
Short Lecture 13
Predicate Abstraction and Intervals

2015

Predicate Abstraction

Abstract interpretation domain (lattice) is determined by a set of formulas
(predicates) P on program variables.
Example: P = {P0,P1,P2,P3} where

P0 ≡ false
P1 ≡ 0 < x
P2 ≡ 0 < y
P3 ≡ x < y

Analysis tries to construct invariants from these predicates using

I conjunctions, e.g. P1 ∧ P3 (our focus here, for simplicity)

I conjunctions and disjunctions, e.g. P3 ∧ (P1 ∨ P2)

We assume P0 ≡ false, other predicates in P - arbitrary

I expressed in logic of some theorem prover (e.g. SMT solver)

Predicate Abstraction

Abstract interpretation domain (lattice) is determined by a set of formulas
(predicates) P on program variables.
Example: P = {P0,P1,P2,P3} where

P0 ≡ false
P1 ≡ 0 < x
P2 ≡ 0 < y
P3 ≡ x < y

Analysis tries to construct invariants from these predicates using

I conjunctions, e.g. P1 ∧ P3 (our focus here, for simplicity)

I conjunctions and disjunctions, e.g. P3 ∧ (P1 ∨ P2)

We assume P0 ≡ false, other predicates in P - arbitrary

I expressed in logic of some theorem prover (e.g. SMT solver)

Example of Analysis Result

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}
x = 0;
y = 1;
// 0<y, x<y,x=0,y=1, x<1000
while // 0<y, 0≤x, x<y
(x < 1000) {

// 0<y, 0≤x, x<y, x<1000
x = x + 1;
// 0<y, 0≤x, 0<x
y = 2∗x;
// 0<y, 0≤x, 0<x, x<y
y = y + 1;
// 0<y, 0≤x, 0<x, x<y
print(y);
}
// 0<y, 0≤x, x<y, 1000 ≤ x

Start by assuming all predicates hold in all non-entry points.
Check Hoare triples, remove predicates from postcondition that do not hold

Example of Analysis Result

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}
x = 0;
y = 1;
// 0<y, x<y,x=0,y=1, x<1000
while // 0<y, 0≤x, x<y
(x < 1000) {

// 0<y, 0≤x, x<y, x<1000
x = x + 1;
// 0<y, 0≤x, 0<x
y = 2∗x;
// 0<y, 0≤x, 0<x, x<y
y = y + 1;
// 0<y, 0≤x, 0<x, x<y
print(y);
}
// 0<y, 0≤x, x<y, 1000 ≤ x

Start by assuming all predicates hold in all non-entry points.

Check Hoare triples, remove predicates from postcondition that do not hold

Example of Analysis Result

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}
x = 0;
y = 1;
// 0<y, x<y,x=0,y=1, x<1000
while // 0<y, 0≤x, x<y
(x < 1000) {

// 0<y, 0≤x, x<y, x<1000
x = x + 1;
// 0<y, 0≤x, 0<x
y = 2∗x;
// 0<y, 0≤x, 0<x, x<y
y = y + 1;
// 0<y, 0≤x, 0<x, x<y
print(y);
}
// 0<y, 0≤x, x<y, 1000 ≤ x

Start by assuming all predicates hold in all non-entry points.
Check Hoare triples, remove predicates from postcondition that do not hold

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) =

{s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |

∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold? no (will see examples later)

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}.

We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |

∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold? no (will see examples later)

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) =

{(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |
∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold? no (will see examples later)

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |

∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold? no (will see examples later)

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |

∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold? no (will see examples later)

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |

∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)

Does the converse hold? no (will see examples later)

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |

∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?

no (will see examples later)

Lattice of Conjunctions of Predicates and Concretization
P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

L = A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}. γ(a) = {(x , y) |

∧
a}

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold? no (will see examples later)

Lattice Operations: Example

{x < 2, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for any lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is t? Compute {0 < x , x < 2} t {0 < x , x < y} = {0 < x} (draw)
What is the size and the height of the lattice?

Lattice Operations: Example

{x < 2, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for any lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?

What is t? Compute {0 < x , x < 2} t {0 < x , x < y} = {0 < x} (draw)
What is the size and the height of the lattice?

Lattice Operations: Example

{x < 2, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for any lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is t? Compute {0 < x , x < 2} t {0 < x , x < y} =

{0 < x} (draw)
What is the size and the height of the lattice?

Lattice Operations: Example

{x < 2, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for any lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is t? Compute {0 < x , x < 2} t {0 < x , x < y} = {0 < x} (draw)

What is the size and the height of the lattice?

Lattice Operations: Example

{x < 2, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for any lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is t? Compute {0 < x , x < 2} t {0 < x , x < y} = {0 < x} (draw)
What is the size and the height of the lattice?

Lattice Height

A finite chain inside a partial order is a strictly ordered sequence of
elements: x0 < x1 . . . < xn
Here x < y means that both x v y and x 6= y
Length of such chain is n (number of < signs)
Note that xi < xj for i < j by transitivity
Thus all elements in a chain are distinct.
An infinite chain is infinite sequence of elements where xi < xi+1 for all i
A lattice is finite-height if all chains are finite. Then the maximum length
of chains is called the height of the lattice.

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is:

P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P

I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is:

∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is:

∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩

I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element:

2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element:

n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Lattice of Predicates: Basic Facts

P = {P0,P1, . . . ,Pn}. Lattice elements a ∈ 2P (subsets of P)
More predicates in conjunction ⇒ stronger condition ⇒ smaller set
Therefore we have:

I ⊥ - bottom (smallest set of states) is: P
I > - top (largest set of states) is: ∅ (predicate ’true’)

I t (approximates union) is: ∩
I Size of the lattice with n + 1 element: 2n+1

I Height of the lattice with n + 1 element: n + 1

Given a ∈ 2P we abbreviate
∧

P∈a P as
∧
a

Abstract Strongest Postcondition sp#(a, c)
Abstract strongest postcondition (= transfer function in data-flow analysis)
Consider a command c and a set of predicates a ⊆ P, we define abstract
strongest postcondition of a as the conjunction

sp#(a, c) =
{
P ′ ∈ P | {

∧
a}c{P ′}

}
all predicates from P that hold after c . Note that {. . .}c{. . .} after “|”
denotes a Hoare triple. sp# : A× Commands → A.
By conjunctivity of Hoare triple, the result denotes a valid postcondition:

{
∧

a}c{
∧

sp#(a, c)}

Thus spF (
∧
a, c) =⇒ sp#(a, c) holds as spF is strongest. However,

converse implication need not - abstract postcondition is only an
over-approximation
This definition of sp#(a, c) gives the strongest condition that we can write
as a conjunction of the allowed predicates P, whereas spF need not be
expressible using P

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)

We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) =

{0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}

sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) =

{0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?

Different in lattice, denote same states. This is not a problem.

Example of Computing Abstract Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Compute sp#({0 < x}, y := x + 1)
We can test for each predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?
Different in lattice, denote same states. This is not a problem.

Control-Flow Graphs with Commands on Edges

Control-flow graphs are (V ,E) where E contains triples (u, c, v) where
u, v ∈ V and each c is a command labeling the edge (u, v)

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a

b c

d

e f

g

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Analysis Algorithm

Control-flow graph (V ,E) where E contains triples (u, c , v)

Analysis maintains a map g : V → A from vertices to lattice elements

For program entry point: the set of all predicates that are true in every
initial state (over-approximation of the set of initial states).

For other program points, initially put conjunction of all predicates (⊥).
Then update the value at a point when any predecessor changes:

g(v) :=
⊔

(u,c,v)∈E

sp#(g(u), c)

This process terminates since the lattice has finite height. Lattice elements
grow (sets of predicates shrink).
Checking if the process terminates is same as checking that we have
computed a loop invariant.

Running the Example from the Initial State

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}
// true
x = 0;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
y = 1;
while // false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
(x < 1000) {

// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
x = x + 1;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
y = 2∗x;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
y = y + 1;
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x
}
// false, 0<x, 0≤x, 0<y, x<y, x=0, y=1, x<1000,1000≤x

Example of Limitations of Conjunctions

P = {false, 0 < x , x ≤ 0, 0 < y}
if (x > 0) {

y = x
}
// Q
if (x > 0) {
if(y > 0) 1/y
else error
}

Assuming arbitrary initial state, what is the best we can compute as Q
using conjunctions from P ?

’true’

Using disjunctions of conjunctions: (x > 0 ∧ y > 0) ∨ (x ≤ 0)
Allows us to prove absence of error in the remaining code

Example of Limitations of Conjunctions

P = {false, 0 < x , x ≤ 0, 0 < y}
if (x > 0) {

y = x
}
// Q
if (x > 0) {
if(y > 0) 1/y
else error
}

Assuming arbitrary initial state, what is the best we can compute as Q
using conjunctions from P ? ’true’

Using disjunctions of conjunctions:

(x > 0 ∧ y > 0) ∨ (x ≤ 0)
Allows us to prove absence of error in the remaining code

Example of Limitations of Conjunctions

P = {false, 0 < x , x ≤ 0, 0 < y}
if (x > 0) {

y = x
}
// Q
if (x > 0) {
if(y > 0) 1/y
else error
}

Assuming arbitrary initial state, what is the best we can compute as Q
using conjunctions from P ? ’true’

Using disjunctions of conjunctions: (x > 0 ∧ y > 0) ∨ (x ≤ 0)
Allows us to prove absence of error in the remaining code

Disjunctive Analysis to Overcome Limitations

Lattice with disjunction of conjunctions

I Sets of sets of predicates - exponentially larger

I Reduce by using as few predicates as possible, different possible
predicates for each program point, limit sizes of conjuncts, . . .

Important topic: automatically discover predicates.

I in general as hard as discovering loop invariants

I yet we only need to discover pieces of invariants

I and we can conservatively suggest more candidate predicates (any
predicate set gives a sound analysis)

Interval Analysis

For a machine integer x , compute the interval [a, b] such that x ∈ [a, b]
Worst-case interval: [minI ,maxI] = [−231, 231 − 1]

I each machine integer is between smallest and largest representable one

In addition, we introduce a special ⊥ interval to represent an empty set of
states
Consider relation c whose semantics is relation r on initial and final integer
Define sp# as the interval for the values that x can take after c :

sp#([a, b], r) = α({x ′ | x ∈ [a, b] ∧ (x , x ′) ∈ r})

Here α computes the interval for a set of values:

I α(S) = [min(S),max(S)], if S 6= ∅, whereas α(∅) = ⊥
We define sp#(⊥) = ⊥, since image of empty set is an empty set

sp#([0, 10], x=x + 7) = [7, 17] sp#([−5,−5], x=x ∗ x) = [0, 25]
sp#([1000,maxI], x = x + 30) = [minI ,maxI]

Size of the Interval Lattice

L = {⊥} ∪ {[a, b] | minI ≤ a ≤ b ≤ maxI}
Here ⊥ v [a, b] for all proper intervals [a, b]. Between intervals,

[a, b] v [a′, b′] if and only if a′ ≤ a ≤ b ≤ b′

Number of elements in the lattice:

1 + 232(232+1)
2 = 1 + 231 + 263

Size of the longest chain: 232

Size of the Interval Lattice

L = {⊥} ∪ {[a, b] | minI ≤ a ≤ b ≤ maxI}
Here ⊥ v [a, b] for all proper intervals [a, b]. Between intervals,

[a, b] v [a′, b′] if and only if a′ ≤ a ≤ b ≤ b′

Number of elements in the lattice:1 + 232(232+1)
2 = 1 + 231 + 263

Size of the longest chain: 232

Size of the Interval Lattice

L = {⊥} ∪ {[a, b] | minI ≤ a ≤ b ≤ maxI}
Here ⊥ v [a, b] for all proper intervals [a, b]. Between intervals,

[a, b] v [a′, b′] if and only if a′ ≤ a ≤ b ≤ b′

Number of elements in the lattice:1 + 232(232+1)
2 = 1 + 231 + 263

Size of the longest chain:

232

Size of the Interval Lattice

L = {⊥} ∪ {[a, b] | minI ≤ a ≤ b ≤ maxI}
Here ⊥ v [a, b] for all proper intervals [a, b]. Between intervals,

[a, b] v [a′, b′] if and only if a′ ≤ a ≤ b ≤ b′

Number of elements in the lattice:1 + 232(232+1)
2 = 1 + 231 + 263

Size of the longest chain: 232

Starting Point for Analysis

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a >

b

⊥
c ⊥

d ⊥

e ⊥ f ⊥

g ⊥

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Starting Point for Analysis

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a >

b

⊥
c ⊥

d ⊥

e ⊥ f ⊥

g ⊥

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Fixpoint Found

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a >

b

[0, 12]

c [10, 12]

d [0, 9]

e [2, 9] f [0, 1]

g [2, 12]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Note: in general, we maintain interval for each variable

Fixpoint Found

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

a >

b

[0, 12]

c [10, 12]

d [0, 9]

e [2, 9] f [0, 1]

g [2, 12]

i = 0

[i ≥ 10]

[i ≤ 9]

[i ≥ 2] [i ≤ 1]

i = i + 3 i = i + 2

Note: in general, we maintain interval for each variable

General Remarks

Whatever we choose as our abstract domain A (typically some lattice), it is
good to have a function γ that gives meaning to elements of A
Often, elements a ∈ A represent sets of states:

I predicate abstraction: states that satisfy the conjunction of predicates

I interval analysis: states whose variables belong to the intervals

When we think about correctness conditions intuitively, we can “almost
ignore” γ (but it is needed for statements to type check).
Each analysis is given by transfer functions such as sp# which need to
satisfy, for each a ∈ A:

sp(c , γ(a)) ⊆ γ(sp#(c , a))

sp# gives a larger set of states (it finds only some, not all properties)

computed properties imply assertions of interest ⇒ we proved the assertions
otherwise ⇒ either assertions do not hold, or analysis was too conservative

Smaller and Larger Lattices

Simple data-flow analysis are often defined by first defining abstraction for
one program variable (e.g. an interval). Let this be lattice (L,v)

Then, we have one such value for each variable from set of variable names
N. We obtain lattice

(L,v)N

Elements are functions N → L. Ordering is point-wise

Finally, the analysis maintains such value for each program point V , so we
have elements V → (N → L)

