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Predicate Abstraction

Abstract interpretation domain (lattice) is determined by a set of formulas
(predicates) P on program variables.
Example: P = {P0,P1,P2,P3} where

P0 ≡ false
P1 ≡ 0 < x
P2 ≡ 0 < y
P3 ≡ x < y

Analysis tries to construct invariants from these predicates using

I conjunctions, e.g. P1 ∧ P3 (our focus here, for simplicity)

I conjunctions and disjunctions, e.g. P3 ∧ (P1 ∨ P2)

We assume P0 ≡ false, other predicates in P - arbitrary

I expressed in logic of some theorem prover (e.g. SMT solver)
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Example of Analysis Result

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}
x = 0;
y = 1;
// 0<y, x<y,x=0,y=1, x<1000
while // 0<y, 0≤x, x<y
(x < 1000) {

// 0<y, 0≤x, x<y, x<1000
x = x + 1;
// 0<y, 0≤x, 0<x
y = 2∗x;
// 0<y, 0≤x, 0<x, x<y
y = y + 1;
// 0<y, 0≤x, 0<x, x<y
print(y);
}
// 0<y, 0≤x, x<y, 1000 ≤ x

Start by assuming all predicates hold in all non-entry points.
Check Hoare triples, remove predicates from postcondition that do not hold
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Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) =

{s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}.
If a1 ⊆ a2 then

∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?
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Lattice Operations: Example

{false, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for the lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is t? Compute {0 < x , x < y} t {0 < y , x < y} = {x < y} (draw)
What is the size and the height of the lattice?
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Lattice Height

A finite chain inside a partial order is a strictly ordered sequence of
elements: x0 < x1 . . . < xn
Here x < y means that both x v y and x 6= y
Length of such chain is n (number of < signs)
Note that xi v xj for i < j by transitivity
Thus all elements in a chain are distinct.
An infinite chain is infinite sequence of elements where xi < xi+1 for all i
A lattice is finite-height if all chains are finite. Then the maximum length
of chains is called the height of the lattice.



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is:

P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P

I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is:

∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is:

∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩

I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element:

2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element:

n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Lattice of Predicates

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a



Abstract Strongest Postcondition

Abstract strongest postcondition (= transfer function in data-flow analysis)
Consider a command c and a set of predicates a ⊆ P, we define abstract
strongest postcondition of a as the conjunction of all predicates from P
that hold after c :

sp#(a) =
{
P ′ ∈ P | {

∧
a}c{P ′}

}
Note that {. . .}c{. . .} after “|” denotes a Hoare triple
By conjunctivity of Hoare triple, the result denotes a valid postcondition:

{
∧

a}c{
∧

sp#(a)}

Thus spF (
∧
a, c) =⇒ sp#(a) holds as spF is strongest. However, converse

implication need not - abstract postcondition is only an over-approximation
This definition of sp#(a) gives the strongest condition that we can write as
a conjunction of the allowed predicates P, whereas spF need not be
expressible using P



Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)

We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.
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Analysis Algorithm

Given control-flow graph (V ,E ) where E contains triples (u, c , v) where c
is a command labeling the edge

Analysis maintains a map g : V → A from vertices to lattice elements

For program entry point: the set of all predicates that are true in every
initial state (over-approximation of the set of initial states).
For other program points, initially put conjunction of all predicates
(bottom). Then repeatedly update the value at a point when some
predecessor changes:

g(v) :=
⊔

(u,c,v)∈E

sp#(g(u), c)

This process terminates since the lattice has finite height. Lattice elements
grow (sets of predicates shrink).
Checking if the process terminates is same as checking that we have
computed a loop invariant.



Running the Example from the Initial State

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}
// true
x = 0;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
y = 1;
while // false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
(x < 1000) {

// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
x = x + 1;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
y = 2∗x;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
y = y + 1;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
}
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x



Example of Limitations of Conjunctions

P = {false, 0 < x , x ≤ 0, 0 < y}
if (x > 0) {

y = x
}
// Q
if (x > 0) {
if(y > 0) 1/x
else error
}

Assuming arbitrary initial state, what is the best we can compute as Q
using conjunctions from P ?

’true’

Using disjunctions of conjunctions: (x > 0 ∧ y > 0) ∨ (x ≤ 0)
Allows us to prove absence of error in the remaining code
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Disjunctive Analysis to Overcome Limitations

Lattice with disjunction of conjunctions

I Sets of sets of predicates - exponentially larger

I Reduce by using as few predicates as possible, different possible
predicates for each program point, limit sizes of conjuncts, . . .

Important topic: automatically discover predicates.

I in general as hard as discovering loop invariants

I yet we only need to discover pieces of invariants

I and we can conservatively suggest more candidate predicates (any
predicate set gives a sound analysis)



Interval Analysis

For a machine integer x , compute the interval [a, b] such that x ∈ [a, b]
Worst-case interval: [minI ,maxI ] = [−231, 231 − 1]

I each machine integer is between smallest and largest representable one

In addition, we introduce a special ⊥ interval to represent an empty set of
states
Consider relation c whose semantics is relation r on initial and final integer
Define sp# as the interval for the values that x can take after c :

sp#([a, b], r) = α({x ′ | x ∈ [a, b] ∧ (x , x ′) ∈ r})

Here α computes the interval for a set of values:

I α(S) = [min(S),max(S)], if S 6= ∅, whereas α(∅) = ⊥
We define sp#(⊥) = ⊥, since image of empty set is an empty set

sp#([0, 10], x=x + 7) = [7, 17] sp#([−5,−5], x=x ∗ x) = [0, 25]
sp#([1000,maxI ], x = x + 30) = [minI ,maxI ]



Size of the Interval Lattice

L = {⊥} ∪ {[a, b] | minI ≤ a ≤ b ≤ maxI}
Here ⊥ v [a, b] for all proper intervals [a, b]. Between intervals,

[a, b] v [a′, b′] if and only if a′ ≤ a ≤ b ≤ b′

Number of elements in the lattice:

1 + 232(232+1)
2 = 1 + 231 + 263

Size of the longest chain: 232
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Example

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

One possible corresponding control-flow graph is:
a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2
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Fixpoint Found
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Note: in general, we maintain interval for each variable
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General Remarks

Whatever we choose as our abstract domain A (typically some lattice), it is
good to have a function γ that gives meaning to elements of A
Often, elements a ∈ A represent sets of states:

I predicate abstraction: states that satisfy the conjunction of predicates

I interval analysis: states whose variables belong to the intervals

When we think about correctness conditions intuitively, we can “almost
ignore” γ (but it is needed for statements to type check).
Each analysis is given by transfer functions such as sp# which need to
satisfy, for each a ∈ A:

sp(c , γ(a)) ⊆ γ(sp#(c , a))

sp# gives a larger set of states (it finds only some, not all properties)

computed properties imply assertions of interest ⇒ we proved the assertions
otherwise ⇒ either assertions do not hold, or analysis was too conservative


