
Synthesis, Analysis, and Verification
Lecture 01

Lectures: 
Prof. Viktor Kuncak
Prof. Ondrej Lhotak

Exercises and Labs: 
Etienne Kneuss
Mahsa Taziki

Introduction, Overview, Logistics

http://lara.epfl.ch/w/sav15:top

http://lara.epfl.ch/w/sav15:top


Today

Introduction and overview of topics

– Analysis and Verification

– Synthesis

Course organization and grading



SAV in One Slide

We study how to build software 
analysis, verification, and synthesis 

tools that automatically 
answer questions about software systems.

We cover theory and tool building through 
lectures, exercises, and labs.

Grade is based on
– 40% mid-term exam, 22 April 2015
– 15% assignments in labs and at home (1st quarter)
– 15% discussing, reporting on research papers (2nd quarter)
– 30% mini project, presented in the class (last week)



Good Textbook

A. Bradley, Z. Manna: 
Calculus of Computation
- Decision Procedures with Applications to Verification

Springer, 2007



Steps in Developing Tools
Modeling: establish precise mathematical meaning for:
software, environment, and questions of interest

– discrete mathematics, mathematical logic, algebra

Formalization: formalize this meaning using appropriate 
representation of programming languages and 
specification languages

– program semantics, compilers, theory of formal languages, 
formal methods

Designing algorithms: derive algorithms that manipulate such 
formal objects - key technical step

– algorithms, dataflow analysis, abstract interpretation, decision 
procedures, constraint solving (e.g. SAT), theorem proving

Experimental evaluation: implement these algorithms and 
apply them to software systems

– developing and using tools and infrastructures, 
learning lessons to improve and repeat previous steps



Comparison to other Sciences
Like science we model a part of reality (software systems and their environment) by 
introducing mathematical models. Models are by necessity approximations of reality, 
because 1) our partial knowledge of the world is partial and 

2) too detailed models would become intractable for automated reasoning
Specific to SAV is the nature of software as the subject of study, which has several 
consequences: 
• software is an engineering artifact: to an extent we can choose our reality through 

programming language design and software methodology
• software has complex discrete, non-linear structure: millions of lines of code, 

gigabytes of bits of state, one condition in if statement can radically change future 
execution path (non-continuous behavior)

• high standards of correctness: interest in details and exceptional behavior (bugs), 
not just in general trends of software behavior

• high standards along with large the size of software make manual analysis 
infeasible in most cases, and requires automation

• automation requires not just mathematical modeling, where we use everyday 
mathematical techniques, but also formal modeling, which requires us to specify 
the representation of systems and properties, making techniques from 
mathematical logic and model theory relevant

• automation means implementing algorithms for processing representation of 
software (e.g. source code) and representation of properties (e.g. formulas 
expressing desired properties), the study of these algorithms leads to questions of 
decidability, computational complexity, and heuristics that work in practice.



Analysis and Verification

auxiliary information
(hints, proof steps)



Questions of Interest

Example questions in analysis and verification 
(with sample links to tools or papers): 

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002


Car Industry



Car Industry



Essential Infrastructure: Northeast Blackout



Life-Critical Medical Devices

Radio Therapy

Nancy Leveson
Safeware: System Safety and Computers

Addison-Wesley, 1995



Life-Critical Medical Devices



French Guyana, June 4, 1996
t = 0 sec

t = 40 sec
$800 million software failure

Space Missions



Air Transport



Success Stories



ASTREE Analyzer

“In Nov. 2003, ASTRÉE was able to prove completely 
automatically the absence of any RTE in the primary 
flight control software of the Airbus A340 fly-by-
wire system, a program of 132,000 lines of C 
analyzed in 1h20 on a 2.8 GHz 32-bit PC using 300 
Mb of memory (and 50mn on a 64-bit AMD 
Athlon™ 64 using 580 Mb of memory).” 

• http://www.astree.ens.fr/

Now maintained by http://www.absint.com/

http://www.astree.ens.fr/
http://www.absint.com/


AbsInt

• 7 April 2005. AbsInt contributes to 
guaranteeing the safety of the A380, the 
world's largest passenger aircraft. The 
Analyzer is able to verify the proper response 
time of the control software of all components 
by computing the worst-case execution time 
(WCET) of all tasks in the flight control 
software. This analysis is performed on the 
ground as a critical part of the safety 
certification of the aircraft.

http://www.absint.com/releases/050427.htm


2014: Synopsis Buys Coverity

Synopsys, Inc. (Nasdaq:SNPS), a global leader providing software, IP 
and services used to accelerate innovation in chips and electronic 
systems, and Coverity, the leading provider of software quality, 
testing, and security tools, today signed a definitive agreement for 
Synopsys to acquire Coverity. Coverity products reduce the risk of 
quality and security defects, which can lead to the catastrophic 
failures that plague many of today’s large software systems. …

Under the terms of the definitive agreement, Synopsys will pay 
approximately $375 million, or $350 million net of cash acquired. 

…Since spinning out of a Stanford research project 10 years ago, 
Coverity has been developing revolutionary technology to find and 
fix defects in software code before it is released, improving 
software security.



Microsoft’s Static Driver Verifier
Static Driver Verifier (SDV) is a thorough, compile-time, static 
verification tool designed for kernel-mode drivers. SDV finds serious 
errors that are unlikely to be encountered even in thorough testing. 
SDV systematically analyzes the source code of Windows drivers 
that are written in the C language. SDV uses a set of interface rules 
and a model of the operating system to determine whether the 
driver interacts properly with the Windows operating system. 

…Development teams at Microsoft use SDV to improve the quality 
of the WDM, KMDF, and NDIS miniport drivers that ship with the 
operating system and the sample drivers that ship with the 
Windows Driver Kit (WDK).
SDV is included in the Windows Driver Kit (WDK) and supports all 
x86-based and x64-based build environments.

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx


Interactive Theorem Provers

• A Mechanically Checked Proof of IEEE 
Compliance of a Register-Transfer-Level 
Specification of the AMD K7 Floating Point 
Multiplication, Division and Square Root 
Instructions, doine using ACL2 Prover

• Formal certification of a compiler back-end, 
or: programming a compiler with a proof 
assistant. by Xavier Leroy

http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://doi.acm.org/10.1145/1111037.1111042


Recommended Reading

• Recent Research Highlights from the Communications 
of the ACM
– A Few Billion Lines of Code Later: Using Static Analysis to 

Find Bugs in the Real World

– Retrospective: An Axiomatic Basis for Computer 
Programming

– Model Checking: Algorithmic Verification and Debugging

– Software Model Checking Takes Off

– Formal Verification of a Realistic Compiler

http://video.epfl.ch/2656/1/10 

– seL4: Formal Verification of an Operating-System Kernel

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext
http://cacm.acm.org/magazines/2009/11/48424-model-checking-algorithmic-verification-and-debugging/fulltext
http://cacm.acm.org/magazines/2010/2/69362-software-model-checking-takes-off/fulltext
http://cacm.acm.org/magazines/2009/7/32099-formal-verification-of-a-realistic-compiler/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext
http://cacm.acm.org/magazines/2010/6/92498-sel4-formal-verification-of-an-operating-system-kernel/fulltext


WATCH: Prof. J Moore Lecture

Machines Reasoning about Machines

J Strother Moore, EPFL June 2011

http://slideshot.epfl.ch/play/suri_moore

http://slideshot.epfl.ch/play/suri_moore


Impact on Computer Science

Turing award is ACM’s most prestigious award and 
equivalent to Nobel prize in Computing

In the next slides are some papers written by the 
award winners connected to the topics of this class

http://awards.acm.org/homepage.cfm?srt=all&awd=140


• A Basis for a Mathematical Theory of Computation
by John McCarthy, 1961. 

“It is reasonable to hope that the relationship between 
computation and mathematical logic will be as fruitful in the 
next century as that between analysis and physics in the last. 
The development of this relationship demands a concern for 
both applications and for mathematical elegance.”

• Social processes and proofs of theorems and programs a 
controversial article by Richard A. De Millo, Richard J. Lipton, 
and Alan J. Perlis

• Guarded Commands, Nondeterminacy and Formal 
Derivation of Programs by Edsger W. Dijkstra from 1975, and 
other Manuscripts

• Simple word problems in universal algebras by D. Knuth and 
P. Bendix (see Knuth-Bendix_completion_algorithm), used in 
automated reasoning

http://www-formal.stanford.edu/jmc/basis/basis.html
http://doi.acm.org/10.1145/359104.359106
http://doi.acm.org/10.1145/360933.360975
http://www.cs.utexas.edu/~EWD/
http://www.google.com/search?q=Knuth-Bendix_completion_algorithm&btnI=lucky


• Decidability of second-order theories and automata on 
infinite trees by Michael O. Rabin in 1965, proving 
decidability for one of the most expressive decidable logics

• Domains for Denotational Semantics by Dana Scott, 1982
• Can programming be liberated from the von Neumann style?: 

a functional style and its algebra of programs by John Backus
• Assigning meanings to programs by R. W. Floyd, 1967
• The Ideal of Verified Software by C.A.R. Hoare
• Soundness and Completeness of an Axiom System for 

Program Verification by Stephen A. Cook
• An Axiomatic Definition of the Programming Language 

PASCAL by 
C. A. R. Hoare and Niklaus Wirth, 1973

• On the Computational Power of Pushdown Automata, by 
Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft in 1970

• An Algorithm for Reduction of Operator Strength by 
John Cocke, Ken Kennedy in 1977

http://portal.acm.org/citation.cfm?id=682867
http://doi.acm.org/10.1145/359576.359579
http://dx.doi.org/10.1007/11817963_4


• A Metalanguage for Interactive Proof in LCF by Michael 
J. C. Gordon, Robin Milner, L. Morris, Malcolm C. 
Newey, Christopher P. Wadsworth, 1978

• Proof Rules for the Programming Language Euclid, by 
Ralph L. London, John V. Guttag, James J. Horning, 
Butler W. Lampson, James G. Mitchell, Gerald J. Popek, 
1978

• Computational Complexity and Mathematical Proofs by 
J. Hartmanis

• Software reliability via run-time result-checking by 
Manuel Blum

• The Temporal Logic of Programs, by Amir Pnueli (see 
also the others of a few hundreds of publications)

• No Silver Bullet - Essence and Accidents of Software 
Engineering, by 
Frederick P. Brooks Jr., 1987

http://doi.acm.org/10.1145/512760.512773
http://www.springerlink.com/content/agm46t6a89ulwpx1/
http://doi.acm.org/10.1145/268999.269003


• Formal Development with ABEL, by Ole-Johan Dahl and Olaf 
Owe

• Abstraction Mechanisms in the Beta Programming Language, 
by Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger
Møller-Pedersen, Kristen Nygaard, 1983

• Formalization in program development, by Peter Naur, 1982
• Interprocedural Data Flow Analysis, by Frances E. Allen, 

1974
• Counterexample-guided abstraction refinement for symbolic 

model checking by Edmund Clarke, Orna Grumberg, Somesh
Jha, Yuan Lu, Helmut Veith, 2003

• Automatic Verification of Finite-State Concurrent Systems 
Using Temporal Logic Specifications by Edmund M. Clarke, E. 
Allen Emerson, A. Prasad Sistla

• The Algorithmic Analysis of Hybrid Systems by Rajeev Alur, 
Costas Courcoubetis, Nicolas Halbwachs, Thomas A. 
Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, 
Joseph Sifakis, Sergio Yovine

http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/5397.5399
http://dx.doi.org/10.1016/0304-3975(94)00202-T


How to prove programs



Proving Program Correctness
int f(int x, int y)
{

if (y == 0) {
return 0;

} else {
if (y % 2 == 0) {

int z = f(x, y / 2);
return (2 * z);

} else {
return (x + f(x, y - 1));

}
}

}

• What does ‘f’ compute?

• How can we prove it?





An simple imperative multiplication

int fi(int x, int y)
{

int r = 0;
int i = 0;
while (i < y) {

i = i + 1;
r = r + x;

}
return r;

}
• What does ‘fi’ compute?

• How can we prove it?



Preconditions, Postconditions, 
Invariants

void p()
/*: requires Pre

ensures Post */
{
s1;
while /*: invariant I */   (e) { 
s2;

}
s3;

}



Loop Invariant
I is a loop invariant if the following three conditions hold: 

• I holds initially: in all states satisfying Pre, when 
execution reaches loop entry, I holds

• I is preserved: if we assume I and loop condition (e), 
we can prove that I will hold again after executing s2

• I is strong enough: if we assume I and the negation of 
loop condition e, we can prove that Post holds after s3

Explanation: because I holds initially, and it is preserved, 
by induction from holds initially and preserved follows 
that I will hold in every loop iteration. The strong enough
condition ensures that when loop terminates, the rest of 
the program will satisfy the desired postcondition. 



Back to our Program: what is
Invariant, Precondition, Postcondition

int fi(int x, int y)
{

int r = 0;
int i = 0;
while (i < y) {

i = i + 1;
r = r + x;

}
return r;

}
• What does ‘fi’ compute?

• How can we prove it?



Conditions We Prove in This Case

int fi(int x, int y)
{   require(y >= 0)

int r = 0;
int i = 0;
while (invariant r = i*x  &&  i <= y) 
(i < y) {
i = i + 1;
r = r + x;

}
return r;

} ensuring (res => res==x*y)



First Demo of http://leon.epfl.ch

Task:

Write tail recursive function that does fast 
multiplication and verify that it does 
multiplication.

def fastmul(p: Int, a: Int, x: Int): Int = {
require(x >= 0)
if (x == 0) p
else if (x % 2 == 0) fastmul(p, a*2, x/2)
else fastmul(p + a, a*2, x/2)

} ensuring (res => res == p + a*x)

Solution:

http://leon.epfl.ch/


How can we automate verification?

Important algorithmic questions:
– verification condition generation: compute formulas 

expressing program correctness
• Hoare logic, weakest precondition, strongest postcondition

– theorem proving: prove verification conditions
• proof search, counterexample search
• decision procedures

– loop invariant inference
• predicate abstraction
• abstract interpretation and data-flow analysis
• pointer analysis, typestate

– reasoning about numerical computation
– pre-condition and post-condition inference
– ranking error reports and warnings
– finding error causes from counterexample traces



Synthesis

auxiliary information
(structure of expected 
program)



Tasks of Interest (i: input,  o: output)

a) Check assertion while 
program p runs: C(i,p(i))

c) Constraint 
programming: once i is 
known, find o to satisfy a 
given constraint: find o
such that C(i,o)

b) Verify whether program 
always meets the spec: 
i. C(i,p(i))

d) Synthesis: solve C
symbolically to obtain 
program p that is correct 
by construction, for all 
inputs: find p such that  
i.C(i,p(i))         i.e.    p  C

run-time compile-time

both specification C and program p are given:

only specification C is given:



Sorting Demo
http://leon.epfl.ch

http://leon.epfl.ch/
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def rec(in: List, v: Int): List = in match {  
case Cons(h,t) => 
val r = rec(t,v)

case Nil =>

} ensuring { content(_) == content(in1) -- Set(v) }
rec(in1, v)

Recursion Schemas + STE in Action
def delete(in1: List, v: Int) = choose { 
(out: List) => content(out) == content(in1) -- Set(v)

}

EQ
 S

p
lit

if (h == v) { 

} else {

} 

def delete(in1: List, v: Int)  = {

}

CEGIS

CEGIS

CEGIS

r

Cons(h, r)

Nil 



Synthesizing Code from Free-Form Queries

Tihomir Gvero

https://infoscience.epfl.ch/record/201606


WATCH: Synthesis from Examples

Sumit Gulwani: Automating String Processing in 
Spreadsheets using Input-Output Examples
• Proceedings of the 38th ACM SIGACT-SIGPLAN Symposium on 

Principles of Programming Languages

• http://dx.doi.org/10.1145/1925844.1926423

• VIDEO:

http://dl.acm.org/ft_gateway.cfm?id=1926423&ftid=978159&d
wn=1&CFID=627723382&CFTOKEN=42173189

http://dx.doi.org/10.1145/1925844.1926423
http://dl.acm.org/ft_gateway.cfm?id=1926423&ftid=978159&dwn=1&CFID=627723382&CFTOKEN=42173189

