Constraint-based
Invariant
Inference

Ravichandhran Madhavan,
Viktor Kuncalk,
EPFL, Switzerland

Invariants

Dictionary Meaning: A function, quantity, or property which
remains unchanged

Property (in our context): a predicate that holds for some, all, or no
states

Invariant is a property of a program
at a specific program location
that holds for every program state that reaches the program point

Specifications are invariants at exit points of programs or
procedures

Also called reachability properties.

Invariants

x =0
YV = n
while(y > 0) {
X = x + 1
y =y - 1
}
//invariant: x+y = n

//invariant: y>=0 => x<=n

Inductive Invariants

x = 0
Vv = n
//x+y = n * |nvariant holds initially
while (y > 0) {
//xty = n Ay >0
X = x + 1
//x+y = n+l * Invariant holds at the start of the loop
=>
y =y — 1 invariant holds at the end of the loop
//x+y = n

J

//invariant: x+y = n

Not all Invariants are Inductive

x = 0
Yy = n
//y>=0 => x<=n
while(y > 0){
//x <=n Ay >0
X = x + 1
//x <= n+l ANy > 0
y =y -1
//x <= n+l ANy >= 0 Invariant cannot be
} [proved by induction

//invariant: y>=0 => x <= n

Inductive Strengthening

x =0
y = n
// (y>=0 => x<=n) A x+y=n
while (y > 0) {
//%x<n A y>0 A x+y=n
Xx = x + 1
//x<=n A y>0 A x+y=n+1
y B y - 1 . .
//x<=n A y>=0 A x+y=n stronger inductive

) !i invariant

//invariant: y>=0 => x<=n

Implied by the

Formulating Inductiveness

x =0
y = n
while(y > 0){ Generally referred
; } ? i 1 to as the verification
} //invariant: y>=0 => x<=n condition (VC)

(x=0Ay=n)=>(y<0vx<n)

I Guard Transition
[: \ e A \
((}’<OVxSn)/\y>0/\x’=x+1/\y'=y_1)
=> (' <0vx' <n)

Formulating Inductive

Strengthening
x =0
y = n
while (y > 0){
x =x + 1
y =y -1

} //invariant: y>=0 => x<=n
(x=0Ay=n)=>(y<0vVvx<n)AS

I Guard Transition
\
(: \ — \
(y<OVX<n)ASAYy>O0AXx =x+1Ay =y—1)
> (@' <0vx'<n)AS

Finding Linear Invariants
|Colon et al. CAV ‘03]

x = 0

y = n

while(y > 0){ Perhaps could be
roET 1 called a parametric
v =y -

} //invariant: y>=0 => x<=n VC

(x=0Ay=n)>(y<0vx<n)Aax+by+c<0

| Guard Transition

A
(: \ /—)\—\ { \

(y<O0vx<n)Aax+by+c<0Ay>0Ax'=x+1Ay =y—-1

= @' <0vx'<n)Aax'+by' +c<0

Finding Template Coefficients

Find values for a,b,c
s.t. the formula
becomes valid

(x=0Ay=>n)=>ax+by+c<0 55—

A=>BE—.(A/\—|B)1

x>0Ay>nAax+by+c>0 &— Find values for a,b,c

s.t. the formula
becomes unsatisfiable

Farkas’ Lemma: A conjunction of linear inequalities is unsatisfiable
iff we can derive 1 <=0 by performing the following operations:

 Multiplying the inequalities by a non-negative constant
 Adding two inequalities
 Adding (or subtracting) a non-negative constant to one side

Farkas’' Lemma Example
x=20ANy=2nA2x+2y—2n+3 <0

x+0y+0n+0=0
Ox+y—m+0=0
—2x—2y+2n—-3 =0
Multiply first and second equations by 2,
Add 2 to RHS of last equation
and add them
—-1=>0

Farkas’ Lemma: A conjunction of linear inequalities (over reals) is
unsatisfiable iff we can derive 1 <= 0 by performing the following
operations:

 Multiplying the inequalities by a non-negative constant
 Adding two inequalities

* Adding (or subtracting) a non-negative constant to one side

Automating Coefficient Finding

XxX=20ANy—nm=20A2x+2y—2n+3<0 S~ Prove unsat

!

Ax =0 Multiplying by unknown non-
Ay—2A4,n=0 negative values
—2/1336 - 2/13}7 + 2).371 - 3}.3 2 O

l Adding the inequalities
(A1—223)x + (A, — 243)y + (243 —A,)n — 3453 =20
l Adding an unknown non-neg value

(A —243)x + (A, = 223)y + (2A3 —A,)n =343 +1 =0
=—-1>0 Equateto 1<=0

Automating Coefficient Finding

|Cont.]
(M=223)x + Ay — 223)y + (243 — A)n — 343 + 4 =0
=—1=0

A —24;=0 Every solution for

Ay — 213 =0 S the constraints will
243 — 1, =0 make the inequalities
-3 +1=-1 unsatisfiable

/11 =2) /12 =2)

/1321,A=2

Template-based Invariant
Inference
Find values for a,b,c

x=20Ay—n=20Aax+by+c=0 S~ i theformula
l becomes unsatisfiable

Ax =0
Ay—2A4n=0
Azax + A3by + A;¢ = 0

Multiplying by unknown non-
negative values

l Adding the inequalities
A+ A3a)x + (A, + A3b)y —A,n+ 3¢ = 0
l Adding an unknown non-neg value

A+ A3a0)x + (A, + A3b)y —Ao,n+A;c+ 1, =20
=—-1>0 Equateto1<=0

Farkas' Constraints [Cont.]

(A1+A3a)x + (AZ + /13b)y — Azn + /13C +),4_ >0

=—-1=20
A +4A3a=0 Every solution for
Ay +23b =0 S the constraints will
-1, =0 make the inequalities
Azc+ A, = —1 unsatisfiable

b=0a=-1,c=—1,
/’11:1,/1220,
A3=1,A4=0

In summary

We had a formula of the form: A[x] A B[a, x] = C[a, x]

We wanted to find a value for a that will make the
implication hold for all x

In other words, we are trying to find a satisfiable assignment
for a quantified formula.

Farkas” Lemma converts it to satisfiability of quantifier-free
non-linear real constraints

Limitations

The Farkas’ Lemma approach provides a way to find linear
invariants for programs that

do not have many disjunctions
do not have functions
do not have data structures

do not have nonlinear arithmetic

Further Reading and Software

We developed an approach that addresses some of these limitations.
For more details see:

“Symbolic Resource Bounds Inference For Functional Programs”, CAV 2014: pdf,
slides

An extension of Leon (a slightly old version) that supports templates:
Orb : http://lara.epfl.ch/w/rbound

More Related Works

“Linear invariant generation using non-linear constraint solving.”, Colon et
al., CAV 2003

“Program analysis as constraint solving.”, S. Gulwani et al., PLDI 2008
“Constraint solving for interpolation.”, A.Rybalchenko et al., VMCAI 2007

“Non-linear loop invariant generation using grobner bases.”
Sankaranarayanan et al., POPL 2004

http://lara.epfl.ch/~kandhada/cav14.pdf
http://lara.epfl.ch/~kandhada/orb-cav.pptx
http://lara.epfl.ch/w/rbound

