Lecture 2
Presburger Arithmetic and Quantifier Elimination

Viktor Kuncak

History of Presburger Arithmetic

Integer arithmetic with logical operations (and, or, not),
quantifiers, only addition as an arithmetic operation, and < and =
as a relation.

» minimalistically one can define a variant of it over
non-negative natural numbers as having A, —,V, +, = as the
only symbols

One of the earliest theories shown decidable. Mojzesz Presburger
gave an algorithm for quantifier elimination in 1929.
> a student of a famous logician Alfred Tarski

» Tarski gave him this question for his MSc thesis

The result at this time was of interest to mathematical logic and
foundations of mathematics

» only much later it found applications in automated reasoning
(Cooper 1972, Derek C. Oppen - STOC 1973)

Presburger Arithmetic for Verification
res =0
i =x
while // invariant I(res,i): res + 2xi == 2xx && 0 <= i
(i>0)1
i=i—1
res = res + 2

}

Verification condition (VC) for preservation of loop invariant:
[I(res,i)Ni" =i —1NAres'=res+2N0<i] — I(res’, ")
To prove that this VC is valid, we check whether its negation
I(res,i)ANi" =i—1Ares' =res+2AN0<iA—l(res',i")
is satisfiable, i.e. whether this PA formula is true:

Ix, res, i, res’, i [re5—|—2i:2x AOZSiI AO<i A
i"=i—1 A res’ =res+2 A
—(res’ +2i" =2x A 0< /)]

Introducing: One-Point Rule

If y is a tuple of variables not containing x, then

Ix(x=t(F)AF(x,7)) <= F(t(y),7)
Proof:

— : Consider the values of y such that there exists x, say xi, for
which x3 = t(y) A F(x1,y). Because F(xi,y) evaluates to
true and the values of x; and t(y) are the same, F(t,y) also
evaluates to true.

< : Let y be such that F(t,y) holds. Let x be the value of t(¥).
Then of course x = t(y) evaluates to true and so does
F(x,y). So there exists x for which x = t(y) A F(x,¥) holds.
One point rule:

replaces left side (LHS) of equivalence by the right side (RHS).
Flattening, used when t is complex, replaces RHS by LHS.

Dual One-Point Rule for V

Ux.(x = t(7) = F(x, 7)) < F(t(7),7)

To prove it, negate both sides:

Ix.(x = t(7) A—F(x,7)) <= —F(t(y),7)

so it reduces to the rule for 3.

Using One-Point Rule on Negated Verification Condition
3
Ix,res, i res’ . i'. [res+2i=2x AN 0<i A O<iA
i"'=i-1 A res"=res+2A
—(res’ +2i" =2x A 0 < 1)

Using One-Point Rule on Negated Verification Condition

Ix,res, i res’ . i'. [res+2i=2x AN 0<i A O<iA
i"'=i-1 A res"=res+2A
—(res’ +2i" =2x A 0 < 1)

dx, res, i, res’. [res—|—2i:2x ANOZi AO<i A
res’ =res + 2 A\
—(res’ +2(i—1) =2x A Ogi—l)]

Using One-Point Rule on Negated Verification Condition

Ix,res, i res’ . i'. [res+2i=2x AN 0<i A O<iA
i"'=i-1 A res"=res+2A
—(res’ +2i" =2x A 0 < 1)

dx, res, i, res’. [res—|—2i:2x ANOZi AO<i A
res’ =res + 2 A\
—(res’ +2(i—1) =2x A Ogi—l)]

dx, res, i. [res+2i:2x ANOZi ANO<i A
—(res+2+2(i—1)=2x A Ogi—l)]

Using One-Point Rule on Negated Verification Condition

Ix,res, i res’ . i'. [res+2i=2x AN 0<i A O<iA
i"'=i-1 A res"=res+2A
—(res’ +2i" =2x A 0 < 1)

dx, res, i, res’. [res—|—2i:2x ANOZi AO<i A
res’ =res + 2 A\
—(res’ +2(i—1) =2x A Ogi—l)]

dx, res, . [res+2i:2x ANOZi ANO<i A
—(res+2+2(i—1)=2x A Ogi—l)]

Ix,res,i. [res=2x-2i A O<i AO<iA
—(res+2+2(i—1)=2x A 0<i—1)]

Using One-Point Rule on Negated Verification Condition

Ix,res, i res’ . i'. [res+2i=2x AN 0<i A O<iA
i"'=i-1 A res"=res+2A
—(res’ +2i" =2x A 0 < 1)

dx, res, i, res’. [res—|—2i:2x ANOZi AO<i A
res’ =res + 2 A\
—(res’ +2(i—1) =2x A ogi—l)]

dx, res, . [res+2i:2x ANOZi ANO<i A
—(res+2+2(i—1)=2x A Ogi—l)]

Ix,res,i. [res=2x-2i A O<i AO<iA
—(res+2+2(i—1)=2x A 0<i—1)]

Ix, 0 [0<i AO<iA
—(2x —2i+2+2(i—1)=2x A 0<i—1)]
| !

Simplifies to 3x,i.0 < i A (0 < i — 1) and then to_false.

1
(s =

<(

But there is more

One-point rule is one of the many steps used in
quantifier elimination procedures.

Quantifier Elimination (QE)

Given a formula F(y) containing quantifiers find a formula G(y)
» equivalent to F(y)
» that has no quantifiers
» and has a subset (or equal set) of free variables of F
Note

» Equivalence: For all y, F(y) and G(y) have same truth value
~> we can use G(y) instead of F(y)

» No quantifiers: easier to check satisfiability of G(¥)
y is a possibly empty tuple of variables

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F?

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F?
Are there any variables in the resulting formula?

We are lucky when a theory has (“admits”) QE

Suppose F has no free variables (all variables are quantified).
What is the result of applying QE to F?
Are there any variables in the resulting formula?

» No free variables: they are a subset of the original, empty set
» No quantified variables: because it has no quantifiers ©

Formula without any variables! Example:
2+4=7)v(1+1=2)

We check the truth value of such formula by simply evaluating it!

Using QE for Deciding Satisfiability /Validity

» To check satisfiability of H(y): eliminate the quantifiers from
3y.H(y) and evaluate.

» Validity: eliminate quantifiers from Vy.H(y) and evaluate

We can even check formulas like this:
Vx,y,r.3z. 5<rAx+r<y)—=(x<zAz<yA3|z)

Here 3|z denotes that z is divisible by 3.

Does Presburger Arithmetic admit QE?

Does Presburger Arithmetic admit QE?

Depends on the particular set of symbols!
Given a formula F(y) containing quantifiers find a formula G(y)

» equivalent to F(y)
» that has no quantifiers
» and has a subset (or equal set) of free variables of F

If we lack some operations that can be expressed using quantifiers,
there may be no equivalent formula without quantifiers.

» dy.x =y + y + y, so we better have divisibility

Quantifier elimination says: if you can define some relationship
between variables using an arbitrary, possibly quantified, formula F,

r L (x,y) | F(x.y)}

then you can also define same r using another quantifier-free
formula G.

Presburger Arithmetic (PA)

We look at the theory of integers with addition.

v

introduce constant for each integer constant

» to be able to restrict values to natural numbers when needed,
and to compare them, we introduce <

> introduce not only addition but also subtraction
> to conveniently express certain expressions, introduce function
my for each K € Z, to be interpreted as multiplication by a
constant, mx(x) = K - x. We write mk as K - x.
Note: there is no multiplication between variables in PA
> to enable quantifier elimination from dx.y = K - x introduce
for each K predicate K|y (divisibility, y%K = 0)
The resulting language has these function and relation symbols:
{+,— =, <}U{K | KeZ}U{(K-)|KeZ}U{(K|) | KeZ}
We also have, as usual: A,V,—,— and also: 3,V

Example

Eliminate y from this formula:
Ely.(3y—2w+1 >-—wA2y—6<zA4| 5y+1)

What should we do first?

Example

Eliminate y from this formula:
Jy. 3y—2w+1>-wA2y—-6<zA4|5y+1

What should we do first?
Simplify /normalize what we can using properties of integer
operations:

Jdy. 0<—w+3y+1 AN 0<—-2y+z+6 A 4|5y+1

Example

Eliminate y from this formula:
Jy. 3y—2w+1>-wA2y—-6<zA4|5y+1

What should we do first?
Simplify /normalize what we can using properties of integer
operations:

Jdy. 0<—w+3y+1 AN 0<—-2y+z+6 A 4|5y+1

First we will consider only eliminating existential from a
conjunction of literals.

Conjunctions of Literals

Atomic formula: a relation applied to argument.
Here, relations are: =, <, K|_. So, atomic formulas are:
=t t<t, K|t

Conjunctions of Literals

Atomic formula: a relation applied to argument.

Here, relations are: =, <, K|_. So, atomic formulas are:
ti=t), t<t, K|t

Literal: Atomic formula or its negation. Example: =(x =y + 1)

Conjunction of literals: Ly A ... AL,

» no disjunctions, no implications

> negation only applies to atomic formulas

We first consider the quantifier elimination problem of the form:
dy. LiA... AL,

This will prove to be sufficient to eliminate all quantifiers!

Eliminating 34 from conjunction of literals suffices

Can we eliminate 3 from any quantifier-free formula?
Ix.F(x,y)

where F is quantifier-free?

Eliminating 34 from conjunction of literals suffices

Can we eliminate 3 from any quantifier-free formula?
Ix.F(x,y)

where F is quantifier-free?
Formula without quantifiers has A,V,— applied to atomic formulas.

Eliminating 34 from conjunction of literals suffices

Can we eliminate 3 from any quantifier-free formula?
Ix.F(x,y)

where F is quantifier-free?
Formula without quantifiers has A,V,— applied to atomic formulas.
Convert F to disjunctive normal form:

F <— \/ C;
i=1

each C; is a conjunction of literals.

Eliminating 34 from conjunction of literals suffices

Can we eliminate 3 from any quantifier-free formula?
Ix.F(x,y)

where F is quantifier-free?
Formula without quantifiers has A,V,— applied to atomic formulas.
Convert F to disjunctive normal form:

m
F — \/ C:
i=1
each C; is a conjunction of literals.

m m

[ax.\/c,] = \/(3x.G)

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?

Negation propagation:

“(pAq) ~ (=p)V(~q)

=(pVq) ~ (=p)A(—q)
—mp ~ P

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?

Negation propagation:

“(pAq) ~ (=p)V(~q)

=(pVq) ~ (=p)A(—q)
—mp ~ P

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a/\(bl\/bz) ~ (a/\bl)\/(a/\bg)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?

How does disjunctive normal form (DNF) transformation
work?

Which steps should we use?

Negation propagation:

“(pAq) ~ (=p)V(~q)

=(pVq) ~ (=p)A(—q)
—mp ~ P

Result is negation-normal form, NNF
NNF transformation is polynomial (exercise!)
Distributivity

a/\(bl\/bz) ~ (a/\bl)\/(a/\bg)

This can lead to exponential explosion.
Can we obtain equivalent DNF formula without explosion?
No! See exercise.

Eliminating from quantifier free formulas

Nested Existential Quantifiers

xy.Ix0.3x3. Fo(x1, X2, X3, ¥)

Nested Existential Quantifiers

xy.Ix0.3x3. Fo(x1, X2, X3, ¥)

Ix1.3x0. F1(x1, X2, ¥)

Nested Existential Quantifiers

xy.Ix0.3x3. Fo(x1, X2, X3, ¥)
Ix1.3x0. F1(x1, X2, ¥)

3Xl-F2(Xl7.)_/)

Nested Existential Quantifiers

xy.Ix0.3x3. Fo(x1, X2, X3, ¥)
Ix1.3x0. F1(x1, X2, ¥)
Ix1.F2(x1,¥)

F3(y)

Nested Existential Quantifiers

xy.Ix0.3x3. Fo(x1, X2, X3, ¥)
Ix1.3x0. F1(x1, X2, ¥)
Ix1.F2(x1,¥)

F3(y)
®

Universal Quantifiers
If Fo(x,y) is quantifier-free, how to eliminate

VY'FO(Xa)_/)

Universal Quantifiers
If Fo(x,y) is quantifier-free, how to eliminate

Vy.Fo(x,¥)
Equivalence (property always holds if there is no counterexample):
Vy.Fo(x,y) < ﬁ[EIy.—'FO(X,)_/)}
It thus suffices to process:
ﬂ[EIy.ﬂFo(x,)'/)]
Note that =Fp(x, y) is quantifier-free, so we know how to handle it:
dy.~Fo(x,y) ~ Fu(y)

Therefore, we obtain
-F1(y)

Removing any alternation of quantifiers: illustration

Alternation: switch between existentials and universals
Ix1.Vx2.Vx3.3x4. Fo(x1, X2, X3, X4, V)

Axy.—3xp.3x3.73xa. Fo(x1, X2, X3, X4, V)

HXl.ﬁ3X2.3X3-_‘F1(X17X2a X37)_/)

E|X1.—E|X2.F2(X17X2a}_/)

E|X1-_‘F3(X17}_/)
Fa(y)

Each quantifier alternation involves a disjunctive normal form
transformation.
In practice, we do not have many alternations.

Back to Presburger Arithmetic

Consider the quantifier elimination problem of the form:
dy. LiAN... AL,

where L; are literals from PA.
Note that, for integers:

» (x<y) <= y<x
> x<y <<= x+1<y
> x <y &= x<y—+1

We use these observations below.
Instead of < we choose to use < only.
We do not write x > y but only y < x.

Normalizing Literals for PA

Normal Form of Terms: All terms are built from K, 4+, —, K - _,
so using standard transformations they can be represented as:
Ko + Y71 Kixi We call such term a linear term.

Normal Form for Literals in PA: EY' <y A (3O

. [x<y a (3lxraviix)

3. [x ey A 31DV
—|(t1 = tz) becomes t) < b Vi < ty Kegn 3‘“.‘.1)]

ti =ty becomes t1 < tr +1Ata <t +1 (x)
K—1
—(K | t) becomes \/ Klt+i
i=1
t1 < tp becomes 0 < th — 11

—(t; < tp) becomes t < t; + 1

To remove disjunctions we generated, compute DNF again.
(*) We transformed equalities just for simplicity. Usually we handle
them directly.

Why one-point rule will not be enough

Need to handle inequalities, not just equalities

If we have integers, we cannot always divide perfectly.
Variable to eliminate can occur not as y but as, e.g. 3y

Exposing the Variable to Eliminate: Example K|t

3¢ t=¢- K
3¢, ct=c. (K
\ ¢k

c-t
dy. O<—W+ﬂ—i—1 A 0<—g+z+6 VAN 4\&4—1

Least common multiple of coefficients next to y,
M = lem(3,2,5) = 30
Make all occurrences of y in the body have this coefficient:

Jy. 0< —10w + 30y + 10 A 0 < —30y + 15z + 90 A 24 | 30y + 6

Now we are quantifying over y and using 30y everywhere.
Let x denote 30y.
It is not an arbitrary x. It is divisible by 30.

dx. 0< —10w+x+10A 0 < —x+15z2+90 A 24| x+6 A 30| x

Exposing the Variable to Eliminate in General

Eliminating y from conjunction F(y) of literals:

»0<t

» K|t
where t is a linear term. To eliminate dy from such conjunction,
we wish to ensure that the coefficient next to y is one or minus

one.
Observation:

» 0 < tisequivalentto 0 < ct
» K | tisequivalent to cK | ct

for ¢ a positive integer.
Let K1,..., K, be all coefficients next to y in the formula.
Let M be a positive integer such that K; | M forall i, 1 <i<n

» for example, let M be the least common multiple

M = lem(Ki, ..., Kp)

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kj;y by constant
M/IKil
> the point is, M is divisible by |Kj| by construction

What is the coefficient next to y in the resulting formula?

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kj;y by constant
M/IKil
> the point is, M is divisible by |Kj| by construction

What is the coefficient next to y in the resulting formula?
M or —M

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kj;y by constant
M/IKil
> the point is, M is divisible by |Kj| by construction

What is the coefficient next to y in the resulting formula?
M or —M

We obtain a formula of the form Jy.F(M - y).
Letting x = My, we conclude the formula is equivalent to

Ix. F(x) A (M| x)

What is the coefficient next to y in the resulting formula?

Ensuring Coefficient One

Multiply each literal where y occurs in subterm Kj;y by constant
M/IKil
> the point is, M is divisible by |Kj| by construction

What is the coefficient next to y in the resulting formula?
M or —M

We obtain a formula of the form Jy.F(M - y).
Letting x = My, we conclude the formula is equivalent to

Ix. F(x) A (M| x)

What is the coefficient next to y in the resulting formula?
lor—-1

Lower and upper bounds: I x EF (x) I\G(o')]
(Fx. [FV) A G

Consider the coefficient next to x in 0 < t. If it is —1, move the
term to left side. If it is 1, move the remaining terms to the left

side. We obtain formula Fi(x) of the form
A%, aex A x<h

/\a,'<X/\/\X<bj/\/\K,"(X+ti)
i=1 j=1 i=1

If there are no divisibility constraints (D = 0), what is the formula
equivalent to?

Lower and upper bounds:

Consider the coefficient next to x in 0 < t. If it is —1, move the
term to left side. If it is 1, move the remaining terms to the left
side. We obtain formula Fi(x) of the form

/\a,<x/\/\x<b /\/\K\ X+ t;)
= = _J F1(Y\

If there are no divisibility constraints (D = 0), what is the formula
equivalent to?

X
1
/rn_;mg min b; — 1 which is equivalent to /\a,- +1< b
i J .
i

Replacing variable by test terms

There is a an alternative way to express the above condition by
replacing F1(x) with \/, Fi(tx) where tx do not contain x. This is
a common technique in quantifier elimination. Note that if Fi(tx)
holds then certainly 3x.F1(x).

What are example terms t; when D = 0 and L > 07 Hint: ensure
that at least one of them evaluates to maxa; + 1.

BxlFl ()‘-3 L x
>y \/ Fl(ak + 1) t_l;LQ\-,

k=1 =t i,
What if D > 0 i.e. we have additional divisibility constraints?

L N
\/ \/ Fl(ak + i)

k=1i=1

What is N? least common multiple of Ky,...,Kp
Note that if F1(u) holds then also Fi(u — N) holds.

Back to Example

Ix. =10+ 10w < x Ax <90+ 152 A 24 | x + 6 A 30|x

Back to Example

Ix. =10+ 10w < x Ax <90+ 152 A 24 | x + 6 A 30|x

“\04\0 < —10+10w +(~10 IO w+{ <9415z

120
\/ 10w +i < 100+ 15270 < iA24 | 10w — 4+ A30[10w — 10+
i=1

Special cases

What if L =07 We first drop all constraints except divisibility,
obtaining F>(x)

D
/\ Ki | (x +t)
i=1

and then eliminate quantifier as

N
\/ Fa(i)
i=1

It works

We finished describing a complete quantifier elimination algorithm
for Presburger Arithmetic!

It works

We finished describing a complete quantifier elimination algorithm
for Presburger Arithmetic!
This algorithm and its correctness prove that:

» PA admits quantifier elimination

» Satisfiability, validity, entailment, equivalence of PA formulas
is decidable
We can use the algorithm to prove verification conditions.
Even if not the most efficient way, it gives us insights on
which we can later build to come up with better algorithms.
» Quantified and quantifier-free formulas have the same
expressive power

Many other properties follow (e.g. interpolation).

Interpolation For Logical Theories %20k -l0o<x

Interpolation can be useful in generalizing counterexamples to
invariants.

Universal Entailment: we will write F; |= F> to denote that for all
free variables of F1 and F», if F1 holds then F> holds.

Given two formulas such that

FO()_<7.)_/)): Fl()_/vz)

an interpolant for Fi, F» is a formula /(y), which has only variables
common to Fy and F1, such that

> Fo(x,y) = 1(y). and

> I(y) E Ay, 2)
In other words, the entailment between Fy and F; can be explained
through 1(¥).
Logic has interpolation property if, whenever Fy = F1, then
there exists an interpolant for Fg, F;.
We often wish to have simple interpolants, for example ones that
are quantifier free.

Quantifier Elimination Implies Interpolation

If logic has QE, it also has quantifier-free interpolants.

Consider the formula My (ﬂ‘-‘—‘) ol\
VX, 7,2 EEO %,9) = Fi(7. z)] e (0 RY q)

pushing X into assumption we get W, lped)) V
Wzgal Fo (X,7) = B% 0w)] (w7ped)V g

.2 (@A) - AEA] (exedve

. . . H(E) -
and pushing z into conclusion wevget CM -?Q‘“)) ’9

vx,3.[Fol%,7) — (v2.Fi(7.2))|

Given two formulas Fg and F7, each of the formulas satisfies
properties of interpolation:

» 3%.Fo(%, 7)
> Vz.F1(7,2)
Applying QE to them, we obtain quantifier-free interpolants.

More on QE: One Direction to Make it More Efficient

Avoid transforming to conjunctions of literals: work directly on
negation-normal form. The technique is similar to what we
described for conjunctive normal form.

-+ no need for DNF

- we may end up trying irrelevant bounds

This is the Cooper’s algorithm:

» Reddy, Loveland: Presburger Arithmetic with Bounded
Quantifier Alternation. (Gives a slight improvement of the
original Cooper's algorithm.)

» Section 7.2 of the Calculus of Computation Textbook

Eliminate Quantifiers: Example
dy.3x. x < -2A1-5y <xAl+y<13x

MIx. Bx2-26 A 13768 ci3x A A4y <3y
2= 13y

- - 3
3\1.33_2'(26 A 3 GCy <Z A LliyeZ A l\:

X Fa (2)
ay, \/ Fy (-26-¢)

w12

3y V 63'6§7 < —26-C A 14y <=26-C N 13\-26—t)
1 =1 ‘:-=_|3 |?>1’31

37 13- GS‘I<‘33 A Lt+y<—31
Iy, S2 <GSy Ay <O

Check whether the formula is satisfiable
X<y4+2 ANy<x+1lAx=3kA(y=6p+1lVvy=6p—1)

HW

Apply quantifier elimination

Ix. Bx+1<10V7x—6<7) A 2|x

AUy

Another Direction for Improvement

Handle a system of equalities more efficiently, without introducing
divisibility constraints too eagerly.

Hermite normal form of an integer matrix.

Ax =b

Eliminate variables x and y

5x+7y=aAx<yAN0<x

H W

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.
This theory is called dense linear order without endpoints

For example: = |yl (X':L; M.{)o)\/(‘i:*‘f’\ v<0)
Va.EIé.(]xl —x2| KON Y1 —yo| <6 = [3x1 +4y1 —3x0 —dyn| < €)

(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.

This theory is called dense linear order without endpoints
For example:

Va.EIé.(]xl —x2| KON Y1 —yo| <6 = [3x1 +4y1 —3x0 —dyn| < 5)

(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.
Answer: replace F(|t|) with, for example

(t>0AF(t))V(=(t>0)AF(-t))

Is there a way to remove |...| while increasing formula size only
linearly?

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.

This theory is called dense linear order without endpoints
For example:

Va.EIé.(]xl —x2| KON Y1 —yo| <6 = [3x1 +4y1 —3x0 —dyn| < 5)

(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.
Answer: replace F(|t|) with, for example

(t>0AF(t))V(=(t>0)AF(-t))

Is there a way to remove |...| while increasing formula size only
linearly?
(ii) Give quantifier elimination algorithm for this theory.

Quantifier Elimination for Linear Rational Arithmetic

Consider first-order formulas with equality and < relation,
interpreted over rationals.

This theory is called dense linear order without endpoints
For example:

Va.EIé.(]xl —x2| KON Y1 —yo| <6 = [3x1 +4y1 —3x0 —dyn| < 5)

(i) Show that absolute value can be defined in first-order logic in
terms of other linear operations and comparison.
Answer: replace F(|t|) with, for example

(t>0AF(t))V(=(t>0)AF(-t))

Is there a way to remove |...| while increasing formula size only
linearly?

(ii) Give quantifier elimination algorithm for this theory.

Solution is simpler than for Presburger arithmetic—no divisibility.

