Short Lecture 13
 Predicate Abstraction and Intervals

2015

Predicate Abstraction

Abstract interpretation domain (lattice) is determined by a set of formulas (predicates) \mathcal{P} on program variables.
Example: $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ where

$$
\begin{aligned}
& P_{0} \equiv \text { false } \\
& P_{1} \equiv 0<x \\
& P_{2} \equiv 0<y \\
& P_{3} \equiv x<y
\end{aligned}
$$

Analysis tries to construct invariants from these predicates using

- conjunctions, e.g. $P_{1} \wedge P_{3}$ (our focus here, for simplicity)
- conjunctions and disjunctions, e.g. $P_{3} \wedge\left(P_{1} \vee P_{2}\right)$

Predicate Abstraction

Abstract interpretation domain (lattice) is determined by a set of formulas (predicates) \mathcal{P} on program variables.
Example: $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ where

$$
\begin{aligned}
& P_{0} \equiv \text { false } \\
& P_{1} \equiv 0<x \\
& P_{2} \equiv 0<y \\
& P_{3} \equiv x<y
\end{aligned}
$$

Analysis tries to construct invariants from these predicates using

- conjunctions, e.g. $P_{1} \wedge P_{3}$ (our focus here, for simplicity)
- conjunctions and disjunctions, e.g. $P_{3} \wedge\left(P_{1} \vee P_{2}\right)$

We assume $P_{0} \equiv$ false, other predicates in \mathcal{P} - arbitrary

- expressed in logic of some theorem prover (e.g. SMT solver)

Example of Analysis Result

```
\mathcal{P}={false, 0<x,0<=x,0<y,x<y,x=0,y=1,x<1000,1000\leqx}
x = 0;
y = 1;
// 0<y, x<y,x=0,y=1,x<1000
while // 0<y,0\leqx, x<y
(x<1000) {
    // 0<y,0\leqx, x<y,x<1000
    x = x + 1;
    // 0<y,0\leqx, 0<x
    y = 2*x;
    // 0<y, 0\leqx, 0<x, x<y
    y = y + 1;
    // 0<y,0\leqx, 0<x, x<y
    print(y);
}
// 0<y,0\leqx, x<y, 1000\leqx
```


Example of Analysis Result

```
\mathcal{P}={false, 0<x,0<=x,0<y,x<y,x=0,y=1,x<1000,1000\leqx}
x = 0;
y = 1;
// 0<y, x<y,x=0,y=1,x<1000
while // 0<y,0\leqx, x<y
(x<1000) {
    // 0<y,0\leqx, x<y,x<1000
    x = x + 1;
    // 0<y,0\leqx, 0<x
    y = 2*x;
    // 0<y, 0\leqx, 0<x, x<y
    y = y + 1;
    // 0<y,0\leqx, 0<x, x<y
    print(y);
}
// 0<y, 0\leqx, x<y, 1000\leqx
```

Start by assuming all predicates hold in all non-entry points.

Example of Analysis Result

```
\mathcal{P}={false, 0<x,0<=x,0<y,x<y,x=0,y=1,x<1000,1000\leqx}
x = 0;
y = 1;
// 0<y, x<y,x=0,y=1,x<1000
while // 0<y,0\leqx, x<y
(x<1000) {
    // 0<y,0\leqx, x<y, x<1000
    x = x + 1;
    // 0<y,0\leqx,0<x
    y = 2*x;
    // 0<y, 0\leqx, 0<x, x<y
    y = y + 1;
    // 0<y, 0\leqx, 0<x, x<y
    print(y);
}
// 0<y, 0\leqx, x<y, 1000\leqx
```

Start by assuming all predicates hold in all non-entry points.
Check Hoare triples, remove predicates from postcondition that do not hold

Lattice of Conjunctions of Predicates and Concretization

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$ - predicates

- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=$

Lattice of Conjunctions of Predicates and Concretization

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}-$ predicates

- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=\{s|s|=0<x \wedge x<y\}$.

Lattice of Conjunctions of Predicates and Concretization

 $\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$ - predicates- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=\{s|s|=0<x \wedge x<y\}$. We often assume states are pairs (x, y). Then $\gamma\left(a_{0}\right)=$

Lattice of Conjunctions of Predicates and Concretization

 $\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}-$ predicates- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=\{s|s|=0<x \wedge x<y\}$. We often assume states are pairs (x, y). Then $\gamma\left(a_{0}\right)=\{(x, y) \mid 0<x \wedge x<y\} . \quad \gamma(a)=\{(x, y) \mid \bigwedge a\}$

Lattice of Conjunctions of Predicates and Concretization

 $\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}-$ predicates- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=\{s|s|=0<x \wedge x<y\}$. We often assume states are pairs (x, y). Then $\gamma\left(a_{0}\right)=\{(x, y) \mid 0<x \wedge x<y\} . \quad \gamma(a)=\{(x, y) \mid \bigwedge a\}$ If $a_{1} \subseteq a_{2}$ then $\bigwedge a_{2}$ implies $\bigwedge a_{1}$, so $\gamma\left(a_{2}\right) \subseteq \gamma\left(a_{1}\right)$.

Lattice of Conjunctions of Predicates and Concretization

 $\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}-$ predicates- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=\{s|s|=0<x \wedge x<y\}$. We often assume states are pairs (x, y). Then $\gamma\left(a_{0}\right)=\{(x, y) \mid 0<x \wedge x<y\} . \quad \gamma(a)=\{(x, y) \mid \bigwedge a\}$ If $a_{1} \subseteq a_{2}$ then $\bigwedge a_{2}$ implies $\bigwedge a_{1}$, so $\gamma\left(a_{2}\right) \subseteq \gamma\left(a_{1}\right)$. Define:

$$
a_{1} \sqsubseteq a_{2} \quad \Longleftrightarrow \quad a_{2} \subseteq a_{1}
$$

Lemma: $a_{1} \sqsubseteq a_{2} \rightarrow \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{2}\right)$

Lattice of Conjunctions of Predicates and Concretization

 $\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}-$ predicates- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=\{s|s|=0<x \wedge x<y\}$. We often assume states are pairs (x, y). Then $\gamma\left(a_{0}\right)=\{(x, y) \mid 0<x \wedge x<y\} . \quad \gamma(a)=\{(x, y) \mid \bigwedge a\}$ If $a_{1} \subseteq a_{2}$ then $\bigwedge a_{2}$ implies $\bigwedge a_{1}$, so $\gamma\left(a_{2}\right) \subseteq \gamma\left(a_{1}\right)$. Define:

$$
a_{1} \sqsubseteq a_{2} \quad \Longleftrightarrow \quad a_{2} \subseteq a_{1}
$$

Lemma: $a_{1} \sqsubseteq a_{2} \rightarrow \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{2}\right)$
Does the converse hold?

Lattice of Conjunctions of Predicates and Concretization

 $\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}-$ predicates- formulas whose free variables denote program variables
$L=A=2^{\mathcal{P}}$, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_{0}=\{0<x, x<y\}$.
$s \models F$ means: formula F is true for variables given by the program state s

$$
\gamma(a)=\left\{s \mid s \models \bigwedge_{P \in a} P\right\}
$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$
Example: $\gamma\left(a_{0}\right)=\{s|s|=0<x \wedge x<y\}$. We often assume states are pairs (x, y). Then $\gamma\left(a_{0}\right)=\{(x, y) \mid 0<x \wedge x<y\} . \quad \gamma(a)=\{(x, y) \mid \bigwedge a\}$ If $a_{1} \subseteq a_{2}$ then $\bigwedge a_{2}$ implies $\bigwedge a_{1}$, so $\gamma\left(a_{2}\right) \subseteq \gamma\left(a_{1}\right)$. Define:

$$
a_{1} \sqsubseteq a_{2} \quad \Longleftrightarrow \quad a_{2} \subseteq a_{1}
$$

Lemma: $a_{1} \sqsubseteq a_{2} \rightarrow \gamma\left(a_{1}\right) \subseteq \gamma\left(a_{2}\right)$
Does the converse hold? no (will see examples later)

Lattice Operations: Example

$$
\{x<2,0<x, x<y\} \sqsubseteq\{0<x, 0<y\} \sqsubseteq\{0<x\} \sqsubseteq \emptyset
$$

Draw the Hasse diagram for any lattice (A, \sqsubseteq) i.e. $\left(2^{\mathcal{P}}, \supseteq\right)$ for $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}\right\}$ a three-element set.

Lattice Operations: Example

$$
\{x<2,0<x, x<y\} \sqsubseteq\{0<x, 0<y\} \sqsubseteq\{0<x\} \sqsubseteq \emptyset
$$

Draw the Hasse diagram for any lattice (A, \sqsubseteq) i.e. $\left(2^{\mathcal{P}}, \supseteq\right)$ for $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}\right\}$ a three-element set.

What is the top and what is the bottom element of this lattice?

Lattice Operations: Example

$$
\{x<2,0<x, x<y\} \sqsubseteq\{0<x, 0<y\} \sqsubseteq\{0<x\} \sqsubseteq \emptyset
$$

Draw the Hasse diagram for any lattice (A, \sqsubseteq) i.e. $\left(2^{\mathcal{P}}, \supseteq\right)$ for $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}\right\}$ a three-element set.

What is the top and what is the bottom element of this lattice?
What is \sqcup ? Compute $\{0<x, x<2\} \sqcup\{0<x, x<y\}=$

Lattice Operations: Example

$$
\{x<2,0<x, x<y\} \sqsubseteq\{0<x, 0<y\} \sqsubseteq\{0<x\} \sqsubseteq \emptyset
$$

Draw the Hasse diagram for any lattice (A, \sqsubseteq) i.e. $\left(2^{\mathcal{P}}, \supseteq\right)$ for $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}\right\}$ a three-element set.

What is the top and what is the bottom element of this lattice? What is \sqcup ? Compute $\{0<x, x<2\} \sqcup\{0<x, x<y\}=\{0<x\}$ (draw)

Lattice Operations: Example

$$
\{x<2,0<x, x<y\} \sqsubseteq\{0<x, 0<y\} \sqsubseteq\{0<x\} \sqsubseteq \emptyset
$$

Draw the Hasse diagram for any lattice (A, \sqsubseteq) i.e. $\left(2^{\mathcal{P}}, \supseteq\right)$ for $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}\right\}$ a three-element set.

What is the top and what is the bottom element of this lattice?
What is \sqcup ? Compute $\{0<x, x<2\} \sqcup\{0<x, x<y\}=\{0<x\}$ (draw) What is the size and the height of the lattice?

Lattice Height

A finite chain inside a partial order is a strictly ordered sequence of elements: $x_{0} \sqsubset x_{1} \ldots \sqsubset x_{n}$ Here $x \sqsubset y$ means that both $x \sqsubseteq y$ and $x \neq y$ Length of such chain is n (number of \sqsubset signs) Note that $x_{i} \sqsubset x_{j}$ for $i<j$ by transitivity Thus all elements in a chain are distinct.
An infinite chain is infinite sequence of elements where $x_{i} \sqsubset x_{i+1}$ for all i A lattice is finite-height if all chains are finite. Then the maximum length of chains is called the height of the lattice.

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is:

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is:

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')
- \sqcup (approximates union) is:

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')
- \sqcup (approximates union) is: \cap

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')
- \sqcup (approximates union) is: \cap
- Size of the lattice with $n+1$ element:

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')
- \sqcup (approximates union) is: \cap
- Size of the lattice with $n+1$ element: 2^{n+1}

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')
- \sqcup (approximates union) is: \cap
- Size of the lattice with $n+1$ element: 2^{n+1}
- Height of the lattice with $n+1$ element:

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')
- \sqcup (approximates union) is: \cap
- Size of the lattice with $n+1$ element: 2^{n+1}
- Height of the lattice with $n+1$ element: $n+1$

Lattice of Predicates: Basic Facts

$\mathcal{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$. Lattice elements $a \in 2^{\mathcal{P}}$ (subsets of \mathcal{P})
More predicates in conjunction \Rightarrow stronger condition \Rightarrow smaller set Therefore we have:

- \perp - bottom (smallest set of states) is: \mathcal{P}
- T - top (largest set of states) is: \emptyset (predicate 'true')
- \sqcup (approximates union) is: \cap
- Size of the lattice with $n+1$ element: 2^{n+1}
- Height of the lattice with $n+1$ element: $n+1$

Given $a \in 2^{\mathcal{P}}$ we abbreviate $\bigwedge_{P \in a} P$ as $\bigwedge a$

Abstract Strongest Postcondition sp\# (a, c)

Abstract strongest postcondition (= transfer function in data-flow analysis) Consider a command c and a set of predicates $a \subseteq \mathcal{P}$, we define abstract strongest postcondition of a as the conjunction

$$
s p^{\#}(a, c)=\left\{P^{\prime} \in \mathcal{P} \mid\{\bigwedge a\} c\left\{P^{\prime}\right\}\right\}
$$

all predicates from \mathcal{P} that hold after c. Note that $\{\ldots\} \subset\{\ldots\}$ after "|" denotes a Hoare triple. $s p^{\#}: A \times C o m m a n d s \rightarrow A$. By conjunctivity of Hoare triple, the result denotes a valid postcondition:

$$
\{\bigwedge a\} c\left\{\bigwedge s p^{\#}(a, c)\right\}
$$

Thus $s p_{F}(\bigwedge a, c) \Longrightarrow s p^{\#}(a, c)$ holds as $s p_{F}$ is strongest. However, converse implication need not - abstract postcondition is only an over-approximation
This definition of $s p^{\#}(a, c)$ gives the strongest condition that we can write as a conjunction of the allowed predicates \mathcal{P}, whereas $s p_{F}$ need not be expressible using \mathcal{P}

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute sp\# $(\{0<x\}, y:=x+1)$

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute sp\# $(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute sp\# $(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

We obtain that the condition holds for $0<x, 0<y$, and for $x<y$, but not for false. Thus,

$$
s p^{\#}(\{0<x\}, y:=x+1)=\{0<x, 0<y, x<y\}
$$

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute $s p^{\#}(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

We obtain that the condition holds for $0<x, 0<y$, and for $x<y$, but not for false. Thus,

$$
s p^{\#}(\{0<x\}, y:=x+1)=\{0<x, 0<y, x<y\}
$$

Compute

$$
s p^{\#}(\{0<x\}, y:=x-1)=
$$

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute $s p^{\#}(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

We obtain that the condition holds for $0<x, 0<y$, and for $x<y$, but not for false. Thus,

$$
s p^{\#}(\{0<x\}, y:=x+1)=\{0<x, 0<y, x<y\}
$$

Compute

$$
s p^{\#}(\{0<x\}, y:=x-1)=\{0<x\}
$$

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute $s p^{\#}(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

We obtain that the condition holds for $0<x, 0<y$, and for $x<y$, but not for false. Thus,

$$
s p^{\#}(\{0<x\}, y:=x+1)=\{0<x, 0<y, x<y\}
$$

Compute

$$
\begin{aligned}
& s p^{\#}(\{0<x\}, y:=x-1)=\{0<x\} \\
& s p^{\#}(\{0<x, x<y\}, x:=x-1)=
\end{aligned}
$$

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute $s p^{\#}(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

We obtain that the condition holds for $0<x, 0<y$, and for $x<y$, but not for false. Thus,

$$
s p^{\#}(\{0<x\}, y:=x+1)=\{0<x, 0<y, x<y\}
$$

Compute

$$
\begin{aligned}
& s p^{\#}(\{0<x\}, y:=x-1)=\{0<x\} \\
& s p^{\#}(\{0<x, x<y\}, x:=x-1)=\{0<y, x<y\}
\end{aligned}
$$

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute $s p^{\#}(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

We obtain that the condition holds for $0<x, 0<y$, and for $x<y$, but not for false. Thus,

$$
s p^{\#}(\{0<x\}, y:=x+1)=\{0<x, 0<y, x<y\}
$$

Compute

$$
\begin{aligned}
& s p^{\#}(\{0<x\}, y:=x-1)=\{0<x\} \\
& s p^{\#}(\{0<x, x<y\}, x:=x-1)=\{0<y, x<y\}
\end{aligned}
$$

What is the relation between $\{0<x, x<y\}$ and $\{0<x, 0<y, x<y\}$?

Example of Computing Abstract Strongest Postcondition

$\mathcal{P}=\{$ false $, 0<x, 0<y, x<y\}$
Compute $s p^{\#}(\{0<x\}, y:=x+1)$
We can test for each predicate $P^{\prime} \in \mathcal{P}$ whether

$$
x>0 \wedge\left(y^{\prime}=x+1 \wedge x^{\prime}=x\right) \Longrightarrow P^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

We obtain that the condition holds for $0<x, 0<y$, and for $x<y$, but not for false. Thus,

$$
s p^{\#}(\{0<x\}, y:=x+1)=\{0<x, 0<y, x<y\}
$$

Compute

$$
\begin{aligned}
& s p^{\#}(\{0<x\}, y:=x-1)=\{0<x\} \\
& s p^{\#}(\{0<x, x<y\}, x:=x-1)=\{0<y, x<y\}
\end{aligned}
$$

What is the relation between $\{0<x, x<y\}$ and $\{0<x, 0<y, x<y\}$? Different in lattice, denote same states. This is not a problem.

Control-Flow Graphs with Commands on Edges

Control-flow graphs are (V, E) where E contains triples (u, c, v) where $u, v \in V$ and each c is a command labeling the edge (u, v)

$$
\begin{aligned}
& / / a \\
& i=0 ;
\end{aligned}
$$

Analysis Algorithm

Control-flow graph (V, E) where E contains triples (u, c, v)
Analysis maintains a map $g: V \rightarrow A$ from vertices to lattice elements

For program entry point: the set of all predicates that are true in every initial state (over-approximation of the set of initial states).

For other program points, initially put conjunction of all predicates (\perp). Then update the value at a point when any predecessor changes:

$$
g(v):=\bigsqcup_{(u, c, v) \in E} s p^{\#}(g(u), c)
$$

This process terminates since the lattice has finite height. Lattice elements grow (sets of predicates shrink).
Checking if the process terminates is same as checking that we have computed a loop invariant.

Running the Example from the Initial State

```
\mathcal{P}={false,0<x,0<=x,0<y,x<y,x=0,y=1,x<1000,1000\leqx}
// true
x = 0;
// false, 0<x, 0\leqx, 0<y,x<y,x=0,y=1,x<1000,1000\leqx
y = 1;
while // false, 0<x, 0\leqx,0<y,x<y,x=0,y=1,x<1000,1000\leqx
(x<1000) {
    // false, 0<x, 0\leqx, 0<y,x<y, x=0, y=1,x<1000,1000\leqx
    x = x + 1;
    // false, 0<x, 0\leqx, 0<y, x<y,x=0, y=1,x<1000,1000\leqx
    y = 2*x;
    // false, 0<x, 0\leqx, 0<y, x<y, x=0, y=1, x<1000,1000\leqx
    y = y + 1;
    // false, 0<x, 0\leqx, 0<y, x<y, x=0, y=1,x<1000,1000\leqx
}
// false, 0<x, 0\leqx, 0<y,x<y, x=0,y=1,x<1000,1000\leqx
```


Example of Limitations of Conjunctions

```
P}={fa/se,0<x,x\leq0,0<y
if (x>0) {
    y=x
}
//QQ
if (x>0) {
    if(y>0) 1/y
    else error
}
```

Assuming arbitrary initial state, what is the best we can compute as Q using conjunctions from \mathcal{P} ?

Example of Limitations of Conjunctions

```
P}={fa/se,0<x,x\leq0,0<y
if (x>0) {
    y=x
}
// Q
if (x>0) {
    if(y>0) 1/y
    else error
}
```

Assuming arbitrary initial state, what is the best we can compute as Q using conjunctions from \mathcal{P} ? 'true'

Using disjunctions of conjunctions:

Example of Limitations of Conjunctions

```
\mathcal{P}={false,0<x,x\leq0,0<y}
if (x>0) {
    y=x
}
// Q
if (x>0) {
    if(y>0) 1/y
    else error
}
```

Assuming arbitrary initial state, what is the best we can compute as Q using conjunctions from \mathcal{P} ? 'true'

Using disjunctions of conjunctions: $(x>0 \wedge y>0) \vee(x \leq 0)$ Allows us to prove absence of error in the remaining code

Disjunctive Analysis to Overcome Limitations

Lattice with disjunction of conjunctions

- Sets of sets of predicates - exponentially larger
- Reduce by using as few predicates as possible, different possible predicates for each program point, limit sizes of conjuncts, ...
Important topic: automatically discover predicates.
- in general as hard as discovering loop invariants
- yet we only need to discover pieces of invariants
- and we can conservatively suggest more candidate predicates (any predicate set gives a sound analysis)

Interval Analysis

For a machine integer x, compute the interval $[a, b]$ such that $x \in[a, b]$ Worst-case interval: $[\mathrm{minl}, \operatorname{maxl}]=\left[-2^{31}, 2^{31}-1\right]$

- each machine integer is between smallest and largest representable one In addition, we introduce a special \perp interval to represent an empty set of states
Consider relation c whose semantics is relation r on initial and final integer Define $s p^{\#}$ as the interval for the values that x can take after c :

$$
s p^{\#}([a, b], r)=\alpha\left(\left\{x^{\prime} \mid x \in[a, b] \wedge\left(x, x^{\prime}\right) \in r\right\}\right)
$$

Here α computes the interval for a set of values:

- $\alpha(S)=[\min (S), \max (S)]$, if $S \neq \emptyset$, whereas $\alpha(\emptyset)=\perp$

We define $s p^{\#}(\perp)=\perp$, since image of empty set is an empty set

$$
\begin{aligned}
& s p^{\#}([0,10], x=x+7)=[7,17] \quad s p^{\#}([-5,-5], x=x * x)=[0,25] \\
& s p^{\#}([1000, \text { maxl }], x=x+30)=[\text { minl }, \text { maxl }]
\end{aligned}
$$

Size of the Interval Lattice

$L=\{\perp\} \cup\{[a, b] \mid \min l \leq a \leq b \leq \max l\}$
Here $\perp \sqsubseteq[a, b]$ for all proper intervals $[a, b]$. Between intervals,

$$
[a, b] \sqsubseteq\left[a^{\prime}, b^{\prime}\right] \text { if and only if } a^{\prime} \leq a \leq b \leq b^{\prime}
$$

Number of elements in the lattice:

Size of the Interval Lattice

$L=\{\perp\} \cup\{[a, b] \mid \min l \leq a \leq b \leq \max l\}$
Here $\perp \sqsubseteq[a, b]$ for all proper intervals $[a, b]$. Between intervals,

$$
[a, b] \sqsubseteq\left[a^{\prime}, b^{\prime}\right] \text { if and only if } a^{\prime} \leq a \leq b \leq b^{\prime}
$$

Number of elements in the lattice: $1+\frac{2^{32}\left(2^{32}+1\right)}{2}=1+2^{31}+2^{63}$

Size of the Interval Lattice

$L=\{\perp\} \cup\{[a, b] \mid \min l \leq a \leq b \leq \max l\}$
Here $\perp \sqsubseteq[a, b]$ for all proper intervals $[a, b]$. Between intervals,

$$
[a, b] \sqsubseteq\left[a^{\prime}, b^{\prime}\right] \text { if and only if } a^{\prime} \leq a \leq b \leq b^{\prime}
$$

Number of elements in the lattice: $1+\frac{2^{32}\left(2^{32}+1\right)}{2}=1+2^{31}+2^{63}$ Size of the longest chain:

Size of the Interval Lattice

$L=\{\perp\} \cup\{[a, b] \mid \min l \leq a \leq b \leq \max l\}$
Here $\perp \sqsubseteq[a, b]$ for all proper intervals $[a, b]$. Between intervals,

$$
[a, b] \sqsubseteq\left[a^{\prime}, b^{\prime}\right] \text { if and only if } a^{\prime} \leq a \leq b \leq b^{\prime}
$$

Number of elements in the lattice: $1+\frac{2^{32}\left(2^{32}+1\right)}{2}=1+2^{31}+2^{63}$ Size of the longest chain: 2^{32}

Starting Point for Analysis

Starting Point for Analysis

Fixpoint Found

Fixpoint Found

$$
\begin{aligned}
& \text { //a } \\
& i=0 ;
\end{aligned}
$$

$$
\text { while }(\mathrm{i}<10)\{
$$

$$
\text { if }(i>1)
$$

//e

$$
i=i+3 ;
$$

else

$$
\begin{aligned}
& / / f \\
& i=i
\end{aligned}
$$

$$
\mathrm{i}=\mathrm{i}+2 ;
$$

$$
/ / \mathrm{g}
$$

$$
\}
$$

Note: in general, we maintain interval for each variable

General Remarks

Whatever we choose as our abstract domain A (typically some lattice), it is good to have a function γ that gives meaning to elements of A Often, elements $a \in A$ represent sets of states:

- predicate abstraction: states that satisfy the conjunction of predicates
- interval analysis: states whose variables belong to the intervals When we think about correctness conditions intuitively, we can "almost ignore" γ (but it is needed for statements to type check). Each analysis is given by transfer functions such as $s p^{\#}$ which need to satisfy, for each $a \in A$:

$$
s p(c, \gamma(a)) \subseteq \gamma\left(s p^{\#}(c, a)\right)
$$

$s p^{\#}$ gives a larger set of states (it finds only some, not all properties)
computed properties imply assertions of interest \Rightarrow we proved the assertions otherwise \Rightarrow either assertions do not hold, or analysis was too conservative

Smaller and Larger Lattices

Simple data-flow analysis are often defined by first defining abstraction for one program variable (e.g. an interval). Let this be lattice (L, \sqsubseteq)

Then, we have one such value for each variable from set of variable names N. We obtain lattice

$$
(L, \sqsubseteq)^{N}
$$

Elements are functions $N \rightarrow L$. Ordering is point-wise
Finally, the analysis maintains such value for each program point V, so we have elements $V \rightarrow(N \rightarrow L)$

