
Lecture 4
Refinement, Equivalence, and Synthesis

Viktor Kuncak

Local Mutable Variables

Local Variables

Assume our global variables are V = {x , z}
Program P introduces a local variable y inside a nested block:

x = x + 1; {var y ; y = x + 3; z = x + y + z}; x = x + z

R(P) should be a relation between (x , z) and (x ′, z ′).
Each statement should be relation between variables in scope.
Inside the block we have variables V1 = {x , y , z}. For assignment
statement c : z = x + y + z ,
R(c) is a relation between x , y , z and x ′, y ′, z ′.
Convention: consider the initial values of variables to be arbitrary
R(y = x + 3; z = x + y + z) =
y ′ = x + 3 ∧ z ′ = 2x + 3 + z ∧ x ′ = x

R({var y ; y = x + 3; z = x + y + z})= z ′ = 2x + 3 + z ∧ x ′ = x

Local Variable Translation

RV (P) is formula for P in the scope that has the set of variables V
For example,

RV (x = t) = x ′ = t ∧
∧

v∈V \{x}

v ′ = v

Then define
RV ({var y ;P}) = ∃y , y ′.RV∪{y}(P)

Exercise: express havoc(x) using var.

RV (havoc(x)) ⇐⇒ RV ({var y ; x = y})

Exercise: give transformation that lifts all variables to be global

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

Variables V = {x1, . . . , xn}
Translation of R(havoc(y1, . . . , ym)):∧

v∈V \{y1,...,ym}

v ′ = v

Exercise: the resulting formula is the same as for:

havoc(y1); . . . ; havoc(ym)

Thus, the order of distinct havoc-s does not matter.

Programs and Specs are Relations

program: x = x + 2; y = x + 10
relation: {(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
formula: x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z

Specification:

z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0)

Adhering to specification is relation subset:

{(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
⊆ {(x , y , z , x ′, y ′, z ′) | z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))}

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x , y , z}
Formula for relation (talks only about resulting state):

z ′ = z ∧ x ′ > 0 ∧ y ′ > 0

Corresponding program:

havoc(x , y); assume(x > 0 ∧ y > 0)

Formula for relation:

z ′ = z ∧ x ′ > x ∧ y ′ > y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 = x; y0 = y;
havoc(x,y);
assume(x > x0 && y > y0)
}

Writing Specs Using Havoc and Assume

Global variables V = {x1, . . . , xn}
Specification

F (x1, . . . , xn, x
′
1, . . . , x

′
n)

Becomes

{ var y1, . . . , yn;
y1 = x1; . . . ; yn = xn;
havoc(x1, . . . , xn);
assume(F (y1, . . . , yn, x1, . . . , xn)) }

Program Refinement and Equivalence
For two programs, define refinement P1 v P2 iff

R(P1)→ R(P2)

is a valid formula.
(Some books use the opposite meaning of v.)
As usual, P2 w P1 iff P1 v P2.

I P1 v P2 iff ρ(P1) ⊆ ρ(P2)

Define equivalence P1 ≡ P2 iff P1 v P2 ∧ P2 v P1

I P1 ≡ P2 iff ρ(P1) = ρ(P2)

Example for V = {x , y}

{var x0; x0 = x ; havoc(x); assume(x > x0)} w (x = x + 1)

Proof: Use R to compute formulas for both sides and simplify.

x ′ = x + 1 ∧ y ′ = y → x ′ > x ∧ y ′ = y

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P0

Refine the program until it becomes deterministic and efficiently
executable.

P0 w P1 w . . . w Pn

Example:

havoc(x); assume(x > 0); havoc(y); assume(x < y)
w havoc(x); assume(x > 0); y = x + 1
w x = 42; y = x + 1
w x = 42; y = 43

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if P1 v P2 then (P1;P) v (P2;P)
Version for relations: (p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

Theorem: if P1 v P2 then (P;P1) v (P;P2)
Version for relations: (p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

Theorem: if P1 v P2 and Q1 v Q2 then

(if (∗)P1 else Q1) v (if (∗)P2 else Q2)

Version for relations:
(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

Checking Commutativity of Commands

Associativity of Commands

Under what conditions on commands c1, c2 is

c1; (c2; c3) ≡ (c1; c2); c3

always

Commutativity of Commands

Under what conditions on commands c1, c2 is

c1; c2 ≡ c2; c1

In general, when the resulting relations are equal and formulas
equivalent, i.e. iff

R(c1; c2) ⇐⇒ R(c2; c1)

is a valid formula (true for all variables).
Example: does this hold?

(x = x + 1; y = x + 2) ≡ (y = x + 2; x = x + 1)

Show formulas for each sides—not equivalent:

x ′ = x + 1 ∧ y ′ = x + 3 x ′ = x + 1 ∧ y ′ = x + 2

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity
equivalence holds

Example 1:

(x = 2∗x+7∗z ; y = 5∗y +z) ≡ (y = 5∗y +z ; x = 2∗x+7∗z)

Can you state a generalization of the above example?
Example 2:

(x = x + 1; x = x + 5) ≡ (x = x + 5; x = x + 1)

Requires knowing properties of +.

Preserving Domain in Refinement

What is the domain of a relation?

Given relation r ⊆ A× B for any sets A,B, we define domain of r
as

dom(r) = {a | ∃b. (a, b) ∈ r}

when r is a total function, then dom(r) = A

I a typical case if r is an entire program

Let r = {(x̄ , x̄ ′) | F}, FV (F) ⊆ Var ∪ Var ′, Var ′ = {x ′ | x ∈ Var}.
Then, dom(r) = {x̄ | ∃x̄ ′.F}

I computing domain = existentially quantifying over primed vars

Example: for Var = {x , y}, R(x = x + 1) = x ′ = x + 1 ∧ y ′ = y .
The formula for the domain is: ∃x ′, y ′. x ′ = x + 1 ∧ y ′ = y ,
which, after one-pint rule, reduces to true.

I All assignments have true as domain.

Preserving Domain

It is not interesting program development step P w P ′ is P ′ is
false, or is false for most inputs.
Example (Var = {x , y})(

havoc(x); assume(x + x = y)
)
w

(
assume(y = 6); x = 3

)
Refinement P w Q, ensures R(Q)→ R(P). A consequence is
(∃x̄ ′.R(Q))→ (∃x̄ ′.R(P)).
We additionally wish to preserve the domain of the relation
between x̄ , x̄ ′

I if P has some execution from x̄ ending in x̄ ′

I then Q should also have some execution, ending in some
(possibly different) x̄ ′ (even if it has fewer choices)

(∃x̄ ′.R(P))↔ (∃x̄ ′.R(Q))

So, we want relations to be smaller or equal, but domains equal.

Domains in the Example

Consider our example P w P ′(
havoc(x); assume(x + x = y)

)
w

(
assume(y = 6); x = 3

)
I R(P) = x ′ + x ′ = y ′ ∧ y ′ = y

I R(P ′) = x ′ = 3 ∧ y ′ = 6 ∧ y ′ = y

Does P w P ′ really hold? yes

Now consider the right hand side:

I domain of P is ∃x ′, y ′.x ′ + x ′ = y ∧ y ′ = y

I equivalent to: y%2 = 0

I domain of P is: ∃x ′, y ′.x ′ = 3 ∧ y ′ = 6 ∧ y ′ = y

I equivalent to: y = 6

Does domain formula of P ′ imply the domain formula of P? no

Preserving Domain: Exercise

Given P:
havoc(x); assume(x + x = y)

Find P1 and P2 such that

I P w P1 w P2

I no two programs among P,P1,P2 are equivalent

I programs P, P1 and P2 have equivalent domains

I the relation described by P2 is a partial function

Complete Functional Synthesis

Synthesis from Relations

Software Synthesis Procedures
Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, Philippe Suter
Communications of the ACM, Vol. 55 No. 2, Pages 103-111
http://doi.org/10.1145/2076450.2076472

http://doi.org/10.1145/2076450.2076472

Example of Synthesis

Input:

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) => (
h ∗ 3600 + m ∗ 60 + s == totsec
&& 0 <= m && m < 60
&& 0 <= s && s < 60))

Output:

val (hours, minutes, seconds) = {
val loc1 = totsec div 3600
val num2 = totsec + ((−3600) ∗ loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)

(loc1, loc2, loc3)
}

Complete Functional Synthesis

Domain-preserving refinement algorithm that produces a partial
function

I assignment: res = choose x. F

I corresponds to: {var x; assume(F); res = x}
I we refine it preserving domain into: assume(D); res = t

(where t does not have ’choose’)

More abstractly, given formula F and variable x find

I formula D

I term t not containing x

such that, for all free variables:

I D → F [x := t] (t is a term such that refinement holds)

I D ⇐⇒ ∃x .F (D is the domain, says when t is correct)

Consequence of the definition: D ⇐⇒ F [x := t]

From Quantifier Elimination to Synthesis

Quantifier Elimination

If ȳ is a tuple of variables not containing x , then

∃x .(x = t(ȳ) ∧ F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

Synthesis

choose x .(x = t(ȳ) ∧ F (x , ȳ))

gives:

I precondition F (t(ȳ), ȳ), as before, but also

I program that realizes x , in this case, t(ȳ)

Handling Disjunctions

We had
∃x .(F1(x) ∨ F2(x))

is equivalent to
(∃x .F1(x)) ∨ (∃x .F2(x))

Now:
choose x .(F1(x) ∨ F2(x))

becomes:

if (D1) (choose x .F1(x)) else (choose x .F2(x))

where D1 is the domain, equivalent to ∃x .F1(x) and computed
while computing choose x .F1(x).

Framework for Synthesis Procedures

We define the framework as a transformation

I from specification formula F to

I the maximal domain D where the result x can be found, and
the program t that computes the result

〈D | t〉 denotes: the domain (formula) D and program (term) t
Main transformation relation `

choose x .F ` 〈D | t〉

means

I D → F [x := t] (t is a term such that refinement holds)

I D ⇐⇒ ∃x .F (D is the domain, says when t is correct)

Because F [x := t] implies ∃x .F , the above definition implies that
D, F [x := t] and ∃x .F are all equivalent.

Rule for Synthesizing Conditionals

choose x .F1 ` 〈D1 | t1〉 choose x .F2 ` 〈D2 | t2〉
choose x .(F1 ∨ F2) ` 〈D1 ∨ D2 | if (D1) t1 else t2〉

To synthesize the thing below the — , synthesize the things above
and put the pieces together.

Test Terms Methods for Presburger Arithmetic Synthesis

Recall that the most complex step in QE for PA was replacing

∃x .F1(x)

with
L∨

k=1

N∨
i=1

F1(ak + i)

Now we transform choose x .F1(x) first into:

choose x .
L∨

k=1

N∨
i=1

(x = ak + i ∧ F1(x))

Then apply:

I rule for conditionals

I one-point rule

Synthesis using Test Terms

choose x .
L∨

k=1

N∨
i=1

(x = ak + i ∧ F1)

produces the same precondition as the result of QE, and the
generated term is:

if (F1[x := a1 + 1]) a1 + 1
elseif (F1[x := a1 + 2]) a1 + 2
. . .
elseif (F1[x := ak + i]) ak + i
. . .
elseif (F1[x := aL + N]) aL + N

Linear search over the possible values, taking the first one that
works.
This could be optimized in many cases.

Synthesizing a Tuple of Outputs

choose x .F ` 〈D1 | t1〉 choose y .D1 ` 〈D2 | t2〉
choose (x , y).F ` 〈D2 | (t1[y := t2], t2)〉

Note that y can appear inside D1 and t1, but not in D2 or t2

Substitution of Variables

In quantifier elimination, we used a step where we replace M · x
with y . Let F be a formula in which x occurs only in the form
M · x .
What is the corresponding rule?

choose y .(F [(M · x) := y] ∧ (M|y)) ` 〈D | t〉
choose x .F ` 〈D | t[y := t/M]〉

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by z and consider the
synthesis problem:

choose x . F

What is the verification condition that checks whether the solution
for x is unique?
Solution is not unique if this PA formula is satisfiable:

F ∧ F [x := y] ∧ x 6= y

If we find such x , y , z we report z as an example input for which
there are two possible outputs, x and y .

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution
does not exist.

Let the variables in scope be denoted by z and consider the
synthesis problem:

choose x . F

What is the verification condition that checks if there are cases
when no solution x exists?
Check satisfiability of this PA formula:

¬∃x .F

If there is a satisfying value for this formula, z , report it as an
example for which no solution for x exists.

