Constraint-based

 Invariant Inference
Ravichandhran Madhavan,

Viktor Kuncak,
EPFL, Switzerland

Invariants

- Dictionary Meaning: A function, quantity, or property which remains unchanged
- Property (in our context): a predicate that holds for some, all, or no states
- Invariant is a property of a program
- at a specific program location
- that holds for every program state that reaches the program point
- Specifications are invariants at exit points of programs or procedures
- Also called reachability properties.

Invariants

$$
\begin{aligned}
& x=0 \\
& y=n \\
& \text { while }(y>0)\{ \\
& \qquad x=x+1 \\
& \qquad y=y-1 \\
& \text { \} } \\
& \text { //invariant: } x+y=n \\
& \text { //invariant: } y>=0=>x<=n
\end{aligned}
$$

Inductive Invariants

$$
\begin{aligned}
& \mathrm{x}=0 \\
& y=n \\
& / / x+y=n \\
& \text { while }(y>0)\{ \\
& / / x+y=n \wedge y>0 \\
& \mathrm{x}=\mathrm{x}+1 \\
& / / x+y=n+1 \\
& y=y-1 \\
& / / x+y=n \\
& \text { - Invariant holds initially } \\
& \text { - Invariant holds at the start of the loop } \\
& \text { => } \\
& \text { invariant holds at the end of the loop } \\
& \text { \} } \\
& \text { //invariant: } x+y=n
\end{aligned}
$$

Not all Invariants are Inductive

$$
\begin{aligned}
& x=0 \\
& \mathrm{y}=\mathrm{n} \\
& \text { //y>=0 => } x<=n \\
& \text { while(y > 0) \{ } \\
& / / x<=n \wedge y>0 \\
& x=x+1 \\
& \text { //x <= n+1 } \wedge \mathrm{y}>0 \\
& y=y-1 \\
& \text { //x <= n+1 ^y >= } 0 \\
& \text { \} } \\
& \text { //invariant: } y>=0=>x<=n \\
& \text { Invariant cannot be } \\
& \text { proved by induction }
\end{aligned}
$$

Inductive Strengthening

$$
\begin{aligned}
& x=0 \\
& y=n \\
& / /(y>=0=>x<=n) \wedge x+y=n \\
& \text { while (y > 0) \{ } \\
& / / x<n \wedge y>0 \wedge x+y=n \\
& x=x+1 \\
& / / x<=n \wedge y>0 \wedge x+y=n+1 \\
& y=y-1 \\
& / / x<=n \wedge y>=0 \wedge x+y=n \\
& \text { Implied by the } \\
& \text { stronger inductive } \\
& \text { invariant }
\end{aligned}
$$

Formulating Inductiveness

```
\(\mathrm{x}=0\)
\(y=n\)
while(y > 0) \{
    \(x=x+1\)
    \(y=y-1\)
\} //invariant: \(y>=0\) => \(x<=n\)
```

 Generally referred
 to as the verification
 condition (VC)
 $$
(x=0 \wedge y=n) \Rightarrow(y<0 \vee x \leq n)
$$

Formulating Inductive

Strengthening

```
\(x=0\)
\(y=n\)
while (y > 0) \{
    \(x=x+1\)
    \(y=y-1\)
\} //invariant: \(y>=0=>x<=n\)
\((x=0 \wedge y=n) \Rightarrow(y<0 \vee x \leq n) \wedge S\)
```

 Guard Transition
 $\left((y<0 \vee x \leq n) \wedge S \wedge y>0 \wedge x^{\prime}=x+1 \wedge y^{\prime}=y-1\right)$
$\Rightarrow\left(y^{\prime}<0 \vee x^{\prime} \leq n\right) \wedge S^{\prime}$

Finding Linear Invariants [Colon et al. CAV '03]

$$
x=0
$$

$$
\mathrm{y}=\mathrm{n}
$$

$$
\text { while }(y>0)\{
$$

$$
x=x+1
$$

$$
y=y-1
$$

Perhaps could be
called a parametric

$$
\text { \} //invariant: } y>=0 \Rightarrow x<=n
$$

$$
(x=0 \wedge y=n) \Rightarrow(y<0 \vee x \leq n) \wedge \boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c} \leq \mathbf{0}
$$

Guard

Transition

$(y<0 \vee x \leq n) \wedge \boldsymbol{a} \boldsymbol{x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c} \leq \mathbf{0} \wedge y>0 \wedge x^{\prime}=x+1 \wedge y^{\prime}=y-1$

$$
\Rightarrow\left(y^{\prime}<0 \vee x^{\prime} \leq n\right) \wedge \boldsymbol{a} \boldsymbol{x}^{\prime}+\boldsymbol{b} \boldsymbol{y}^{\prime}+\boldsymbol{c} \leq \mathbf{0}
$$

Finding Template Coefficients

$$
\begin{aligned}
&(x \geq 0 \wedge y \geq n) \Rightarrow \boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c}<\mathbf{0} \longleftarrow \begin{array}{l}
\text { Find values for a,b,c } \\
\text { s.t. the formula } \\
\text { becomes valid }
\end{array} \\
& x \geq \boldsymbol{B} \equiv \neg(\boldsymbol{A} \wedge \neg \boldsymbol{B}) \\
& x \geq 0 \wedge y \geq n \wedge \boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c} \geq \mathbf{0} \longleftarrow \begin{array}{l}
\text { Find values for a,b,c } \\
\text { s.t. the formula } \\
\text { becomes unsatisfiable }
\end{array}
\end{aligned}
$$

Farkas' Lemma: A conjunction of linear inequalities is unsatisfiable iff we can derive $\mathbf{1}<=\mathbf{0}$ by performing the following operations:

- Multiplying the inequalities by a non-negative constant
- Adding two inequalities
- Adding (or subtracting) a non-negative constant to one side

Farkas' Lemma Example
 $$
x \geq 0 \wedge y \geq n \wedge 2 x+2 y-2 n+3 \leq 0
$$

$$
x+0 y+0 n+0 \geq 0
$$

$$
0 x+y-n+0 \geq 0
$$

$$
-2 x-2 y+2 n-3 \geq 0
$$

Multiply first and second equations by 2 ,
Add 2 to RHS of last equation and add them

$$
-1 \geq 0
$$

Farkas' Lemma: A conjunction of linear inequalities (over reals) is unsatisfiable iff we can derive $\mathbf{1 < = \mathbf { 0 }}$ by performing the following operations:

- Multiplying the inequalities by a non-negative constant
- Adding two inequalities
- Adding (or subtracting) a non-negative constant to one side

Automating Coefficient Finding

$$
\begin{gathered}
x \geq 0 \wedge y-n \geq 0 \wedge 2 x+2 y-2 n+3 \leq 0 \quad \text { Prove unsat } \\
\begin{array}{c}
\lambda_{1} x \geq 0 \\
\lambda_{2} y-\lambda_{2} n \geq 0
\end{array} \\
\begin{array}{c}
\text { Multiplying by unknown non- } \\
-2 \lambda_{3} x-2 \lambda_{3} y+2 \lambda_{3} n-3 \lambda_{3} \geq 0
\end{array} \\
\begin{array}{c}
\text { negative values } \\
\left(\lambda_{1}-2 \lambda_{3}\right) x+\left(\lambda_{2}-2 \lambda_{3}\right) y+\left(2 \lambda_{3}-\lambda_{2}\right) n-3 \lambda_{3} \geq 0
\end{array} \\
\begin{array}{c}
\text { Adding the inequalities } \\
\left(\lambda_{1}-2 \lambda_{3}\right) x+\left(\lambda_{2}-2 \lambda_{3}\right) y+\left(2 \lambda_{3}-\lambda_{2}\right) n-3 \lambda_{3}+\lambda \geq 0 \\
\equiv-1 \geq 0
\end{array} \quad \text { Equate to } 1<=0
\end{gathered}
$$

Automating Coefficient Finding

[Cont.]

$$
\begin{gathered}
\left(\lambda_{1}-2 \lambda_{3}\right) x+\left(\lambda_{2}-2 \lambda_{3}\right) y+\left(2 \lambda_{3}-\lambda_{2}\right) n-3 \lambda_{3}+\lambda \geq 0 \\
\equiv-1 \geq 0
\end{gathered}
$$

$$
\begin{array}{cl}
\lambda_{1}-2 \lambda_{3}=0 & \text { Every solution for } \\
\lambda_{2}-2 \lambda_{3}=0 & \text { the constraints will } \\
2 \lambda_{3}-\lambda_{2}=0 & \text { make the inequalities } \\
-3 \lambda_{3}+\lambda=-1 & \text { unsatisfiable }
\end{array}
$$

$$
\begin{aligned}
& \lambda_{1}=2, \lambda_{2}=2 \\
& \lambda_{3}=1, \lambda=2
\end{aligned}
$$

Template-based Invariant

Inference

$$
x \geq 0 \wedge y-n \geq 0 \wedge \boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}+\boldsymbol{c} \geq \mathbf{0}
$$

Find values for a,b,c

becomes unsatisfiable

Multiplying by unknown nonnegative values

Adding the inequalities
$\left(\lambda_{1}+\lambda_{3} a\right) x+\left(\lambda_{2}+\lambda_{3} b\right) y-\lambda_{2} n+\lambda_{3} c \geq 0$
Adding an unknown non-neg value

$$
\begin{aligned}
&\left(\lambda_{1}+\lambda_{3} a\right) x+\left(\lambda_{2}+\lambda_{3} b\right) y-\lambda_{2} n+\lambda_{3} c+\lambda_{4} \geq 0 \\
& \equiv-1 \geq 0 \quad \text { Equate to } 1<=0
\end{aligned}
$$

Farkas' Constraints [Cont.]

$$
\begin{aligned}
\left(\lambda_{1}+\lambda_{3} a\right) x+ & \left(\lambda_{2}+\lambda_{3} b\right) y-\lambda_{2} n+\lambda_{3} c+\lambda_{4} \geq 0 \\
& \equiv-1 \geq 0
\end{aligned}
$$

$$
\pi
$$

$$
\lambda_{1}+\lambda_{3} a=0 \quad \text { Every solution for }
$$

$$
\lambda_{2}+\lambda_{3} b=0
$$ the constraints will

$$
-\lambda_{2}=0
$$ make the inequalities

$$
\lambda_{3} c+\lambda_{4}=-1
$$ unsatisfiable

$$
\begin{aligned}
& b=0, a=-1, c=-1 \\
& \lambda_{1}=1, \lambda_{2}=0 \\
& \lambda_{3}=1, \lambda_{4}=0
\end{aligned}
$$

In summary

- We had a formula of the form: $\mathrm{A}[\mathbf{x}] \wedge B[\boldsymbol{a}, \boldsymbol{x}] \Rightarrow C[\boldsymbol{a}, \boldsymbol{x}]$
- We wanted to find a value for \boldsymbol{a} that will make the implication hold for all \mathbf{x}
- In other words, we are trying to find a satisfiable assignment for a quantified formula.
- Farkas' Lemma converts it to satisfiability of quantifier-free non-linear real constraints

Limitations

The Farkas' Lemma approach provides a way to find linear invariants for programs that

- do not have many disjunctions
- do not have functions
- do not have data structures
- do not have nonlinear arithmetic

Further Reading and Software

We developed an approach that addresses some of these limitations.
For more details see:
"Symbolic Resource Bounds Inference For Functional Programs", CAV 2014: pdf , slides

An extension of Leon (a slightly old version) that supports templates:
Orb : http://lara.epfl.ch/w/rbound

- More Related Works
- "Linear invariant generation using non-linear constraint solving.", Colon et al., CAV 2003
- "Program analysis as constraint solving.", S. Gulwani et al., PLDI 2008
- "Constraint solving for interpolation.", A.Rybalchenko et al., VMCAI 2007
- "Non-linear loop invariant generation using grobner bases." Sankaranarayanan et al., POPL 2004

