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Loop-Free Programs as Relations: Summary

command c R(c) ρ(c)

(x = t) x ′ = t ∧
∧

v∈V \{x} v ′ = v

c1 ; c2 ∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ] ρ(c1) ◦ ρ(c2)
if(∗) c1 else c2 R(c1) ∨ R(c2) ρ(c1) ∪ ρ(c2)

assume(F) F ∧
∧

v∈V v ′ = v ∆S(F )

ρ(vi = t) = {((v1, . . . , vi , . . . , vn), (v1, . . . , v
′
i , . . . , vn) | v ′i = t}

S(F ) = {v̄ | F}, ∆A = {(~v , ~v) | ~v ∈ A} (diagonal relation on A)
∆ (without subscript) is identity on entire set of states (no-op)
We always have: ρ(c) = {(v̄ , v̄ ′) | R(c)}
Shorthands:

if(∗) c1 else c2 c1 c2
assume(F ) [F ]

Examples:

if (F ) c1 else c2 ≡ [F ]; c1 [¬F ]; c2
if (F ) c ≡ [F ]; c [¬F ]



Program Paths



Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes
are c1, . . . , cn

The relation ρ(c) is of the form E (ρ(c1), . . . , ρ(cn)); it composes
meanings of c1, . . . , cn using union (∪) and composition (◦)

(if (x > 0)
x = x − 1

else
x = 0

);
(if (y > 0)

y = y − 1
else

y = x + 1
)

([x > 0]; x = x − 1

([¬(x>0)]; x = 0)
);
([y > 0]; y = y − 1

[¬(y>0)]; y = x+1
)

(
∆S(x>0) ◦ ρ(x = x − 1)
∪

∆S(¬(x>0)) ◦ ρ(x = 0))
◦(
∆S(y>0) ◦ ρ(y = y − 1)
∪

∆S(¬(y>0)) ◦ ρ(y = x + 1))
Note: ◦ binds stronger than ∪, so r ◦ s ∪ t = (r ◦ s) ∪ t



Normal Form for Loop-Free Programs

Composition distributes through union:

(r1 ∪ r2) ◦ (s1 ∪ s2) = r1 ◦ s1 ∪ r1 ◦ s2 ∪ r2 ◦ s1 ∪ r2 ◦ s2

Example corresponding to two if-else statements one after another:(
∆1 ◦ r1
∪

∆2 ◦ r2)
◦(
∆3 ◦ r3
∪

∆4 ◦ r4)
≡

∆1 ◦ r1 ◦∆3 ◦ r3 ∪
∆1 ◦ r1 ◦∆4 ◦ r4 ∪
∆2 ◦ r2 ◦∆3 ◦ r3 ∪
∆2 ◦ r2 ◦∆4 ◦ r4

Sequential composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.



Properties of Program Contexts



Some Properties of Relations

(p1 ⊆ p2)→ (p1 ◦ p) ⊆ (p2 ◦ p)

(p1 ⊆ p2)→ (p ◦ p1) ⊆ (p ◦ p2)

(p1 ⊆ p2) ∧ (q1 ⊆ q2) → (p1 ∪ q1) ⊆ (p2 ∪ q2)

(p1 ∪ p2) ◦ q = (p1 ◦ q) ∪ (p2 ◦ q)



Monotonicity of Expressions using ∪ and ◦

For a program with k integer variables, S = Zk

Consider relations that are subsets of S × S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}

Let E (r) be given by any expression built from relation r and some
additional relations b1, . . . , bn, using ∪ and ◦.
Example: E (r) = (b1 ◦ r) ∪ (r ◦ b2)
E (r) is function C → C , maps relations to relations
Claim: E is monotonic function on C :

r1 ⊆ r2 → E (r1) ⊆ E (r2)

Prove of disprove.



Union-Distributivity of Expressions using ∪ and ◦

Claim: E distributes over unions, that is, if ri , i ∈ I is family of
relations,

E (
⋃
i∈I

ri ) =
⋃
i∈I

E (ri )

Prove or disprove.



Union-Distributivity - Refined

Does distributivity

E (
⋃
i∈I

ri ) =
⋃
i∈I

E (ri )

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?

2. If E (r) contains r any number of times, but I is a set of
natural numbers and ri is an increasing sequence:
r1 ⊆ r2 ⊆ r3 ⊆ . . .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk , and I is possibly uncountably infinite.



About Strength and Weakness



Putting Conditions on Sets Makes them Smaller

Let P1 and P2 be formulas (“conditions”) whose free variables are
among x̄ . Those variables may denote program state.
When we say “condition P1 is stronger than condition P2” it
simply means

∀x̄ . (P1 → P2)

I if we know P1, we immediately get (conclude) P2

I if we know P2 we need not be able to conclude P1

Stronger condition = smaller set: if P1 is stronger than P2 then
{x̄ | P1} ⊆ {x̄ | P2}

I strongest possible condition: “false” ; smallest set: ∅
I weakest condition: “true” ; biggest set: set of all tuples



Intuition?

Conditions “squeze” sets, making them smaller?

I perhaps better rely on logic and set theory than intuition



Hoare Triples



About Hoare Logic

We have seen how to translate programs into relations. We will use these

relations in a proof system called Hoare logic. Hoare logic is a way of

inserting annotations into code to make proofs about (imperative)

program behavior simpler.

Example proof:

//{0 <= y}
i = y;
//{0 <= y & i = y}
r = 0;
//{0 <= y & i = y & r = 0}
while //{r = (y−i)∗x & 0 <= i}
(i > 0) (
//{r = (y−i)∗x & 0 < i}
r = r + x;
//{r = (y−i+1)∗x & 0 < i}
i = i − 1
//{r = (y−i)∗x & 0 <= i}

)
//{r = x ∗ y}



Hoare Triple and Friends

P,Q ⊆ S r ⊆ S × S

Hoare Triple

{P} r {Q} ⇐⇒ ∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
Strongest postcondition:

sp(P, r) = {s ′ | ∃s. s ∈ P ∧ (s, s ′) ∈ r}

Weakest precondition:

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}



Hoare triples for Sets and Relations

When P,Q ⊆ S (sets of states) and r ⊆ S × S (relation on states,
command semantics) then the Hoare triple

{P} r {Q}

means
∀s, s ′ ∈ S .

(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
We call P precondition and Q postcondition.

The Hoare triple provides only a partial correctness guarantee, i.e.
if P holds initially, and r executes and terminates, then Q must
hold. If r does not terminate, then no guarantees on Q are
provided.



Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. {j = a} j :=j+1 {a = j + 1}

2. {i = j} i:=j+i {i > j}

3. {j = a + b} i:=b; j:=a {j = 2 ∗ a}

4. {i > j} j:=i+1; i:=j+1 {i > j}

5. {i != j} if i>j then m:=i−j else m:=j−i {m > 0}

6. {i = 3∗j} if i>j then m:=i−j else m:=j−i {m−2∗j=0}



Postconditions and Their Strength

What is the relationship between these postconditions?

{x = 5} x := x + 2 {x > 0}

{x = 5} x := x + 2 {x = 7}

I weakest conditions (predicates) correspond to largest sets

I strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition x > 0 ∧ y > 0 denotes one
quadrant in plane, whereas a weaker condition x > 0 denotes the
entire half-plane.)
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Strongest Postconditions



Strongest Postcondition

Definition: For P ⊆ S , r ⊆ S × S ,

sp(P, r) = {s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}

This is simply the relation image of a set.



Lemma: Characterization of sp
sp(P, r) is the the smallest set Q such that {P}r{Q}, that is:

I {P}r{sp(P, r)}
I ∀Q ⊆ S . {P}r{Q} → sp(P, r) ⊆ Q

{P} r {Q} ⇔∀s, s ′ ∈ S . (s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q)

sp(P, r) ={s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}



Weakest Preconditions



Backward Propagation of Errors
If we have a relation r and a set of errors E , we can check if a program
meets its specification by checking:

sp(P, r) ∩ E = ∅

∀y .¬(y ∈ sp(P, r) ∧ y ∈ E )

∀y . ¬((∃x .P(x) ∧ (x , y) ∈ r) ∧ y ∈ E )

∀y . ¬∃x .(P(x) ∧ (x , y) ∈ r ∧ y ∈ E )

∀x , y . ¬(x ∈ P ∧ (x , y) ∈ r ∧ y ∈ E )

∀x , y . ¬(x ∈ P ∧ (y , x) ∈ r−1 ∧ y ∈ E )

∀x , y . ¬(y ∈ E ∧ (y , x) ∈ r−1 ∧ x ∈ P)

sp(E , r−1) ∩ P = ∅
P ⊆ sp(E , r−1)c

In other words, we obtain an upper bound on the set of states P from

which we do not reach error. We next introduce the notion of weakest

precondition, which allows us to express sp(E , r−1) from Q given as

complement of error states E .
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Backward Propagation of Errors
If we have a relation r and a set of errors E , we can check if a program
meets its specification by checking:

sp(P, r) ∩ E = ∅

∀y .¬(y ∈ sp(P, r) ∧ y ∈ E )

∀y . ¬((∃x .P(x) ∧ (x , y) ∈ r) ∧ y ∈ E )

∀y . ¬∃x .(P(x) ∧ (x , y) ∈ r ∧ y ∈ E )

∀x , y . ¬(x ∈ P ∧ (x , y) ∈ r ∧ y ∈ E )

∀x , y . ¬(x ∈ P ∧ (y , x) ∈ r−1 ∧ y ∈ E )

∀x , y . ¬(y ∈ E ∧ (y , x) ∈ r−1 ∧ x ∈ P)

sp(E , r−1) ∩ P = ∅
P ⊆ sp(E , r−1)c

In other words, we obtain an upper bound on the set of states P from

which we do not reach error. We next introduce the notion of weakest

precondition, which allows us to express sp(E , r−1) from Q given as

complement of error states E .



Weakest Precondition



Weakest Precondition

Definition: for Q ⊆ S , r ⊆ S × S ,

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Note that this is in general not the same as sp(Q, r−1) when then
relation is non-deterministic or partial.



Lemma: Characterization of wp

wp(r ,Q) is the largest set P such that {P}r{Q}, that is:

I {wp(r ,Q)}r{Q}
I ∀P ⊆ S . {P}r{Q} → P ⊆ wp(r ,Q)

{P} r {Q} ⇔∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
wp(r ,Q) ={s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}



Exercise: Postcondition of inverse versus wp

Using definitions of Hoare triple, sp, wp in Hoare logic, prove the
following: If instead of good states we look at the completement
set of “error states”, then wp corresponds to doing sp backwards.
In other words, we have the following:

S \ wp(r ,Q) = sp(S \ Q, r−1)



More Laws on Preconditions and Postconditions

Disjunctivity of sp

sp(P1 ∪ P2, r) = sp(P1, r) ∪ sp(P2, r)

sp(P, r1 ∪ r2) = sp(P, r1) ∪ sp(P, r2)

Conjunctivity of wp

wp(r ,Q1 ∩ Q2) = wp(r ,Q1) ∩ wp(r ,Q2)

wp(r1 ∪ r2,Q) = wp(r1,Q) ∩ wp(r2,Q)

Pointwise wp

wp(r ,Q) = {s | s ∈ S ∧ sp({s}, r) ⊆ Q}

Pointwise sp

sp(P, r) =
⋃
s∈P

sp({s}, r)



Exercise: Three Forms of Hoare Triple

Show the following:
The following three conditions are equivalent:

I {P}r{Q}
I P ⊆ wp(r ,Q)

I sp(P, r) ⊆ Q



Hoare Logic for Loop-free Code

Expanding Paths
The condition

{P}
( ⋃

i∈J
ri
)
{Q}

is equivalent to
∀i .i ∈ J → {P}ri{Q}

Transitivity
If {P}s1{Q} and {Q}s2{R} then also {P}s1 ◦ s2{R}.
We write this as the following inference rule:

{P}s1{Q}, {Q}s2{R}
{P}s1 ◦ s2{R}



Exercise
We call a relation r ⊆ S × S functional if
∀x , y , z ∈ S .(x , y) ∈ r ∧ (x , z) ∈ r → y = z . For each of the following
statements either give a counterexample or prove it. In the following, assume
Q ⊂ S .

(i) for any r , wp(r , S \ Q) = S \ wp(r ,Q)

(ii) if r is functional, wp(r ,S \ Q) = S \ wp(r ,Q)

(iii) for any r , wp(r ,Q) = sp(Q, r−1)

(iv) if r is functional, wp(r ,Q) = sp(Q, r−1)

(v) for any r , wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vi) if r is functional, wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vii) for any r , wp(r1 ∪ r2,Q) = wp(r1,Q) ∪ wp(r2,Q)

(viii) Alice has the following conjecture: For all sets S and relations r ⊆ S × S
it holds:(

S 6= ∅ ∧ dom(r) = S ∧4S ∩ r = ∅
)
→

(
r ◦ r ∩ ((S × S) \ r) 6= ∅

)
She tried many sets and relations and did not find any counterexample. Is
her conjecture true?
If so, prove it, otherwise provide a counterexample for which S is smallest.



Forward VCG



Some notation

If P is a formula on state and c a command, let spF (P, c) be the
formula version of the strongest postcondition operator. spF (P, c)
is therefore the formula Q that describes the set of states that can
result from executing c in a state satisfying P.
Thus, we have that

spF (P, c) = Q

implies
sp(({x̄ |P}, ρ(c)) = {x̄ |Q}

We will denote the set of states satisfying a predicate by underscore
s, i.e. for a predicate P, let Ps be the set of states that satisfies it:

Ps = {x̄ |P}



Forward VCG: Using Strongest Postcondition

We can use the spF operator to compute verification conditions:
for a triple {P}c{Q} we can generate the verification condition
spF (P, c)→ Q.

Assume Statement
Define:

spF (P, assume(F)) = P ∧ F

Then
sp(Ps , ρ(assume(F )))
= sp(Ps ,∆Fs )
= {x̄ ′ | ∃x̄ ∈ Ps . ((x̄ , x̄ ′) ∈ ∆Fs )}
= {x̄ ′ | ∃x̄ ∈ Ps . (x̄ = x̄ ′ ∧ x̄ ∈ Fs)}
= {x̄ ′ | x̄ ′ ∈ Ps , x̄ ′ ∈ Fs}
= Ps ∩ Fs .



Rules for Computing Strongest Postcondition

Havoc Statement
Define:

spF (P, havoc(x)) = ∃x0.P[x := x0]

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.
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Rules for Computing Strongest Postcondition

Assignment Statement
Define:

spF (P, x = e) = ∃x0.(P[x := x0] ∧ x = e[x := x0])

Indeed:

sp(Ps , ρ(x = e))
= {x̄ ′ | ∃x̄ . (x̄ ∈ Ps ∧ (x̄ , x̄ ′) ∈ ρ(x = e))}
= {x̄ ′ | ∃x̄ . (x̄ ∈ Ps ∧ x̄ ′ = x̄ [x := e(x̄)])}



Exercise

Precondition: {x ≥ 5 ∧ y ≥ 3}.
Code: x = x + y + 10

sp(x ≥ 5 ∧ y ≥ 3, x = x + y + 10) =

∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x = x0 + y + 10

↔ y ≥ 3 ∧ x ≥ y + 15



Exercise

Precondition: {x ≥ 5 ∧ y ≥ 3}.
Code: x = x + y + 10

sp(x ≥ 5 ∧ y ≥ 3, x = x + y + 10) =

∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x = x0 + y + 10

↔ y ≥ 3 ∧ x ≥ y + 15



Rules for Computing Strongest Postcondition

Sequential Composition
For relations we proved

sp(Ps , r1 ◦ r2) = sp(sp(Ps , r1), r2)

Therefore, define

spF (P, c1; c2) = spF (spF (P, c1), c2)

Nondeterministic Choice (Branches)
We had sp(Ps , r1 ∪ r2) = sp(Ps , r1) ∪ sp(Ps , r2). Therefore define:

spF (P, c1[]c2) = spF (P, c1) ∨ spF (P, c2)



Correctness

Show by induction on c1 that for all P:

sp(Ps , ρ(c1)) = {x̄ ′ | spF (P, c1)}



Size of Generated Formulas

The size of the formula can be exponential because each time we
have a nondeterministic choice, we double formula size:

spF (P, (c1[]c2); (c3[]c4)) =
spF (spF (P, c1[]c2), c3[]c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3[]c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3) ∨ spF (spF (P, c1) ∨ spF (P, c2), c4)



Reducing sp to Relation Composition

The following identity holds for relations:

sp(Ps , r) = ran(∆P ◦ r)

Based on this, we can compute sp(Ps , ρ(c1)) in two steps:

I compute formula F (assume(P); c1)

I existentially quantify over initial (non-primed) variables

Indeed, if F1 is a formula denoting relation r1, that is,

r1 = {(~x ,~x ′). F1(~x ,~x ′)}

then ∃~x .F1(~x ,~x ′) is formula denoting the range of r1:

ran(r1) = {~x ′. ∃~x .F1(~x ,~x ′)}

Moreover, the resulting approach does not have exponentially large
formulas.



More on Weakest Preconditions



Exercise: Prove wp Distributivity

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

wp(r1 ∪ r2,Q) =



Rules for WP



Rules for Computing Weakest Preconditions

We derive the rules below from the definition of weakest
precondition on sets and relations

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Assume Statement
Suppose we have one variable x, and identify the state with that
variable. Note that ρ(assume(F )) = ∆Fs . By definition

wp(∆Fs ,Qs) = {x | ∀x ′.(x , x ′) ∈ ∆Fs → x ′ ∈ Qs}
= {x | ∀x ′.(x ∈ Fs ∧ x = x ′)→ x ′ ∈ Qs}
= {x | x ∈ Fs → x ∈ Qs} = {x | F → Q}

Changing from sets to formulas, we obtain the rule for wp on
formulas:

wpF (assume(F),Q) = (F → Q)



Rules for Computing Weakest Preconditions

Assignment Statement
Consider the case of two variables. Recall that the relation
associated with the assignment x = e is

x ′ = e ∧ y ′ = y

Then we have, for formula Q containing x and y :

wp(ρ(x = e), {(x , y) | Q}) = {(x , y) | ∀x ′.∀y ′. x ′ = e ∧ y ′ = y →
Q[x := x ′, y := y ′]}

= {(x , y) | Q[x := e]}

From here we obtain a justification to define:

wpF (x = e,Q) = Q[x := e]



Rules for Computing Weakest Preconditions

Havoc Statement

wpF (havoc(x),Q) = ∀x .Q

Sequential Composition

wp(r1 ◦ r2,Qs) = wp(r1,wp(r2,Qs))

Same for formulas:

wpF (c1 ; c2,Q) = wpF (c1,wpF (c2,Q))

Nondeterministic Choice (Branches)
In terms of sets and relations

wp(r1 ∪ r2,Qs) = wp(r1,Qs) ∩ wp(r2,Qs)

In terms of formulas

wpF (c1[]c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)



Summary of Weakest Precondition Rules

c wp(c ,Q)

x = e Q[x := e]
havoc(x) ∀x .Q

assume(F ) F → Q
c1 c2 wp(c1,Q) ∧ wp(c2,Q)
c1; c2 wp(c1,wp(c2,Q))



Size of Generated Verification Conditions

Because of the rule

wpF (c1[]c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)

which duplicates Q, the size can be exponential.

wpF ((c1 c2); (c3 c4),Q) =



Avoiding Exponential Blowup

Propose an algorithm that, given an arbitrary program c and a
formula Q, computes in polynomial time formula equivalent to
wpF (c ,Q)



Syntactic Rules for Hoare Logic



Summary of Proof Rules

We next present (one possible) summary of proof rules for Hoare
logic.

Weakening and Strengthening
Strengthening precondition:

|= P1 → P2 {P2}c{Q}
{P1}c{Q}

Weakening postcondition:

{P}c{Q1} |= Q1 → Q2

{P}c{Q2}



Loop Free Blocks
We can directly use the rules we derived for basic loop-free code.
Either through weakest preconditions or strongest postconditions.

{wp(c ,Q)}c{Q}

or,

{P}c{sp(P, c)}

For example, we have:

{Q[x := e]} (x = e) {Q}

{∀x .Q} havoc(x) {Q}

{(F → Q)} assume(F ) {Q}

{P} assume(F ) {P ∧ F}



Rules continued

Loops
{I}c{I}

{I} while(∗)c{I}

Sequential Composition

{P} c1{Q} {Q} c2 {R}
{P} c1; c2 {R}

Non-Deterministic Choice

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}



While Loops

Knowing that the while loop: while (F) c;

is equivalent to:
while(∗){assume(F); c} ;
assume(¬ F);

Question: What is the rule for while loops?
Hint

(|= P →?); {?}c{?}; (|=?→ Q)

{P} while{I}(F )(c) {Q}

It follows that the rule for while loops is:

(|= P → I ); {I ∧ F}c{I}; (|= (I ∧ ¬F )→ Q))

{P} while{I}(F )(c) {Q}
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Applying Proof Rules given Invariants

Let us treat {P} as a new kind of statement, written

assert(P)

For the moment the purpose of assert is just to indicate
preconditions and postconditions. When we write

assert(P)
c1;

assert(Q)
c2;

assert(R)

we expect that these Hoare triples hold:

{P}c1{Q}
{Q}c2{R}



Sufficiently annotated program

Consider the control-flow graph of a program with statements
assert, assume, x=e and with graph edges expressing ”[]” and ”;”.
We will say that the program c is sufficiently annotated iff

I the first statement is assert(Pre)

I the last statement is assert(Post)

I every cycle in the control-flow graph contains at least one
assert



Assertion path

An assertion path is a path in its control-flow graph that starts and
ends with assert. Given the assertion path

assert(P)
c1
...
cK

assert(Q)

we omit any assert statements in the middle, obtaining from
c1,...,cK statements d1,...,dL. We call

{P}d1 ; . . . ; dL{Q}

the Hoare triple of the assertion path.



Proving Hoare triple for entire program

A basic path is an assertion path that contains no assert
commands other than those at the beginning and end. Each
sufficiently annotated program has finitely many basic paths.

Theorem: If the Hoare triple for each basic path is valid, then the
Hoare triple {Pre}c{Post} is valid.
Proof: If each basic path is valid, then each path is valid, by
induction and Hoare logic rule for sequential composition. Each
program is union of (potentially infinitely many) paths, so the
property holds for the entire program. (Another explanation:
consider any given execution and corresponding path in the
control-flow graph. By induction on the length of the path we
prove that all assert statements hold, up to the last one.)



Verification recipe

The verification condition of a basic path is the formula whose
validity expresses the validity of the Hoare triple for this path.
Simple verification conditions for a sufficiently annotated program
is the set of verification conditions for each each basic path of the
program.
One approach to verification condition generation is therefore:

I start with sufficiently annotated program

I generate simple verification conditions

I prove each of the simple verification conditions

In a program of size n, what is the bound on the number of basic
paths?

It can be 2O(n).
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Handling the path explosion

In a program of size n, the number of basic paths can be 2O(n).
Remedies:

I require more annotations (e.g. at each merge point)

I extreme case: assertion on each CFG vertex - this gives
classical Hoare logic proof

I merge subgraphs without annotations: perform sequential
composition and disjunction of formulas on edges

I generate correctness formulas for multiple paths in an acyclic
subgraph at once, using propositional variables to encode the
existence of paths



Exercise

Give a complete Hoare logic proof for the following program:

{n >= 0 && d > 0}
q = 0
r = n
while ( r >= d ) {

q = q + 1
r = r − d

}
{n == q ∗ d + r && 0 <= r < d}

The proof should be step-by-step as in the example proof in the
lecture on Hoare Logic. To prove each step you can use the
syntactic rules for Hoare Logic.



Exercise

// {n >= 0 && d > 0}
q = 0
// {n >= 0 && d > 0 && q == 0}
r = n
// {n >= 0 && d > 0 && q == 0 && r == n}
while // {d > 0 && n == q ∗ d + r && 0 <= r}

(r >= d) {
// {d > 0 && n == q ∗ d + r && d <= r}

q = q + 1
// {d > 0 && n == (q−1) ∗ d + r && d <= r}

r = r − d
// {d > 0 && n == (q−1) ∗ d + r + d && 0 <= r}
// {d > 0 && n == q ∗ d + r && 0 <= r}
}
// {d > 0 && n == q ∗ d + r && 0 <= r && r < d}
// {n == q ∗ d + r && 0 <= r < d}

What can be omitted to still have sufficiently annotated program?


