Lecturecise 5 Paths, Triples, Postconditions, Preconditions

Viktor Kuncak

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Loop-Free Programs as Relations: Summary

command <i>c</i>	<i>R</i> (<i>c</i>)	$\rho(c)$
(x = t)	$x' = t \land igwedge_{v \in V \setminus \{x\}} v' = v$	
<i>c</i> ₁ ; <i>c</i> ₂	$\exists \bar{z}. \ R(c_1)[\bar{x}':=\bar{z}] \land R(c_2)[\bar{x}:=\bar{z}]$	
$if(*) c_1 else c_2$	$R(c_1) \vee R(c_2)$	$ ho(c_1)\cup ho(c_2)$
assume(F)	$F \wedge igwedge_{m{v} \in m{V}} m{v}' = m{v}$	$\Delta_{S(F)}$
$\rho(v_i = t) = \{((v_1, \dots, v_i, \dots, v_n), (v_1, \dots, v'_i, \dots, v_n) \mid v'_i = t\}$ $S(F) = \{\bar{v} \mid F\}, \Delta_A = \{(\vec{v}, \vec{v}) \mid \vec{v} \in A\} \text{ (diagonal relation on } A)$ $\Delta \text{ (without subscript) is identity on entire set of states (no-op)}$		
We always have: $ ho(c) = \{(ar v,ar v') \mid R(c)\}$		
Shorthands:		

$$\frac{\mathbf{if}(*) \ c_1 \ \mathbf{else} \ c_2}{\mathbf{assume}(F)} \frac{|c_1|| \ c_2}{|F|}$$

Examples:

if
$$(F) c_1$$
 else $c_2 \equiv [F]; c_1 \parallel [\neg F]; c_2$
if $(F) c \equiv [F]; c \parallel [\neg F]$

Program Paths

Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are c_1,\ldots,c_n

The relation $\rho(c)$ is of the form $E(\rho(c_1), \ldots, \rho(c_n))$; it composes meanings of c_1, \ldots, c_n using union (\cup) and composition (\circ) (if (x > 0))([x > 0]; x = x - 1x = x - 1 $(\Delta_{\mathcal{S}(x>0)} \circ \rho(x=x-1))$ else $([\neg(x>0)]; x = 0));$ $\mathbf{x} = \mathbf{0}$ $\Delta_{S(\neg(x>0))} \circ \rho(x=0)$);)0 ([y > 0]; y = y - 1)(if (y > 0)) $(\Delta_{S(y>0)} \circ \rho(y=y-1))$ v = v - 1ָ[̈́¬(y>0)]; y = x+1 else $\Delta_{\mathcal{S}(\neg(y>0))} \circ \rho(y=x+1)$ y = x + 1Note: \circ binds stronger than \cup , so $r \circ s \cup t = (r \circ s) \cup t$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Normal Form for Loop-Free Programs

Composition distributes through union:

. .

$$(r_1 \cup r_2) \circ (s_1 \cup s_2) = r_1 \circ s_1 \cup r_1 \circ s_2 \cup r_2 \circ s_1 \cup r_2 \circ s_2$$

Example corresponding to two if-else statements one after another:

$$\begin{pmatrix} \Delta_1 \circ r_1 \\ \cup \\ \Delta_2 \circ r_2 \\) \circ \\ (\Delta_3 \circ r_3 \\ \cup \\ \Delta_4 \circ r_4 \end{pmatrix} \equiv \begin{array}{c} \Delta_1 \circ r_1 \circ \Delta_3 \circ r_3 \cup \\ \Delta_1 \circ r_1 \circ \Delta_4 \circ r_4 \cup \\ \Delta_2 \circ r_2 \circ \Delta_3 \circ r_3 \cup \\ \Delta_2 \circ r_2 \circ \Delta_4 \circ r_4 \end{pmatrix}$$

Sequential composition of basic statements is called basic path. Loop-free code describes finitely many (exponentially many) paths.

Properties of Program Contexts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some Properties of Relations

$$(p_1 \subseteq p_2)
ightarrow (p_1 \circ p) \subseteq (p_2 \circ p)$$

$$(p_1\subseteq p_2) o (p\circ p_1)\subseteq (p\circ p_2)$$

$$(p_1 \subseteq p_2) \land (q_1 \subseteq q_2) \ o \ (p_1 \cup q_1) \subseteq (p_2 \cup q_2)$$

$$(p_1\cup p_2)\circ q=(p_1\circ q)\cup (p_2\circ q)$$

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S = \mathbb{Z}^k$ Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

(日) (同) (三) (三) (三) (○) (○)

Prove of disprove.

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S = \mathbb{Z}^k$ Consider relations that are subsets of $S \times S$ (i.e. S^2) The set of all such relations is

$$C = \{r \mid r \subseteq S^2\}$$

Let E(r) be given by any expression built from relation r and some additional relations b_1, \ldots, b_n , using \cup and \circ . Example: $E(r) = (b_1 \circ r) \cup (r \circ b_2)$ E(r) is function $C \to C$, maps relations to relations **Claim:** E is monotonic function on C:

$$r_1 \subseteq r_2 \to E(r_1) \subseteq E(r_2)$$

Prove of disprove.

Proof: induction on the expression tree defining *E*, using monotonicity properties of \cup and \circ

Union-Distributivity of Expressions using \cup and \circ

Claim: *E* distributes over unions, that is, if $r_i, i \in I$ is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Prove or disprove.

Union-Distributivity of Expressions using \cup and \circ

Claim: *E* distributes over unions, that is, if $r_i, i \in I$ is a family of relations,

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

Prove or disprove.

False. Take $E(r) = r \circ r$ and consider relations r_1, r_2 . The claim becomes

$$(r_1 \cup r_2) \circ (r_1 \cup r_2) = r_1 \circ r_1 \cup r_2 \circ r_2$$

that is,

$$r_1 \circ r_1 \cup r_1 \circ r_2 \cup r_2 \circ r_1 \cup r_2 \circ r_2 = r_1 \circ r_1 \cup r_2 \circ r_2$$

Taking, for example, $r_1 = \{(1,1), (1,2)\}$, $r_2 = \{(2,2)\}$ we obtain

$$\{(1,1),(1,2),(2,2)\} = \{(1,1),(2,2)\} \quad \text{(false)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Union "Distributivity" in One Direction

Lemma:

 $E(\bigcup r_i)\supseteq \bigcup E(r_i)$ i∈I i∈I

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Union "Distributivity" in One Direction

Lemma:

$$E(\bigcup_{i\in I}r_i)\supseteq \bigcup_{i\in I}E(r_i)$$

Proof. Let $r = \bigcup_{i \in I} r_i$. Note that, for every $i, r_i \subseteq r$. We have shown that E is monotonic, so $E(r_i) \subseteq E(r)$. Since all $E(r_i)$ are included in E(r), so is their union, so

$$\bigcup E(r_i) \subseteq E(r)$$

as desired.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.

If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence:
 r₁ ⊆ r₂ ⊆ r₃ ⊆ ...

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.
- If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence:
 r₁ ⊆ r₂ ⊆ r₃ ⊆ ... Induction. In the previous counter-example the largest relation will contain all other r_i ∘ r_j.
- 3. If E(r) contains r any number of times, but $r_i, i \in I$ is a **directed family** of relations: for each i, j there exists k such that $r_i \cup r_j \subseteq r_k$, and I is possibly uncountably infinite.

Does distributivity

$$E(\bigcup_{i\in I}r_i)=\bigcup_{i\in I}E(r_i)$$

hold, for each of these cases

- 1. If E(r) is given by an expression containing r at most once? Proof: Induction on expression for E(r). Only one branch of the tree may contain r. Note previous counter-example uses rtwice.
- If E(r) contains r any number of times, but I is a set of natural numbers and r_i is an increasing sequence:
 r₁ ⊆ r₂ ⊆ r₃ ⊆ ... Induction. In the previous counter-example the largest relation will contain all other r_i ∘ r_j.
- 3. If E(r) contains r any number of times, but $r_i, i \in I$ is a **directed family** of relations: for each i, j there exists k such that $r_i \cup r_j \subseteq r_k$, and I is possibly uncountably infinite. Induction. Generalizes the previous case.

About Strength and Weakness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Putting Conditions on Sets Makes them Smaller

Let P_1 and P_2 be formulas ("conditions") whose free variables are among \bar{x} . Those variables may denote program state. When we say "condition P_1 is stronger than condition P_2 " it simply means

$$\forall \bar{x}. (P_1 \rightarrow P_2)$$

• if we know P_1 , we immediately get (conclude) P_2

• if we know P_2 we need not be able to conclude P_1

Stronger condition = smaller set: if P_1 is stronger than P_2 then $\{\bar{x} \mid P_1\} \subseteq \{\bar{x} \mid P_2\}$

▶ strongest possible condition: "false" \rightsquigarrow smallest set: Ø

▶ weakest condition: "true" ~> biggest set: set of all tuples

Hoare Triples

About Hoare Logic

We have seen how to translate programs into relations. We will use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

Example proof:

$$\label{eq:second} \begin{array}{l} //\{0 <= y\} \\ \mathbf{i} = \mathbf{y}; \\ //\{0 <= y \& \mathbf{i} = y\} \\ \mathbf{r} = \mathbf{0}; \\ //\{0 <= y \& \mathbf{i} = y \& \mathbf{r} = 0\} \\ \textbf{while} \ //\{\mathbf{r} = (y-\mathbf{i}) \ast x \& 0 <= \mathbf{i}\} \\ \textbf{(i > 0) (} \\ //\{\mathbf{r} = (y-\mathbf{i}) \ast x \& 0 < \mathbf{i}\} \\ \mathbf{r} = \mathbf{r} + \mathbf{x}; \\ //\{\mathbf{r} = (y-\mathbf{i}+1) \ast x \& 0 < \mathbf{i}\} \\ \mathbf{i} = \mathbf{i} - 1 \\ //\{\mathbf{r} = (y-\mathbf{i}) \ast x \& 0 <= \mathbf{i}\} \\ \textbf{)} \\ //\{\mathbf{r} = \mathbf{x} \ast \mathbf{y}\} \end{array}$$

Hoare Triple and Friends

Fr there there yield

Sir Charles Antony Richard Hoare

$$P, Q \subseteq S$$
 $r \subseteq S \times S$
Hoare Triple:

$$\{P\} \ r \ \{Q\} \iff \forall s,s' \in S. \left(s \in P \land (s,s') \in r \to s' \in Q\right)$$

 $\{P\}$ does not denote a singleton set containing P but is just a notation for an "assertion" around a command. Likewise for $\{Q\}$. **Strongest postcondition:**

$$sp(P,r) = \{s' \mid \exists s. s \in P \land (s,s') \in r\}$$

Weakest precondition:

$$wp(r,Q) = \{s \mid \forall s'.(s,s') \in r \to s' \in Q\}$$

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1.
$$\{j = a\} \ j := j+1 \ \{a = j + 1\}$$

2.
$$\{i = j\} i := j+i \{i > j\}$$

3.
$$\{j = a + b\}$$
 i:=b; j:=a $\{j = 2 * a\}$

4.
$$\{i > j\} \ j:=i+1; \ i:=j+1 \ \{i > j\}$$

5. {i
$$!=j$$
} if i>j then m:=i-j else m:=j-i {m > 0}

6.
$$\{i = 3*j\}$$
 if $i > j$ then $m:=i-j$ else $m:=j-i$ $\{m-2*j=0\}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Postconditions and Their Strength

What is the relationship between these postconditions?

{
$$x = 5$$
} $x := x + 2$ { $x > 0$ }
{ $x = 5$ } $x := x + 2$ { $x = 7$ }

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Postconditions and Their Strength

What is the relationship between these postconditions?

{
$$x = 5$$
} $x := x + 2$ { $x > 0$ }
{ $x = 5$ } $x := x + 2$ { $x = 7$ }

- weakest conditions (predicates) correspond to largest sets
- strongest conditions (predicates) correspond to smallest sets that satisfy a given property.

(Graphically, a stronger condition $x > 0 \land y > 0$ denotes one quadrant in plane, whereas a weaker condition x > 0 denotes the entire half-plane.)

Strongest Postconditions

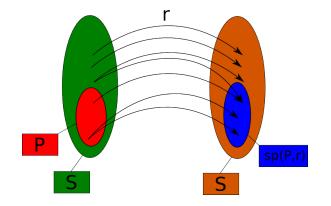
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Strongest Postcondition

Definition: For $P \subseteq S$, $r \subseteq S \times S$,

$$sp(P,r) = \{s' \mid \exists s.s \in P \land (s,s') \in r\}$$

This is simply the relation image of a set.



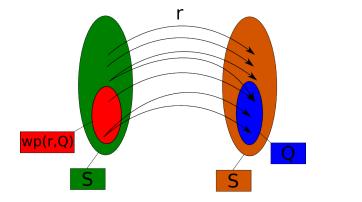
Weakest Preconditions

Weakest Precondition

Definition: for $Q \subseteq S$, $r \subseteq S \times S$,

$$wp(r, Q) = \{s \mid \forall s'.(s, s') \in r \to s' \in Q\}$$

Note that this is in general not the same as $sp(Q, r^{-1})$ when then relation is non-deterministic or partial.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\blacktriangleright \{P\}r\{Q\}$
- $P \subseteq wp(r, Q)$
- $sp(P, r) \subseteq Q$

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\blacktriangleright \{P\}r\{Q\}$
- $P \subseteq wp(r, Q)$
- $sp(P, r) \subseteq Q$

Proof. The three conditions expand into the following three formulas

► $\forall s, s'$. $[(s \in P \land (s, s') \in r) \rightarrow s' \in Q]$

►
$$\forall s. \ [s \in P \rightarrow (\forall s'.(s,s') \in Q)]$$

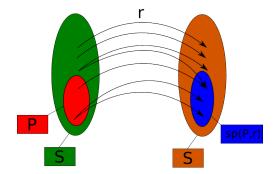
► $\forall s'$. $[(\exists s. s \in P \land (s, s') \in P) \rightarrow s' \in Q]$

which are easy to show equivalent using basic first-order logic properties.

Lemma: Characterization of sp

sp(P, r) is the the smallest set Q such that $\{P\}r\{Q\}$, that is:

- $\{P\}r\{sp(P, r)\}$
- $\blacktriangleright \forall Q \subseteq S. \{P\}r\{Q\} \rightarrow sp(P,r) \subseteq Q$



 $\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. \ (s \in P \land (s, s') \in r \to s' \in Q) \\ sp(P, r) = \{s' \mid \exists s.s \in P \land (s, s') \in r\}$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

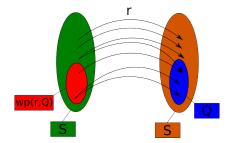
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma: Characterization of wp

wp(r, Q) is the largest set P such that $\{P\}r\{Q\}$, that is:

• {
$$wp(r, Q)$$
} $r{Q}$

$$\blacktriangleright \forall P \subseteq S. \{P\}r\{Q\} \rightarrow P \subseteq wp(r,Q)$$



$$\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. \ (s \in P \land (s, s') \in r \to s' \in Q) \\ wp(r, Q) = \{s \mid \forall s'.(s, s') \in r \to s' \in Q\}$$

Proof of Lemma: Characterization of wp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$wp(r, Q) \subseteq wp(r, Q)$$

$$\blacktriangleright \forall P \subseteq S. \ P \subseteq wp(r, Q) \rightarrow P \subseteq wp(r, Q)$$

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that $r^{-1} = \{(y, x) \mid (x, y) \in r\}$ and is always defined.

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \setminus wp(r, Q) = sp(S \setminus Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that $r^{-1} = \{(y, x) \mid (x, y) \in r\}$ and is always defined.

Proof of the lemma: Expand both sides and apply basic first-order logic properties.