2)
The set of all such relations is

C={r|rcs?

Let E(r) be given by any expression built from relation r and some
additional relations by, ..., b,, using U and o.

Example: E(r) = (byor)U(ro by)

E(r) is function C — C, maps relations to relations

Claim: E is monotonic function on C:

ncmrn— E(rl) - E(I’Q)

Prove of disprove.

Monotonicity of Expressions using U and o

For a program with k integer variables, S = Z*
Consider relations that are subsets of S x S (i.e. $2)
The set of all such relations is

C={r|rcs?

Let E(r) be given by any expression built from relation r and some
additional relations by, ..., b,, using U and o.

Example: E(r) = (byor)U(ro by)

E(r) is function C — C, maps relations to relations

Claim: E is monotonic function on C:

ncmrn— E(rl) - E(I’Q)

Prove of disprove.
Proof: induction on the expression tree defining E, using
monotonicity properties of U and o

Union-Distributivity of Expressions using U and o

Claim: E distributes over unions, that is, if r;,i € | is a family of
relations,
ElJr)=JEwm)
i€l icl

Prove or disprove.

Union-Distributivity of Expressions using U and o

Claim: E distributes over unions, that is, if r;,i € | is a family of

relations,
ElJr)=JEwm)
iel iel
Prove or disprove.
False. Take E(r) = r o r and consider relations ri, r>. The claim
becomes
(nUmn)o(nUn)=nonUmnon

that is,
ror U norpUrnor Urnor = rnor Urnomn

Taking, for example, 1 = {(1,2)}, r» = {(2,3)} we obtain

{(1,3)} =0 (false)

Union “Distributivity” in One Direction

Lemma:

E(Jr) 2 JER)

iel icl

Union “Distributivity” in One Direction

Lemma:

E(Jr) 2 JER)

icl iel
Proof. Let r = Uie/ ri. Note that, for every i, r; C r. We have

shown that E is monotonic, so E(r;) C E(r). Since all E(r;) are
included in E(r), so is their union, so

JE(r) € E(r)

as desired.

Union-Distributivity - Refined

Does distributivity
ElJr)=Em)
iel iel
hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?

Union-Distributivity - Refined

Does distributivity
ElJr)=Em)
iel iel
hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?
Proof: Induction on expression for E(r). Only one branch of
the tree may contain r. Note previous counter-example uses r

twice.

Union-Distributivity - Refined

Does distributivity
ElJr)=Em)
i€l icl
hold, for each of these cases
1. If E(r) is given by an expression containing r at most once?

Proof: Induction on expression for E(r). Only one branch of
the tree may contain r. Note previous counter-example uses r
twice.

2. If E(r) contains r any number of times, but / is a set of
natural numbers and r; is an increasing sequence:
nCnrnCrnC...

Union-Distributivity - Refined

ElJr)=Em)

iel icl

Does distributivity

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?
Proof: Induction on expression for E(r). Only one branch of
the tree may contain r. Note previous counter-example uses r
twice.

2. If E(r) contains r any number of times, but / is a set of
natural numbers and r; is an increasing sequence:
rn € rn CrC...Induction. In the previous counter-example
the largest relation will contain all other r; o r;.

3. If E(r) contains r any number of times, but r;,i € | is a
directed family of relations: for each i,/ there exists k such
that r; U rj C ry, and | is possibly uncountably infinite.

Union-Distributivity - Refined

ElJr)=Em)

iel icl

Does distributivity

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?
Proof: Induction on expression for E(r). Only one branch of
the tree may contain r. Note previous counter-example uses r
twice.

2. If E(r) contains r any number of times, but / is a set of
natural numbers and r; is an increasing sequence:
rn € rn CrC...Induction. In the previous counter-example
the largest relation will contain all other r; o r;.

3. If E(r) contains r any number of times, but r;,i € | is a
directed family of relations: for each i,/ there exists k such
that r; U rj C ry, and | is possibly uncountably infinite.
Induction. Generalizes the previous case.

About Strength and Weakness

Putting Conditions on Sets Makes them Smaller

Let P; and P, be formulas (“conditions”) whose free variables are
among x. Those variables may denote program state.
When we say “condition P; is stronger than condition P" it

simply means
VX. (Pl — P2)
» if we know P;, we immediately get (conclude) P
» if we know P> we need not be able to conclude P;

Stronger condition = smaller set: if Py is stronger than P, then
{x| P} C{x| P2}
» strongest possible condition: “false” ~» smallest set: ()

» weakest condition: “true” ~» biggest set: set of all tuples

Hoare Triples

About Hoare Logic

We have seen how to translate programs into relations. We will use these
relations in a proof system called Hoare logic. Hoare logic is a way of
inserting annotations into code to make proofs about (imperative)
program behavior simpler.

/{0 <=y}

=y,

/{0 <=y &i=y}
r=20;

//[{0<=y&i=y&r=0}
while //{r = (y—i)xx & 0 <= i}

. (i>0)(
Example proof: 74 = (y—i)ix & 0 < i}
r=r -+ x;
J/{r=(y—i+1)xx & 0 < i}
i=i—1

J/{r = (y—i)xx & 0 <= i}

)
//{r =xxy}

Hoare Triple and Friends

Sir Charles Antony Richard Hoare

PQRCS rCSxS
Hoare Triple:

{P}r{Q} < Vs,s’€S.(se PA(s,s')er—s€Q)

{P} does not denote a singleton set containing P but is just a
notation for an “assertion” around a command. Likewise for {Q}.
Strongest postcondition:

sp(P,r)={s'|3s.s e PA(s,5') € r}
Weakest precondition:

wp(r,Q) ={s|Vs'.(s,s)er—s €Q}

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.
1. {f=a}tj=+1{a=j+ 1}

2. {i =]} i=j+i {i > j}

3.{i=a+b}li=bj=a{j=2=xa}

o

A > Y=L i >)

(6]

. Ai 1= j} if i>] then m:=i—j else m:=j—i {m > 0}

()}

. {i = 3%j} if i>] then m:=i—j else m:=j—i {m—2x%j=0}

Postconditions and Their Strength

What is the relationship between these postconditions?

{x=5} x:=x+2 {x>0}
{x=5} x=x+2 {x=T7}

Postconditions and Their Strength

What is the relationship between these postconditions?

{x=5} x:=x+2 {x>0}
{x=5} x=x+2 {x=T7}
» weakest conditions (predicates) correspond to largest sets

» strongest conditions (predicates) correspond to smallest sets
that satisfy a given property.
(Graphically, a stronger condition x > 0 Ay > 0 denotes one

quadrant in plane, whereas a weaker condition x > 0 denotes the
entire half-plane.)

Strongest Postconditions

Strongest Postcondition

Definition: For PC S, r C S x S,
sp(P,r)={s'| 3s.s€ PA(s,s') € r}
This is simply the relation image of a set.

r

Weakest Preconditions

Weakest Precondition
Definition: for Q € S, r C S x S,
wp(r, Q) = {s | Vs'.(s,s') er— s € Q}

Note that this is in general not the same as sp(Q, r—!) when then
relation is non-deterministic or partial.

r

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:
> {PI{Q}
» P Cwp(r,Q)
» sp(P,r) C Q

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

> {PI{Q}

> P C wp(r,Q)

» sp(P,r) C Q
Proof. The three conditions expand into the following three
formulas

» Vs,s'. [(se PA(s,s')er)—= s € Q]

» Vs. [se P— (Vs'.(s,s) € Q)]

» Vs'. [(3s.s€ PA(s,s') € P) = s’ € Q]
which are easy to show equivalent using basic first-order logic
properties.

Lemma: Characterization of sp
sp(P,r) is the the smallest set Q such that {P}r{Q}, that is:

> {P}r{sp(P,r)}
> YQ C S. {P}{Q} = sp(P.r) C Q

r

{P} r{Q}&Vs,s’ €S.(sePA(s,s)er—seQ)
sp(P,r)={s" | Is.s € PA(s,s') er}

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then
reduce to:

> sp(P,r) C sp(P,r)
» VP CS.sp(P,r)CQ—sp(P,r) CQ

Lemma: Characterization of wp

wp(r, Q) is the largest set P such that {P}r{Q}, that is:

> {wp(r, Q)}r{Q}
> VP CS. {P}r{Q} = P C wp(r,Q)

r

{PYr{Q}&Vs,s'€S.(se PA(s,s')er—s€Q)
wp(r, Q) ={s | Vs'.(s,s') e r = s € Q}

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then
reduce to:

» wp(r, Q) C wp(r, Q)
» VP CS. PCwp(r,Q) — P C wp(r,Q)

Exercise: Postcondition of inverse versus wp

Lemma:

5\ Wp(r, Q) :SP(S\ Q, ril)

In other words, when instead of good states we look at the
completement set of “error states”, then wp corresponds to doing
sp backwards.

Note that r—t = {(y,x) | (x,y) € r} and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

5\ Wp(r, Q) :SP(S\ Q, ril)

In other words, when instead of good states we look at the
completement set of “error states”, then wp corresponds to doing
sp backwards.

Note that r—t = {(y,x) | (x,y) € r} and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order
logic properties.

