Program Analysis - Abstract Interpretation -
Dataflow Analysis

[Cousot, Cousot 1977] [Kam, Ullman 1977]
Definition
Informally: prove properties of the runtime behaviour of a program without running it
runtime behaviour: sp(true, P) (at every program point)
"without running it": finite time
Presburger arithmetic vs. real programs
loops
Obstacles to computability:
1. unknown input/unbounded number of inputs

2. unbounded execution paths
3. unbounded program state

Applications
1. optimizing compilers
2. development tools

3. verification and bug finding

Example program

output(c)
Control flow graph

Annotate CFG withn =?,a = 2,b = 3,a € {2,3}, etc.

We get c € {4, 5,6}, even though we know ¢ = 5.

Let § be some abstraction of the program state, and let f;,,; () be the state after stmt executes.
MOP (merge over all paths) = upepmhfp(;')

So f(left path) gives ¢ = 5 and f(right path) gives c = 5. So MOP gives ¢ = 5. But MOP uncomputable in
general.

Instead, compute LFP (MFP). LFP soundly approximates MOP.

LFP is like finding an invariant for each program point, such that the invariants are consistent with semantics of
each statement. Start with all invariants false, then incrementally correct them to be consistent with statements.

Partial orders and lattices

Def: A relation C on a set S is a partial order if it is:
1. reflexive: x C x
2. transitive: x CyAyLC z = xLC z
3. antisymmetriccx EyAyEx = x =y

Idea: Whenever x soundly approximates program state, then x C y means that y also soundly approximates
program state.

eg:.c € {5} Cc € {4,56}

Def: z is an upper bound of xand yif x C zand y C z.

Def: z is a least upper bound (join, L1) if z is an upper bound, and for all upper bounds z, z C 7’
Question: lub for our example?

Def: a lattice L is a poset suchthat Vx,y € L.xUy € LAxMNy € L

Def: a complete lattice L is a poset closed under least upper bounds and greatest lower bounds. For every
subset S C L, US € L.

Every finite lattice is complete. Why? Every lattice of finite height is complete. (Trickier to prove.)
Def: bottom L = LI{}. Vx. L C x

Def:top T = UL Vx.xC T

Example lattices (Hasse diagrams):

1. Powerset: P(a, b)
2. Integers: not complete
3. Integers ordered by divisibility

Lattice constructions:

1. If S is a set, then P(S) is a lattice with C defined as C or 2.
2. If A, B are lattices, then A X B is a lattice with C defined as

(a1,b1) E(ay, b)) <= a; Cay Ab; C by
3. If S is a set and L is a lattice, then the set of maps S — L is also a lattice with C defined as
mCm = Vx.m(x) C m(x).
In our example, lattice is {a, b,c} — P(Z).
A more practical example is {a, b,c} — ZI .

Monotone dataflow framework

Choose a lattice L to abstract program states. Decide the "meaning" of lattice elements: formally, concretization
functiony : I — 25t

For each program statement, define function f,, : L — L to model the behaviour of stmt. f,,, is called the
transfer function or the abstract transformer. Given a concrete semantics [[stmt]] : State — State, the
transformer should satisfy {[[stmt]|(c) | ¢ € y(£)} C y(fosm: (£))

The most precise abstract transformer is AZ. a({[stmt]|(s) | s € y(£)})
Forapathp = s4,...,s, through the CFG, deﬁnefp =fs, © o fs,-
Goal: find MOP(I’I, X) = Up is a path from s to snfp (.X)

Instead, for each statement s in the CFG, find (least) V. and V, satisfying:

1. VS()ut = fS(Vsin)
2. VS,'n = US’Epred(s) Vséut

Property: MOP(n,x) E V,,

Example: Constant propagation transfer function for statement a = b + c:

T ki L
TT T T
ky Thky+ky L
17T 1 1

Fixed points
Def: x is a fixed point of fif f(x) = x.

Let V : L?" (where L?" is the product of L with itself 272 times, where 7 is the number of statements in the
program). Define V = (V,,_ , Vs, ,..., V., Vs,). Define F' : L>* — L?" following the equations above.

Then we seek a (least) fixed point of F' so that F(V) = V.
Def: f is monotone if x C y = f(x) C f(y) (order-preserving)

Thm: (Knaster-Tarski) If L is a complete lattice and f : L — L is monotone, then f has a fixed point, and the
set of all its fixed points forms a complete sub-Ilattice in L. In particular, f has a least fixed point. But how do we
compute it?

Algorithm: Compute f (L) = f(f(--- (f(L))))for increasing . Properties:

Vi fCHD(L) 3 £ (L),

Iff D (L) = £ (L) for some n, then f (L) is a fixed point of f.

If L is of finite height, then n always exists (algorithm terminates) and f V(L) is the least fixed point.
(Kleene) If algorithm terminates and f is continuous, then f V(L) is the least fixed point. Almost every
practical monotone function is continuous.

Ll o e

Dataflow analysis: finite height. Abstract interpretation: possibly infinite height.
Examples:

1. Constant propagation lattice: finite height.
2. Integer powerset lattice: infinite height.
3. Intervals: infinite height.

T

|
GFP

fixed points

LFP
|

MOP
|

actual

1

Thm: MOP C LFP.
Thm: If f is distributive, then MOP = LFP.
Def: If f is monotone, then f(x) LI f(y) C f(x U y) f is distributive if f(x) LI f(y) = f(x U y)
Examples:
1. constant propagation is not distributive.
2. copy constant propagation is distributive.

3. kill-gen problems are distributive: f;(x) = (x \ killy) U gen,(where kill; and gen, are sets independent
of 5)

Chaotic iteration

We define F' on a vector of V's using the equations for V involving f;. Iterating F' is expensive. Cheaper to use

a worklist of V's that have changed, and only update f; to refect changes. Computes same result (folklore, proof
of special case in [Kam, Ullman 1977], general proof in [Cousot, Cousot 1992]).

initialize Vi, and V, to L foralls
set Venyry,, t0 approximation of input state
add all statements s to worklist
while worklist not empty
remove some s from worklist
set Vs,-,, = Uyepred(s) Vs’om
set V, = fo(Vs,)
if V, has changed
add successors of s to worklist
end if
end while

Do on example program.
Widening
What if Kleene sequence does not terminate (lattice infinite height)? e.g. intervals

Def: V is a widening operator if x LI y C xVyand for any sequence a; = f? (L), the sequence b, = b,_; Vg;
eventually reaches a fixed point.

i1 Uiy if iy C [-5,3]

Example for intervals: {; Vi, = { [—00, 0] otherwise

1 ifi=0
Define the sequence ¢; = 4 ¢;_; if f(c;—1) C ¢ciq
ci—1Vf(ci—1) otherwise

The sequence ¢; eventually reaches a fixed point. The fixed point ¢ of ¢; may not be a fixed point of f, but
f(c) C ¢, and LFP(f) C ¢, so ¢ is a sound approximation of LF P(f).

