Half Lecture 13 (or-so)
Predicate Abstraction and Intervals

2015



Predicate Abstraction

Abstract interpretation domain (lattice) is determined by a set of formulas
(predicates) P on program variables.

Example: P = {Py, P1, P2, P3} where

Po
P1
P>
P3

false

0<x
O<y
x<y

Analysis tries to construct invariants from these predicates using

» conjunctions, e.g. P; A P3 (our focus here, for simplicity)

» conjunctions and disjunctions, e.g. P3 A (P1V P,)



Predicate Abstraction

Abstract interpretation domain (lattice) is determined by a set of formulas
(predicates) P on program variables.
Example: P = {Py, P1, P2, P3} where

Py, = false

P = 0<x
P, = 0<y
P = x<y

Analysis tries to construct invariants from these predicates using
» conjunctions, e.g. P; A P3 (our focus here, for simplicity)
» conjunctions and disjunctions, e.g. P3 A (P1V P,)

We assume Py = false, other predicates in P - arbitrary

» expressed in logic of some theorem prover (e.g. SMT solver)



Example of Analysis Result
P = {false,0 < x,0 <=x,0< y,x <y,x =0,y =1,x < 1000, 1000 < x}

x = 0;
y=1
// 0<y, x<y,x=0,y=1, x<1000
while // 0<y, 0<x, x<y
(x < 1000) {
/] 0<y, 0<x, x<y, x<1000
X =x—+1;
// 0<y, 0<x, 0<x
y = 2x%x;
// 0<y, 0<x, 0<x, x<y
y=y+1,
// 0<y, 0<x, 0<x, x<y
print(y);

// 0<y, 0<x, x<y, 1000 < x



Example of Analysis Result
P = {false,0 < x,0 <=x,0< y,x <y,x =0,y =1,x < 1000, 1000 < x}

x = 0;
y=1
// 0<y, x<y,x=0,y=1, x<1000
while // 0<y, 0<x, x<y
(x < 1000) {
/] 0<y, 0<x, x<y, x<1000
X =x—+1;
// 0<y, 0<x, 0<x
y = 2x%x;
// 0<y, 0<x, 0<x, x<y
y=y+1,
// 0<y, 0<x, 0<x, x<y
print(y);

// 0<y, 0<x, x<y, 1000 < x

Start by assuming all predicates hold in all non-entry points.



Example of Analysis Result
P = {false,0 < x,0 <=x,0< y,x <y,x =0,y =1,x < 1000, 1000 < x}

x = 0;
y=1
// 0<y, x<y,x=0,y=1, x<1000
while // 0<y, 0<x, x<y
(x < 1000) {
/] 0<y, 0<x, x<y, x<1000
X =x—+1;
// 0<y, 0<x, 0<x
y = 2x%x;
// 0<y, 0<x, 0<x, x<y
y=y+1,
// 0<y, 0<x, 0<x, x<y
print(y);

// 0<y, 0<x, x<y, 1000 < x

Start by assuming all predicates hold in all non-entry points.
Check Hoare triples, remove predicates from postcondition that do not hold



Lattice of Conjunctions of Predicates and Concretization
P ={Po, P1,...,Pn} - predicates
» formulas whose free variables denote program variables

L=A=2P soforac Awehave aCP
Example: ag = {0 < x,x < y}.
s = F means: formula F is true for variables given by the program state s

@) =1{s|skE AP

Pca

Shorthand: A a means Ap, P
Example: vy(ag) =
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Lattice of Conjunctions of Predicates and Concretization

P ={Po, P1,...,Pn} - predicates
» formulas whose free variables denote program variables
L=A=2P soforac Awehave aCP
Example: ag = {0 < x,x < y}.
s = F means: formula F is true for variables given by the program state s

@) =1{s|skE AP

Pca

Shorthand: A a means Ap_, P
Example: v(ap) = {s|s E 0 < x A x < y}. We often assume states are
pairs (x,y). Then v(ap) = {(x,¥) |0 < xAx < y}.
If a; C ap then A ay implies A a1, so y(a2) C y(a1).
Define:
ala <— alCa

Lemma: a1 C ap — v(a1) C v(a2)
Does the converse hold?



Lattice Operations: Example

{false,0 < x,x <y} C{0<x,0<y} C{0<x}C0

Draw the Hasse diagram for the lattice (A,C) i.e. (2737 D) for
P = {Py, P1, P>} a three-element set.
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Lattice Operations: Example

{false,0 < x,x <y} C{0<x,0<y} C{0<x}C0

Draw the Hasse diagram for the lattice (A,C) i.e. (2737 D) for
P = {Py, P1, P>} a three-element set.

What is the top and what is the bottom element of this lattice?
What is U? Compute {0 < x,x < y}U{0<y,x <y} ={x <y} (draw)
What is the size and the height of the lattice?



Lattice Height

A finite chain inside a partial order is a strictly ordered sequence of
elements: xg C x1... C X,

Here x C y means that both x C y and x # y

Length of such chain is n (number of L signs)

Note that x; C x; for i < j by transitivity

Thus all elements in a chain are distinct.

An infinite chain is infinite sequence of elements where x; C xj41 for all i
A lattice is finite-height if all chains are finite. Then the maximum length
of chains is called the height of the lattice.



Lattice of Predicates

P ={Py, P1,...,P,}. Lattice elements a € 27 (subsets of P)
More predicates in conjunction = stronger condition = smaller set
Therefore we have:

» | - bottom (smallest set of states) is:
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Lattice of Predicates

P ={Py, P1,...,P,}. Lattice elements a € 27 (subsets of P)
More predicates in conjunction = stronger condition = smaller set
Therefore we have:

» | - bottom (smallest set of states) is: P

» T - top (largest set of states) is: () (predicate 'true’)

» LI (approximates union) is: N

» Size of the lattice with n + 1 element: 271
Height of the lattice with n+ 1 element: n+ 1

v

Given a € 27 we abbreviate Ap., P as A a



Abstract Strongest Postcondition

Abstract strongest postcondition (= transfer function in data-flow analysis)
Consider a command ¢ and a set of predicates a C P, we define abstract
strongest postcondition of a as the conjunction of all predicates from P
that hold after c:

spt(a) = {P eP| {\a}c{P}}

Note that {...}c{...} after “|" denotes a Hoare triple
By conjunctivity of Hoare triple, the result denotes a valid postcondition:

{A\are{\sp?(a)}

Thus spe(/A a,c) = sp™(a) holds as spF is strongest. However, converse
implication need not - abstract postcondition is only an over-approximation
This definition of sp™(a) gives the strongest condition that we can write as
a conjunction of the allowed predicates P, whereas spr need not be
expressible using P



Example of Computing Abstract Strongest Postcondition

P = {false,0 < x,0 < y,x < y}
Compute sp” ({0 < x},y := x + 1)
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Example of Computing Abstract Strongest Postcondition

P = {false,0 < x,0 < y,x < y}
Compute sp™ ({0 < x},y := x + 1)
We can test for each predicate P’ € P whether
x>0A(y =x+1AX =x) = P'(X,y)

We obtain that the condition holds for 0 < x, 0 < y, and for x < y, but
not for false. Thus,

sp" ({0 < x},y =x+1)={0<x,0<y,x<y}
Compute

sp? ({0 < x},y :=x—1)={0 < x}
sp"({0<x,x <yhx=x-1)={0<y,x <y}

What is the relation between {0 < x,x <y} and {0 < x,0 < y,x < y}?
Different in lattice, denote same states. This is not a problem.



Analysis Algorithm

Given control-flow graph (V/, E) where E contains triples (u, ¢, v) where ¢
is a command labeling the edge

Analysis maintains a map g : V — A from vertices to lattice elements

For program entry point: the set of all predicates that are true in every
initial state (over-approximation of the set of initial states).

For other program points, initially put conjunction of all predicates
(bottom). Then repeatedly update the value at a point when some
predecessor changes:

(u,c,v)EE

This process terminates since the lattice has finite height. Lattice elements
grow (sets of predicates shrink).

Checking if the process terminates is same as checking that we have
computed a loop invariant.



Running the Example from the Initial State

P = {false,0 < x,0 <=x,0< y,x < y,x =0,y = 1,x < 1000, 1000 < x}

// true
x = 0;
// false, 0<x, 0<x, 0<y, x<y, x=0, y=1, x<1000,1000<x
y=1
while // false, 0<x, 0<x, 0<y, x<y, x=0, y=1, x<1000,1000<x
(x < 1000) {
// false, 0<x, 0<x, 0<y, x<y, x=0, y=1, x<1000,1000<x
x=x++ 1;
// false, 0<x, 0<x, 0<y, x<y, x=0, y=1, x<1000,1000<x
y = 2xx;
// false, 0<x, 0<x, 0<y, x<y, x=0, y=1, x<1000,1000<x
y=y+1,
// false, 0<x, 0<x, 0<y, x<y, x=0, y=1, x<1000,1000<x

}

// false, 0<x, 0<x, 0<y, x<y, x=0, y=1, x<1000,1000<x



Example of Limitations of Conjunctions

P = {false,0 < x,x < 0,0 < y}

if (x> 0) {
y =X

}

/] Q

if (x> 0) {
if(y > 0) 1/x
else error

}

Assuming arbitrary initial state, what is the best we can compute as @
using conjunctions from P ?
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if (x> 0) {
y =X

}

/] Q

if (x> 0) {
if(y > 0) 1/x
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}
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Example of Limitations of Conjunctions

P = {false,0 < x,x < 0,0 < y}

if (x> 0) {
y =X

}

/] Q

if (x> 0) {
if(y > 0) 1/x
else error

}

Assuming arbitrary initial state, what is the best we can compute as @
using conjunctions from P 7 ’true’

Using disjunctions of conjunctions: (x >0Ay > 0)V (x <0)
Allows us to prove absence of error in the remaining code



Disjunctive Analysis to Overcome Limitations

Lattice with disjunction of conjunctions
» Sets of sets of predicates - exponentially larger

» Reduce by using as few predicates as possible, different possible
predicates for each program point, limit sizes of conjuncts, ...

Important topic: automatically discover predicates.
> in general as hard as discovering loop invariants
> yet we only need to discover pieces of invariants

» and we can conservatively suggest more candidate predicates (any
predicate set gives a sound analysis)



Interval Analysis

For a machine integer x, compute the interval [a, b] such that x € [a, b]
Worst-case interval: [minl, maxl] = [-23%,23! — 1]
» each machine integer is between smallest and largest representable one

In addition, we introduce a special L interval to represent an empty set of
states

Consider relation ¢ whose semantics is relation r on initial and final integer
Define sp? as the interval for the values that x can take after c:

sp([a, b],r) = a({x' | x € [a, ] A (x,X') € r})

Here o computes the interval for a set of values:
» a(S) = [min(S), max(S)], if S # 0, whereas () = L
We define sp# (L) = L, since image of empty set is an empty set

S,D#([O, 10], x=x +7) = [7,17] Sp#([—57 —5], x=x x x) = [0, 25]
sp™([1000, maxl], x = x + 30) = [minl, maxl|



Size of the Interval Lattice

L={L}uU{[a, b] | minl <a<b< maxl}
Here L C [a, b] for all proper intervals [a, b]. Between intervals,

[a,p] C [d',b]ifand only if ¥ <a< b< b

Number of elements in the lattice:
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Size of the Interval Lattice

L={L}uU{[a, b] | minl <a<b< maxl}
Here L C [a, b] for all proper intervals [a, b]. Between intervals,

[a,p] C [d',b]ifand only if ¥ <a< b< b

Number of elements in the lattice:1 + w =14 231 4 063
Size of the longest chain: 232



Example

//a
i=0;
//b
while (i < 10) {
//d
if (i >1)
//e
i=i+3
else
//f
i=i+2
//8
}
//c

One possible corresponding control-flow graph is:
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a
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Fixpoint Found

//a
i=0;
//b
while (i < 10) {
//d
if (i >1)
//e
i=i+3
else
//f
=i+ 2
//8
}
//c

One possible corresponding control-flow graph is:




Fixpoint Found

/ One possible corresponding control-flow graph is:
a
i=0;
//b
while (i < 10) {
//d
if (i >1)
/e
i=i+3
else
//f
i=i4+2
/18
}
//c

Note: in general, we maintain interval for each variable




General Remarks

Whatever we choose as our abstract domain A (typically some lattice), it is
good to have a function y that gives meaning to elements of A
Often, elements a € A represent sets of states:

» predicate abstraction: states that satisfy the conjunction of predicates
» interval analysis: states whose variables belong to the intervals

When we think about correctness conditions intuitively, we can “almost
ignore” ~y (but it is needed for statements to type check).

Each analysis is given by transfer functions such as sp# which need to
satisfy, for each a € A:

sp(c.7(a)) € (sp™(c. a))

sp™ gives a larger set of states (it finds only some, not all properties)

computed properties imply assertions of interest = we proved the assertions
otherwise = either assertions do not hold, or analysis was too conservative



