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Invariants

• Dictionary Meaning: A function, quantity, or property which 
remains unchanged

• Property (in our context): a predicate that holds for some, all, or no 
states

• Invariant is a property of a program

• at a specific program location

• that  holds for every program state that reaches the program point

• Specifications are invariants at exit points of programs or 
procedures

• Also called reachability properties.



Invariants

x = 0

y = n

while(y > 0){

x = x + 1

y = y - 1

} 

//invariant: x+y = n

//invariant: y>=0 => x<=n



Inductive Invariants

x = 0

y = n

//x+y = n

while(y > 0){

//x+y = n ∧ y > 0

x = x + 1

//x+y = n+1

y = y – 1

//x+y = n

} 

//invariant: x+y = n

• Invariant holds initially

• Invariant holds at the start of the loop
=>

invariant holds at the end of the loop



Not all Invariants are Inductive

x = 0

y = n

//y>=0 => x<=n

while(y > 0){

//x <= n ∧ y > 0

x = x + 1

//x <= n+1 ∧ y > 0

y = y – 1

//x <= n+1 ∧ y >= 0

} 

//invariant: y>=0 => x <= n 

Invariant cannot be 
proved by induction



Inductive Strengthening

x = 0

y = n

//(y>=0 => x<=n) ∧ x+y=n
while(y > 0){

//x<n ∧ y>0 ∧ x+y=n
x = x + 1

//x<=n ∧ y>0 ∧ x+y=n+1
y = y – 1

//x<=n ∧ y>=0 ∧ x+y=n
} 

//invariant: y>=0 => x<=n

Implied by the 
stronger inductive 
invariant



Formulating Inductiveness
x = 0

y = n

while(y > 0){

x = x + 1

y = y – 1

} //invariant: y>=0 => x<=n

(𝑥 = 0 ∧ 𝑦 = 𝑛) ⇒ (𝑦 < 0 ∨ 𝑥 ≤ 𝑛 )

𝑦 < 0 ∨ 𝑥 ≤ 𝑛 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 − 1

⇒ (𝑦′ < 0 ∨ 𝑥′ ≤ 𝑛 )

𝑰 Guard Transition

Generally referred 
to as the verification 
condition (VC)



Formulating Inductive 
Strengthening

x = 0

y = n

while(y > 0){

x = x + 1

y = y – 1

} //invariant: y>=0 => x<=n

𝑥 = 0 ∧ 𝑦 = 𝑛 ⇒ 𝑦 < 0 ∨ 𝑥 ≤ 𝑛 ∧ 𝑺

𝑦 < 0 ∨ 𝑥 ≤ 𝑛 ∧ 𝑺 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 − 1

⇒ 𝑦′ < 0 ∨ 𝑥′ ≤ 𝑛 ∧ 𝑺′

𝑰 Guard Transition



Finding Linear Invariants
[Colon et al. CAV ‘03]

x = 0

y = n

while(y > 0){

x = x + 1

y = y – 1

} //invariant: y>=0 => x<=n

𝑥 = 0 ∧ 𝑦 = 𝑛 ⇒ 𝑦 < 0 ∨ 𝑥 ≤ 𝑛 ∧ 𝒂𝒙 + 𝒃𝒚 + 𝒄 ≤ 𝟎

𝑦 < 0 ∨ 𝑥 ≤ 𝑛 ∧ 𝒂𝒙 + 𝒃𝒚 + 𝒄 ≤ 𝟎 ∧ 𝑦 > 0 ∧ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 − 1

⇒ 𝑦′ < 0 ∨ 𝑥′ ≤ 𝑛 ∧ 𝒂𝒙′ + 𝒃𝒚′ + 𝒄 ≤ 𝟎

𝑰 Guard Transition

Perhaps could be 
called a parametric 
VC



Finding Template Coefficients

𝑥 ≥ 0 ∧ 𝑦 ≥ 𝑛 ⇒ 𝒂𝒙 + 𝒃𝒚 + 𝒄 < 𝟎

𝑥 ≥ 0 ∧ 𝑦 ≥ 𝑛 ∧ 𝒂𝒙 + 𝒃𝒚 + 𝒄 ≥ 𝟎

𝑨 ⇒ 𝑩 ≡ ¬(𝑨 ∧ ¬𝑩)

Find values for a,b,c
s.t. the formula 
becomes valid

Find values for a,b,c
s.t. the formula 
becomes unsatisfiable

Farkas’ Lemma: A conjunction of linear inequalities is unsatisfiable
iff we can derive 1 <= 0 by performing the following operations:

• Multiplying the inequalities by a non-negative constant
• Adding two inequalities 
• Adding (or subtracting) a non-negative constant to one side



Farkas’ Lemma Example
𝑥 ≥ 0 ∧ 𝑦 ≥ 𝑛 ∧ 2𝑥 + 2𝑦 − 2𝑛 + 3 ≤ 0

𝑥 + 0𝑦 + 0𝑛 + 0 ≥ 0
0𝑥 + 𝑦 − 𝑛 + 0 ≥ 0

−2𝑥 − 2𝑦 + 2𝑛 − 3 ≥ 0
Multiply first and second equations by 2, 

Add 2 to RHS of last equation
and add them
−1 ≥ 0

Farkas’ Lemma: A conjunction of linear inequalities (over reals) is 
unsatisfiable iff we can derive 1 <= 0 by performing the following 
operations:
• Multiplying the inequalities by a non-negative constant
• Adding two inequalities 
• Adding (or subtracting) a non-negative constant to one side



Automating Coefficient Finding

𝑥 ≥ 0 ∧ 𝑦 − 𝑛 ≥ 0 ∧ 2𝑥 + 2𝑦 − 2𝑛 + 3 ≤ 0 Prove unsat

𝜆1𝑥 ≥ 0
𝜆2𝑦 − 𝜆2𝑛 ≥ 0

−2𝜆3𝑥 − 2𝜆3𝑦 + 2𝜆3𝑛 − 3𝜆3 ≥ 0

Multiplying by unknown non-
negative values

(𝜆1−2𝜆3)𝑥 + 𝜆2 − 2𝜆3 𝑦 + (2𝜆3 − 𝜆2)𝑛 − 3𝜆3 ≥ 0

Adding the inequalities

(𝜆1−2𝜆3)𝑥 + 𝜆2 − 2𝜆3 𝑦 + (2𝜆3 − 𝜆2)𝑛 − 3𝜆3 + 𝜆 ≥ 0

Adding an unknown non-neg value

≡ −1 ≥ 0 Equate to 1 <= 0



Automating Coefficient Finding 
[Cont.]

(𝜆1−2𝜆3)𝑥 + 𝜆2 − 2𝜆3 𝑦 + (2𝜆3 − 𝜆2)𝑛 − 3𝜆3 + 𝜆 ≥ 0

≡ −1 ≥ 0

Every solution for 
the constraints will
make the inequalities 
unsatisfiable

𝜆1 − 2𝜆3 = 0
𝜆2 − 2𝜆3 = 0
2𝜆3 − 𝜆2 = 0
−3𝜆3 + 𝜆 = −1

𝜆1 = 2 , 𝜆2= 2 ,
𝜆3 = 1, 𝜆 = 2



Template-based Invariant 
Inference

𝑥 ≥ 0 ∧ 𝑦 − 𝑛 ≥ 0 ∧ 𝒂𝒙 + 𝒃𝒚 + 𝒄 ≥ 𝟎
Find values for a,b,c
s.t. the formula 
becomes unsatisfiable

𝜆1𝑥 ≥ 0
𝜆2𝑦 − 𝜆2𝑛 ≥ 0

𝜆3𝑎𝑥 + 𝜆3𝑏𝑦 + 𝜆3𝑐 ≥ 0

Multiplying by unknown non-
negative values

(𝜆1+𝜆3𝑎)𝑥 + 𝜆2 + 𝜆3𝑏 𝑦 − 𝜆2𝑛 + 𝜆3𝑐 ≥ 0

Adding the inequalities

(𝜆1+𝜆3𝑎)𝑥 + 𝜆2 + 𝜆3𝑏 𝑦 − 𝜆2𝑛 + 𝜆3𝑐 + 𝜆4 ≥ 0

Adding an unknown non-neg value

≡ −1 ≥ 0 Equate to 1 <= 0



Farkas’ Constraints [Cont.]

(𝜆1+𝜆3𝑎)𝑥 + 𝜆2 + 𝜆3𝑏 𝑦 − 𝜆2𝑛 + 𝜆3𝑐 + 𝜆4 ≥ 0

≡ −1 ≥ 0

Every solution for 
the constraints will
make the inequalities 
unsatisfiable

𝜆1 + 𝜆3𝑎 = 0
𝜆2 + 𝜆3𝑏 = 0
−𝜆2 = 0

𝜆3𝑐 + 𝜆4 = −1

𝑏 = 0, 𝑎 = −1, 𝑐 = −1,
𝜆1 = 1 , 𝜆2= 0 ,
𝜆3 = 1, 𝜆4 = 0



In summary

• We had a formula of the form:  A 𝐱 ∧ 𝐵[𝒂, 𝒙] ⇒ 𝐶[𝒂, 𝒙]

• We wanted to find a value for 𝒂 that will make the 
implication hold for all 𝐱

• In other words, we are trying to find a satisfiable assignment 
for a quantified formula.

• Farkas’ Lemma converts it to satisfiability of quantifier-free 
non-linear real constraints



Limitations

The Farkas’ Lemma approach provides a way to find linear 
invariants for programs that

• do not have many disjunctions

• do not have functions

• do not have data structures

• do not have nonlinear arithmetic



Further Reading and Software

We developed an approach that addresses some of these limitations. 

For more details see:

“Symbolic Resource Bounds Inference For Functional Programs”, CAV 2014: pdf ,  
slides

An extension of Leon (a slightly old version) that supports templates: 

Orb : http://lara.epfl.ch/w/rbound

• More Related Works

• “Linear invariant generation using non-linear constraint solving.”, Colon et 
al., CAV 2003

• “Program analysis as constraint solving.”, S. Gulwani et al., PLDI 2008

• “Constraint solving for interpolation.”, A.Rybalchenko et al., VMCAI 2007

• “Non-linear loop invariant generation using grobner bases.” 
Sankaranarayanan et al., POPL 2004 

http://lara.epfl.ch/~kandhada/cav14.pdf
http://lara.epfl.ch/~kandhada/orb-cav.pptx
http://lara.epfl.ch/w/rbound

