Lecturecise 5
 Paths, Triples, Postconditions, Preconditions

Viktor Kuncak

Loop-Free Programs as Relations: Summary

$\begin{array}{r} \text { command } c \\ \hline(x=t) \end{array}$	$R(c)$		$\rho(c)$
	$x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v$		
$c_{1} ; c_{2}$	$\exists \bar{z} . \quad R\left(c_{1}\right)\left[\bar{x}^{\prime}:=\bar{z}\right] \wedge R\left(c_{2}\right)[\bar{x}:=\bar{z}]$		$\rho\left(c_{1}\right) \circ \rho\left(c_{2}\right)$
if $(*) c_{1}$ else c_{2}	$R\left(c_{1}\right) \vee R\left(c_{2}\right)$		$\rho\left(c_{1}\right) \cup \rho\left(c_{2}\right)$
assume(F)	$F \wedge \bigwedge_{v \in V} v^{\prime}=v$		$\Delta_{S(F)}$
$\rho\left(v_{i}=t\right)=\left\{\left(\left(v_{1}, \ldots, v_{i}, \ldots, v_{n}\right),\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{n}\right) \mid v_{i}^{\prime}=t\right\}\right.$			
$S(F)=\{\vec{v} \mid F\}, \quad \Delta_{A}=\{(\vec{v}, \vec{v}) \mid \vec{v} \in A\}$ (diagonal relation on A) Δ (without subscript) is identity on entire set of states (no-op)			
We always have: $\rho(c)=\left\{\left(\bar{v}, \bar{v}^{\prime}\right) \mid R(c)\right\}$ Shorthands:			
if $(*) c_{1}$ else $c_{2} c_{1} c_{1} c_{2}$			
	assume(F)	[F]	

Examples:

$$
\begin{aligned}
& \text { if } \left.(F) c_{1} \text { else } c_{2} \equiv[F] ; c_{1}\right][\neg F] ; c_{2} \\
& \text { if }(F) c \equiv[F] ; c][\neg F]
\end{aligned}
$$

Program Paths

Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes are c_{1}, \ldots, c_{n}

The relation $\rho(c)$ is of the form $E\left(\rho\left(c_{1}\right), \ldots, \rho\left(c_{n}\right)\right)$; it composes meanings of c_{1}, \ldots, c_{n} using union (\cup) and composition (○)

$\begin{aligned} & (\text { if }(x>0) \\ & x=x-1 \\ & \text { else } \\ & \quad x=0 \end{aligned}$	$\begin{aligned} & ([x>0] ; x=x-1 \\ & \square \\ & ([\neg(x>0)] ; x=0) \end{aligned}$	$\begin{gathered} \left(\Delta_{S(x>0)} \circ \rho(x=x-1)\right. \\ \cup \\ \Delta_{S(\neg(x>0))} \circ \rho(x=0) \end{gathered}$
$\begin{aligned} & \text {); } \\ & \begin{array}{l} \text { (if }(y>0) \\ \quad y=y-1 \\ \text { else } \end{array} \end{aligned}$	$\begin{aligned} &) ; \\ & ([y>0] ; y=y-1 \\ & {[} \\ & {[\neg(y>0)] ; y=x+1} \end{aligned}$	$\left(\Delta_{S(y>0)} \circ \rho(y=y-1)\right.$
$y=x+1$		$\Delta_{S(\neg(y>0))} \circ \rho(y=x+1)$

Note: \circ binds stronger than \cup, so $r \circ s \cup t=(r \circ s) \cup t$

Normal Form for Loop-Free Programs

Composition distributes through union:

$$
\left(r_{1} \cup r_{2}\right) \circ\left(s_{1} \cup s_{2}\right)=r_{1} \circ s_{1} \cup r_{1} \circ s_{2} \cup r_{2} \circ s_{1} \cup r_{2} \circ s_{2}
$$

Example corresponding to two if-else statements one after another:

$$
\begin{array}{ll}
\left(\Delta_{1} \circ r_{1}\right. & \\
\cup & \\
\Delta_{2} \circ r_{2} & \\
) \circ & \Delta_{1} \circ r_{1} \circ \Delta_{3} \circ r_{3} \cup \\
\left(\Delta_{3} \circ r_{3}\right. & \Delta_{1} \circ r_{1} \circ \Delta_{4} \circ r_{4} \cup \\
\cup & \Delta_{2} \circ r_{2} \circ \Delta_{3} \circ r_{3} \cup \\
\Delta_{4} \circ r_{4} & \Delta_{2} \circ r_{2} \circ \Delta_{4} \circ r_{4}
\end{array}
$$

Sequential composition of basic statements is called basic path. Loop-free code describes finitely many (exponentially many) paths.

Properties of Program Contexts

Some Properties of Relations

$$
\begin{aligned}
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p_{1} \circ p\right) \subseteq\left(p_{2} \circ p\right) \\
& \left(p_{1} \subseteq p_{2}\right) \rightarrow\left(p \circ p_{1}\right) \subseteq\left(p \circ p_{2}\right) \\
& \left(p_{1} \subseteq p_{2}\right) \wedge\left(q_{1} \subseteq q_{2}\right) \quad \rightarrow \quad\left(p_{1} \cup q_{1}\right) \subseteq\left(p_{2} \cup q_{2}\right)
\end{aligned}
$$

$$
\left(p_{1} \cup p_{2}\right) \circ q=\left(p_{1} \circ q\right) \cup\left(p_{2} \circ q\right)
$$

Monotonicity of Expressions using \cup and \circ

For a program with k integer variables, $S=\mathbb{Z}^{k}$
Consider relations that are subsets of $S \times S$ (i.e. S^{2})
The set of all such relations is

$$
C=\left\{r \mid r \subseteq S^{2}\right\}
$$

Let $E(r)$ be given by any expression built from relation r and some additional relations b_{1}, \ldots, b_{n}, using \cup and \circ.
Example: $E(r)=\left(b_{1} \circ r\right) \cup\left(r \circ b_{2}\right)$
$E(r)$ is function $C \rightarrow C$, maps relations to relations
Claim: E is monotonic function on C :

$$
r_{1} \subseteq r_{2} \rightarrow E\left(r_{1}\right) \subseteq E\left(r_{2}\right)
$$

Prove of disprove.

Union-Distributivity of Expressions using \cup and o

Claim: E distributes over unions, that is, if $r_{i}, i \in I$ is family of relations,

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

Prove or disprove.

Union-Distributivity - Refined

Does distributivity

$$
E\left(\bigcup_{i \in I} r_{i}\right)=\bigcup_{i \in I} E\left(r_{i}\right)
$$

hold, for each of these cases

1. If $E(r)$ is given by an expression containing r at most once?
2. If $E(r)$ contains r any number of times, but l is a set of natural numbers and r_{i} is an increasing sequence: $r_{1} \subseteq r_{2} \subseteq r_{3} \subseteq \ldots$
3. If $E(r)$ contains r any number of times, but $r_{i}, i \in I$ is a directed family of relations: for each i, j there exists k such that $r_{i} \cup r_{j} \subseteq r_{k}$, and I is possibly uncountably infinite.

About Strength and Weakness

Putting Conditions on Sets Makes them Smaller

Let P_{1} and P_{2} be formulas ("conditions") whose free variables are among \bar{x}. Those variables may denote program state.
When we say "condition P_{1} is stronger than condition P_{2} " it simply means

$$
\forall \bar{x} .\left(P_{1} \rightarrow P_{2}\right)
$$

- if we know P_{1}, we immediately get (conclude) P_{2}
- if we know P_{2} we need not be able to conclude P_{1}

Stronger condition $=$ smaller set: if P_{1} is stronger than P_{2} then

$$
\left\{\bar{x} \mid P_{1}\right\} \subseteq\left\{\bar{x} \mid P_{2}\right\}
$$

- strongest possible condition: "false" \leadsto smallest set: \emptyset
- weakest condition: "true" \sim biggest set: set of all tuples

Intuition?

Conditions "squeze" sets, making them smaller?

- perhaps better rely on logic and set theory than intuition

Hoare Triples

About Hoare Logic

We have seen how to translate programs into relations. We will use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

$$
\begin{aligned}
& / /\{0<=y\} \\
& i=y ; \\
& / /\{0<=y \& i=y\} \\
& r=0 ; \\
& / /\{0<=y \& i=y \& r=0\} \\
& \text { while } / /\{r=(y-i) * x \& 0<=i\} \\
& (i>0)(\\
& / /\{r=(y-i) * x \& 0<i\} \\
& r=r+x ; \\
& / /\{r=(y-i+1) * x \& 0<i\} \\
& i=i-1 \\
& / /\{r=(y-i) * x \& 0<=i\} \\
&) \\
& / /\{r=x * y\}
\end{aligned}
$$

Hoare Triple and Friends

$$
P, Q \subseteq S \quad r \subseteq S \times S
$$

Sir Charles Antony Richard Hoare giving a conference at the EPFL on 20 June 2011

Born 11 January 1934

Hoare Triple

$$
\{P\} r\{Q\} \Longleftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)
$$

Strongest postcondition:

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

Weakest precondition:

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Hoare triples for Sets and Relations

When $P, Q \subseteq S$ (sets of states) and $r \subseteq S \times S$ (relation on states, command semantics) then the Hoare triple

$$
\{P\} r\{Q\}
$$

means

$$
\forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)
$$

We call P precondition and Q postcondition.
The Hoare triple provides only a partial correctness guarantee, i.e. if P holds initially, and r executes and terminates, then Q must hold. If r does not terminate, then no guarantees on Q are provided.

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. $\{j=a\} j:=j+1\{a=j+1\}$
2. $\{i=j\} i:=j+i\{i>j\}$
3. $\{j=a+b\} i:=b ; j:=a\{j=2 * a\}$
4. $\{i>j\} j:=i+1 ; i:=j+1\{i>j\}$
5. $\{i!=j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m>0\}$
6. $\{i=3 * j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m-2 * j=0\}$

Postconditions and Their Strength

What is the relationship between these postconditions?

$$
\begin{array}{lll}
\{x=5\} & x:=x+2 & \{\mathbf{x}>\mathbf{0}\} \\
\{x=5\} & x:=x+2 & \{\mathbf{x}=\mathbf{7}\}
\end{array}
$$

Postconditions and Their Strength

What is the relationship between these postconditions?

$$
\begin{array}{lll}
\{x=5\} & x:=x+2 & \{\mathbf{x}>\mathbf{0}\} \\
\{x=5\} & x:=x+2 & \{\mathbf{x}=\mathbf{7}\}
\end{array}
$$

- weakest conditions (predicates) correspond to largest sets
- strongest conditions (predicates) correspond to smallest sets that satisfy a given property.
(Graphically, a stronger condition $x>0 \wedge y>0$ denotes one quadrant in plane, whereas a weaker condition $x>0$ denotes the entire half-plane.)

Strongest Postconditions

Strongest Postcondition

Definition: For $P \subseteq S, r \subseteq S \times S$,

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

This is simply the relation image of a set.

Lemma: Characterization of sp

$s p(P, r)$ is the the smallest set Q such that $\{P\} r\{Q\}$, that is:

- $\{P\} r\{s p(P, r)\}$
- $\forall Q \subseteq S .\{P\} r\{Q\} \rightarrow s p(P, r) \subseteq Q$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
s p(P, r) & =\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
\end{aligned}
$$

Weakest Preconditions

Backward Propagation of Errors

If we have a relation r and a set of errors E, we can check if a program meets its specification by checking:

$$
s p(P, r) \cap E=\emptyset
$$

Backward Propagation of Errors

If we have a relation r and a set of errors E, we can check if a program meets its specification by checking:

$$
\begin{gathered}
s p(P, r) \cap E=\emptyset \\
\forall y \cdot \neg(y \in \operatorname{sp}(P, r) \wedge y \in E) \\
\forall y \cdot \neg((\exists x \cdot P(x) \wedge(x, y) \in r) \wedge y \in E)
\end{gathered}
$$

Backward Propagation of Errors

If we have a relation r and a set of errors E, we can check if a program meets its specification by checking:

$$
\begin{gathered}
s p(P, r) \cap E=\emptyset \\
\forall y \cdot \neg(y \in \operatorname{sp}(P, r) \wedge y \in E) \\
\forall y \cdot \neg((\exists x \cdot P(x) \wedge(x, y) \in r) \wedge y \in E) \\
\forall y \cdot \neg \exists x \cdot(P(x) \wedge(x, y) \in r \wedge y \in E) \\
\forall x, y \cdot \neg(x \in P \wedge(x, y) \in r \wedge y \in E)
\end{gathered}
$$

Backward Propagation of Errors

If we have a relation r and a set of errors E, we can check if a program meets its specification by checking:

$$
\begin{gathered}
s p(P, r) \cap E=\emptyset \\
\forall y \cdot \neg(y \in \operatorname{sp}(P, r) \wedge y \in E) \\
\forall y \cdot \neg((\exists x \cdot P(x) \wedge(x, y) \in r) \wedge y \in E) \\
\forall y . \neg \exists x \cdot(P(x) \wedge(x, y) \in r \wedge y \in E) \\
\forall x, y \cdot \neg(x \in P \wedge(x, y) \in r \wedge y \in E) \\
\forall x, y \cdot \neg\left(x \in P \wedge(y, x) \in r^{-1} \wedge y \in E\right) \\
\forall x, y . \neg\left(y \in E \wedge(y, x) \in r^{-1} \wedge x \in P\right)
\end{gathered}
$$

Backward Propagation of Errors

If we have a relation r and a set of errors E, we can check if a program meets its specification by checking:

$$
\begin{gathered}
s p(P, r) \cap E=\emptyset \\
\forall y \cdot \neg(y \in s p(P, r) \wedge y \in E) \\
\forall y . \neg((\exists x \cdot P(x) \wedge(x, y) \in r) \wedge y \in E) \\
\forall y . \neg \exists x \cdot(P(x) \wedge(x, y) \in r \wedge y \in E) \\
\forall x, y \cdot \neg(x \in P \wedge(x, y) \in r \wedge y \in E) \\
\forall x, y \cdot \neg\left(x \in P \wedge(y, x) \in r^{-1} \wedge y \in E\right) \\
\forall x, y . \neg\left(y \in E \wedge(y, x) \in r^{-1} \wedge x \in P\right) \\
\operatorname{sp}\left(E, r^{-1}\right) \cap P=\emptyset \\
P \subseteq \operatorname{sp}\left(E, r^{-1}\right)^{c}
\end{gathered}
$$

In other words, we obtain an upper bound on the set of states P from which we do not reach error. We next introduce the notion of weakest precondition, which allows us to express $s p\left(E, r^{-1}\right)$ from Q given as complement of error states E.

Weakest Precondition

Weakest Precondition

Definition: for $Q \subseteq S, r \subseteq S \times S$,

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Note that this is in general not the same as $s p\left(Q, r^{-1}\right)$ when then relation is non-deterministic or partial.

Lemma: Characterization of wp

$w p(r, Q)$ is the largest set P such that $\{P\} r\{Q\}$, that is:

- $\{w p(r, Q)\} r\{Q\}$
- $\forall P \subseteq S .\{P\} r\{Q\} \rightarrow P \subseteq w p(r, Q)$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
w p(r, Q) & =\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
\end{aligned}
$$

Exercise: Postcondition of inverse versus wp

Using definitions of Hoare triple, sp, wp in Hoare logic, prove the following: If instead of good states we look at the completement set of "error states", then wp corresponds to doing $s p$ backwards. In other words, we have the following:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

More Laws on Preconditions and Postconditions

Disjunctivity of sp

$$
\begin{aligned}
& s p\left(P_{1} \cup P_{2}, r\right)=s p\left(P_{1}, r\right) \cup s p\left(P_{2}, r\right) \\
& s p\left(P, r_{1} \cup r_{2}\right)=s p\left(P, r_{1}\right) \cup s p\left(P, r_{2}\right)
\end{aligned}
$$

Conjunctivity of wp

$$
\begin{aligned}
w p\left(r, Q_{1} \cap Q_{2}\right) & =w p\left(r, Q_{1}\right) \cap w p\left(r, Q_{2}\right) \\
w p\left(r_{1} \cup r_{2}, Q\right) & =w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)
\end{aligned}
$$

Pointwise wp

$$
w p(r, Q)=\{s \mid s \in S \wedge s p(\{s\}, r) \subseteq Q\}
$$

Pointwise sp

$$
s p(P, r)=\bigcup_{s \in P} s p(\{s\}, r)
$$

Exercise: Three Forms of Hoare Triple

Show the following:
The following three conditions are equivalent:

- $\{P\} r\{Q\}$
- $P \subseteq w p(r, Q)$
- $s p(P, r) \subseteq Q$

Hoare Logic for Loop-free Code

Expanding Paths

The condition

$$
\{P\}\left(\bigcup_{i \in J} r_{i}\right)\{Q\}
$$

is equivalent to

$$
\forall i . i \in J \rightarrow\{P\} r_{i}\{Q\}
$$

Transitivity

If $\{P\} s_{1}\{Q\}$ and $\{Q\} s_{2}\{R\}$ then also $\{P\} s_{1} \circ s_{2}\{R\}$.
We write this as the following inference rule:

$$
\frac{\{P\} s_{1}\{Q\}, \quad\{Q\} s_{2}\{R\}}{\{P\} s_{1} \circ s_{2}\{R\}}
$$

Exercise

We call a relation $r \subseteq S \times S$ functional if
$\forall x, y, z \in S .(x, y) \in r \wedge(x, z) \in r \rightarrow y=z$. For each of the following statements either give a counterexample or prove it. In the following, assume $Q \subset S$.
(i) for any r, $w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(ii) if r is functional, $w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(iii) for any $r, w p(r, Q)=s p\left(Q, r^{-1}\right)$
(iv) if r is functional, $w p(r, Q)=s p\left(Q, r^{-1}\right)$
(v) for any $r, w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vi) if r is functional, $w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vii) for any $r, w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cup w p\left(r_{2}, Q\right)$
(viii) Alice has the following conjecture: For all sets S and relations $r \subseteq S \times S$ it holds:

$$
\left(S \neq \emptyset \wedge \operatorname{dom}(r)=S \wedge \triangle_{S} \cap r=\emptyset\right) \rightarrow(r \circ r \cap((S \times S) \backslash r) \neq \emptyset)
$$

She tried many sets and relations and did not find any counterexample. Is her conjecture true?
If so, prove it, otherwise provide a counterexample for which S is smallest.

Forward VCG

Some notation

If P is a formula on state and c a command, let $s p_{F}(P, c)$ be the formula version of the strongest postcondition operator. $s p_{F}(P, c)$ is therefore the formula Q that describes the set of states that can result from executing c in a state satisfying P.
Thus, we have that

$$
s p_{F}(P, c)=Q
$$

implies

$$
s p((\{\bar{x} \mid P\}, \rho(c))=\{\bar{x} \mid Q\}
$$

We will denote the set of states satisfying a predicate by underscore s, i.e. for a predicate P, let P_{s} be the set of states that satisfies it:

$$
P_{s}=\{\bar{x} \mid P\}
$$

Forward VCG: Using Strongest Postcondition

We can use the $s p_{F}$ operator to compute verification conditions: for a triple $\{P\} c\{Q\}$ we can generate the verification condition $s p_{F}(P, c) \rightarrow Q$.

Assume Statement

Define:

$$
s p_{F}(P, \operatorname{assume}(F))=P \wedge F
$$

Then

$$
\begin{aligned}
& \operatorname{sp}\left(P_{s}, \rho(\operatorname{assume}(F))\right) \\
& =\operatorname{sp}\left(P_{s}, \Delta_{F_{s}}\right) \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} \in P_{s} .\left(\left(\bar{x}, \bar{x}^{\prime}\right) \in \Delta_{F_{s}}\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} \in P_{s .}\left(\bar{x}=\bar{x}^{\prime} \wedge \bar{x} \in F_{s}\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \bar{x}^{\prime} \in P_{s}, \bar{x}^{\prime} \in F_{s}\right\} \\
& =P_{s} \cap F_{s} .
\end{aligned}
$$

Rules for Computing Strongest Postcondition

Havoc Statement
Define:

$$
\operatorname{sp}_{F}(P, \operatorname{havoc}(x))=\exists x_{0} \cdot P\left[x:=x_{0}\right]
$$

Exercise:
Precondition: $\{x \geq 2 \wedge y \leq 5 \wedge x \leq y\}$.
Code: havoc(x)

Rules for Computing Strongest Postcondition

Havoc Statement
Define:

$$
\operatorname{sp}_{F}(P, \operatorname{havoc}(x))=\exists x_{0} \cdot P\left[x:=x_{0}\right]
$$

Exercise:
Precondition: $\{x \geq 2 \wedge y \leq 5 \wedge x \leq y\}$.
Code: havoc(x)

$$
\exists x_{0} \cdot x_{0} \geq 2 \wedge y \leq 5 \wedge x_{0} \leq y
$$

i.e.

$$
\exists x_{0} .2 \leq x_{0} \leq y \wedge y \leq 5
$$

i.e.

$$
2 \leq y \wedge y \leq 5
$$

Note: If we simply removed conjuncts containing x, we would get just $y \leq 5$.

Rules for Computing Strongest Postcondition

Assignment Statement

Define:

$$
s p_{F}(P, x=e)=\exists x_{0} \cdot\left(P\left[x:=x_{0}\right] \wedge x=e\left[x:=x_{0}\right]\right)
$$

Indeed:

$$
\begin{aligned}
& \operatorname{sp}\left(P_{s}, \rho(x=e)\right) \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} .\left(\bar{x} \in P_{s} \wedge\left(\bar{x}, \bar{x}^{\prime}\right) \in \rho(x=e)\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} .\left(\bar{x} \in P_{s} \wedge \bar{x}^{\prime}=\bar{x}[x:=e(\bar{x})]\right)\right\}
\end{aligned}
$$

Exercise

Precondition: $\{x \geq 5 \wedge y \geq 3\}$.
Code: $\mathrm{x}=\mathrm{x}+\mathrm{y}+10$

$$
\operatorname{sp}(x \geq 5 \wedge y \geq 3, x=x+y+10)=
$$

Exercise

Precondition: $\{x \geq 5 \wedge y \geq 3\}$.
Code: $\mathrm{x}=\mathrm{x}+\mathrm{y}+10$

$$
\begin{aligned}
& s p(x \geq 5 \wedge y \geq 3, x=x+y+10)= \\
& \exists x_{0} . x_{0} \geq 5 \wedge y \geq 3 \wedge x=x_{0}+y+10 \\
& \leftrightarrow y \geq 3 \wedge x \geq y+15
\end{aligned}
$$

Rules for Computing Strongest Postcondition

Sequential Composition

For relations we proved

$$
s p\left(P_{s}, r_{1} \circ r_{2}\right)=s p\left(s p\left(P_{s}, r_{1}\right), r_{2}\right)
$$

Therefore, define

$$
s p_{F}\left(P, c_{1} ; c_{2}\right)=s p_{F}\left(s p_{F}\left(P, c_{1}\right), c_{2}\right)
$$

Nondeterministic Choice (Branches)
We had $s p\left(P_{s}, r_{1} \cup r_{2}\right)=s p\left(P_{s}, r_{1}\right) \cup s p\left(P_{s}, r_{2}\right)$. Therefore define:

$$
\operatorname{sp}_{F}\left(P, c_{1}[] c_{2}\right)=\operatorname{sp}_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right)
$$

Correctness

Show by induction on c_{1} that for all P :

$$
\operatorname{sp}\left(P_{s}, \rho\left(c_{1}\right)\right)=\left\{\bar{x}^{\prime} \mid \operatorname{sp}_{F}\left(P, c_{1}\right)\right\}
$$

Size of Generated Formulas

The size of the formula can be exponential because each time we have a nondeterministic choice, we double formula size:

$$
\begin{aligned}
& \operatorname{sp}_{F}\left(P,\left(c_{1}[] c_{2}\right) ;\left(c_{3}[] c_{4}\right)\right)= \\
& \operatorname{sp}_{F}\left(\operatorname{sp}_{F}\left(P, c_{1}[] c_{2}\right), c_{3}[] c_{4}\right)= \\
& \operatorname{sp}_{F}\left(s p_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{3}[] c_{4}\right)= \\
& \operatorname{sp}_{F}\left(s p_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{3}\right) \vee \operatorname{sp}_{F}\left(\operatorname{sp}_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{4}\right)
\end{aligned}
$$

Reducing sp to Relation Composition

The following identity holds for relations:

$$
s p\left(P_{s}, r\right)=r a n\left(\Delta_{P} \circ r\right)
$$

Based on this, we can compute $s p\left(P_{s}, \rho\left(c_{1}\right)\right)$ in two steps:

- compute formula $F\left(\operatorname{assume}(P) ; c_{1}\right)$
- existentially quantify over initial (non-primed) variables Indeed, if F_{1} is a formula denoting relation r_{1}, that is,

$$
r_{1}=\left\{\left(\vec{x}, \vec{x}^{\prime}\right) . F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)\right\}
$$

then $\exists \vec{x} . F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)$ is formula denoting the range of r_{1} :

$$
\operatorname{ran}\left(r_{1}\right)=\left\{\vec{x}^{\prime} \cdot \exists \vec{x} \cdot F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)\right\}
$$

Moreover, the resulting approach does not have exponentially large formulas.

More on Weakest Preconditions

Exercise: Prove wp Distributivity

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

$w p\left(r_{1} \cup r_{2}, Q\right)=$

Rules for WP
$4 \square>4$ 可 \downarrow 引 三

Rules for Computing Weakest Preconditions

We derive the rules below from the definition of weakest precondition on sets and relations

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Assume Statement

Suppose we have one variable x , and identify the state with that variable. Note that $\rho(\operatorname{assume}(F))=\Delta_{F_{s}}$. By definition

$$
\begin{aligned}
w p\left(\Delta_{F_{s}}, Q_{s}\right) & =\left\{x \mid \forall x^{\prime} .\left(x, x^{\prime}\right) \in \Delta_{F_{s}} \rightarrow x^{\prime} \in Q_{s}\right\} \\
& =\left\{x \mid \forall x^{\prime} .\left(x \in F_{s} \wedge x=x^{\prime}\right) \rightarrow x^{\prime} \in Q_{s}\right\} \\
& =\left\{x \mid x \in F_{s} \rightarrow x \in Q_{s}\right\}=\{x \mid F \rightarrow Q\}
\end{aligned}
$$

Changing from sets to formulas, we obtain the rule for wp on formulas:

$$
w p_{F}(\operatorname{assume}(\mathrm{~F}), Q)=(F \rightarrow Q)
$$

Rules for Computing Weakest Preconditions

Assignment Statement

Consider the case of two variables. Recall that the relation associated with the assignment $x=e$ is

$$
x^{\prime}=e \wedge y^{\prime}=y
$$

Then we have, for formula Q containing x and y :

$$
\begin{aligned}
w p(\rho(x=e),\{(x, y) \mid Q\})=\{(x, y) \mid & \forall x^{\prime} . \forall y^{\prime} \cdot x^{\prime}=e \wedge y^{\prime}=y \rightarrow \\
& \left.Q\left[x:=x^{\prime}, y:=y^{\prime}\right]\right\} \\
=\{(x, y) \mid & Q[x:=e]\}
\end{aligned}
$$

From here we obtain a justification to define:

$$
w p_{F}(x=e, Q)=Q[x:=e]
$$

Rules for Computing Weakest Preconditions

Havoc Statement

$$
w p_{F}(\operatorname{havoc}(\mathrm{x}), Q)=\forall x \cdot Q
$$

Sequential Composition

$$
w p\left(r_{1} \circ r_{2}, Q_{s}\right)=w p\left(r_{1}, w p\left(r_{2}, Q_{s}\right)\right)
$$

Same for formulas:

$$
w p_{F}\left(c_{1} ; c_{2}, Q\right)=w p_{F}\left(c_{1}, w p_{F}\left(c_{2}, Q\right)\right)
$$

Nondeterministic Choice (Branches)
In terms of sets and relations

$$
w p\left(r_{1} \cup r_{2}, Q_{s}\right)=w p\left(r_{1}, Q_{s}\right) \cap w p\left(r_{2}, Q_{s}\right)
$$

In terms of formulas

$$
w p_{F}\left(c_{1}[] c_{2}, Q\right)=w p_{F}\left(c_{1}, Q\right) \wedge w p_{F}\left(c_{2}, Q\right)
$$

Summary of Weakest Precondition Rules

c	$w p(c, Q)$
$x=e$	$Q[x:=e]$
$\operatorname{havoc}(x)$	$\forall x \cdot Q$
$\operatorname{assume}(F)$	$F \rightarrow Q$
$\left.c_{1}\right] c_{2}$	$w p\left(c_{1}, Q\right) \wedge w p\left(c_{2}, Q\right)$
$c_{1} ; c_{2}$	$w p\left(c_{1}, w p\left(c_{2}, Q\right)\right)$

Size of Generated Verification Conditions

Because of the rule

$$
w p_{F}\left(c_{1}[] c_{2}, Q\right)=w p_{F}\left(c_{1}, Q\right) \wedge w p_{F}\left(c_{2}, Q\right)
$$

which duplicates Q, the size can be exponential.
$w_{F}\left(\left(c_{1} \rrbracket c_{2}\right) ;\left(c_{3} \rrbracket c_{4}\right), Q\right)=$

Avoiding Exponential Blowup

Propose an algorithm that, given an arbitrary program c and a formula Q, computes in polynomial time formula equivalent to $w_{F}(c, Q)$

Syntactic Rules for Hoare Logic

Summary of Proof Rules

We next present (one possible) summary of proof rules for Hoare logic.

Weakening and Strengthening
Strengthening precondition:

$$
\frac{\models P_{1} \rightarrow P_{2} \quad\left\{P_{2}\right\} c\{Q\}}{\left\{P_{1}\right\} c\{Q\}}
$$

Weakening postcondition:

$$
\frac{\{P\} c\left\{Q_{1}\right\} \quad=Q_{1} \rightarrow Q_{2}}{\{P\} c\left\{Q_{2}\right\}}
$$

Loop Free Blocks

We can directly use the rules we derived for basic loop-free code.
Either through weakest preconditions or strongest postconditions.

$$
\{w p(c, Q)\} c\{Q\}
$$

or,

$$
\{P\} c\{s p(P, c)\}
$$

For example, we have:

$$
\begin{aligned}
& \{Q[x:=e]\}(x=e)\{Q\} \\
& \{\forall x \cdot Q\} \operatorname{havoc}(x)\{Q\} \\
& \{(F \rightarrow Q)\} \operatorname{assume}(F)\{Q\} \\
& \{P\} \operatorname{assume}(F)\{P \wedge F\}
\end{aligned}
$$

Rules continued

Loops

$$
\frac{\{I\} c\{I\}}{\{I\} \text { while }(*) c\{I\}}
$$

Sequential Composition

$$
\frac{\{P\} c_{1}\{Q\} \quad\{Q\} c_{2}\{R\}}{\{P\} c_{1} ; c_{2}\{R\}}
$$

Non-Deterministic Choice

$$
\frac{\{P\} c_{1}\{Q\} \quad\{P\} c_{2}\{Q\}}{\{P\} c_{1}[] c_{2}\{Q\}}
$$

While Loops

Knowing that the while loop: while (F) c;
is equivalent to:

$$
\begin{aligned}
& \text { while }(*)\{\operatorname{assume}(F) ; c\} ; \\
& \text { assume }(\neg \mathrm{F}) \text {; }
\end{aligned}
$$

Question: What is the rule for while loops? Hint

$$
\frac{(\models P \rightarrow ?) ;\{?\} \subset\{?\} ;(\models ? \rightarrow Q)}{\{P\} \text { while }\{I\}(F)(c)\{Q\}}
$$

While Loops

Knowing that the while loop: while (F) c;
is equivalent to:
while(*) \{assume(F); c\}; assume ($\neg \mathrm{F}$);

Question: What is the rule for while loops? Hint

$$
\frac{(\models P \rightarrow ?) ;\{?\} c\{?\} ;(\models ? \rightarrow Q)}{\{P\} \text { while }\{I\}(F)(c)\{Q\}}
$$

It follows that the rule for while loops is:

$$
\frac{(\models P \rightarrow I) ;\{I \wedge F\} c\{I\} ;(\models(I \wedge \neg F) \rightarrow Q))}{\{P\} \text { while }\{I\}(F)(c)\{Q\}}
$$

Applying Proof Rules given Invariants

Let us treat $\{P\}$ as a new kind of statement, written

```
assert(P)
```

For the moment the purpose of assert is just to indicate preconditions and postconditions. When we write

```
assert(P)
    c1;
assert(Q)
        c2;
assert(R)
```

we expect that these Hoare triples hold:

$$
\begin{aligned}
& \{P\} c 1\{Q\} \\
& \{Q\} c 2\{R\}
\end{aligned}
$$

Sufficiently annotated program

Consider the control-flow graph of a program with statements assert, assume, $x=e$ and with graph edges expressing "[]" and ";". We will say that the program c is sufficiently annotated iff

- the first statement is assert(Pre)
- the last statement is assert(Post)
- every cycle in the control-flow graph contains at least one assert

Assertion path

An assertion path is a path in its control-flow graph that starts and ends with assert. Given the assertion path

we omit any assert statements in the middle, obtaining from $\mathrm{c} 1, \ldots, \mathrm{cK}$ statements $\mathrm{d} 1, \ldots, \mathrm{dL}$. We call

$$
\{P\} d 1 ; \ldots ; d L\{Q\}
$$

the Hoare triple of the assertion path.

Proving Hoare triple for entire program

A basic path is an assertion path that contains no assert commands other than those at the beginning and end. Each sufficiently annotated program has finitely many basic paths.

Theorem: If the Hoare triple for each basic path is valid, then the Hoare triple $\{$ Pre $\} c\{$ Post $\}$ is valid.
Proof: If each basic path is valid, then each path is valid, by induction and Hoare logic rule for sequential composition. Each program is union of (potentially infinitely many) paths, so the property holds for the entire program. (Another explanation: consider any given execution and corresponding path in the control-flow graph. By induction on the length of the path we prove that all assert statements hold, up to the last one.)

Verification recipe

The verification condition of a basic path is the formula whose validity expresses the validity of the Hoare triple for this path. Simple verification conditions for a sufficiently annotated program is the set of verification conditions for each each basic path of the program.
One approach to verification condition generation is therefore:

- start with sufficiently annotated program
- generate simple verification conditions
- prove each of the simple verification conditions

In a program of size n, what is the bound on the number of basic paths?

Verification recipe

The verification condition of a basic path is the formula whose validity expresses the validity of the Hoare triple for this path. Simple verification conditions for a sufficiently annotated program is the set of verification conditions for each each basic path of the program.
One approach to verification condition generation is therefore:

- start with sufficiently annotated program
- generate simple verification conditions
- prove each of the simple verification conditions

In a program of size n, what is the bound on the number of basic paths?
It can be $2^{O(n)}$.

Handling the path explosion

In a program of size n, the number of basic paths can be $2^{O(n)}$. Remedies:

- require more annotations (e.g. at each merge point)
- extreme case: assertion on each CFG vertex - this gives classical Hoare logic proof
- merge subgraphs without annotations: perform sequential composition and disjunction of formulas on edges
- generate correctness formulas for multiple paths in an acyclic subgraph at once, using propositional variables to encode the existence of paths

Exercise

Give a complete Hoare logic proof for the following program:

```
\(\{n>=0 \& \& d>0\}\)
    \(\mathrm{q}=0\)
    \(\mathrm{r}=\mathrm{n}\)
    while ( \(r>=d\) ) \{
        \(q=q+1\)
        \(r=r-d\)
    \}
\(\{\mathrm{n}=\mathrm{q} * \mathrm{~d}+\mathrm{r} \& \& 0<=\mathrm{r}<\mathrm{d}\}\)
```

The proof should be step-by-step as in the example proof in the lecture on Hoare Logic. To prove each step you can use the syntactic rules for Hoare Logic.

Exercise

$$
\begin{aligned}
& / /\{n>=0 \& \& d>0\} \\
& \mathrm{q}=0 \\
& / /\{n>=0 \& \& d>0 \& \& q==0\} \\
& \mathrm{r}=\mathrm{n} \\
& / /\{n>=0 \& \& d>0 \& \& q==0 \& \& r==n\} \\
& \text { while } / /\{d>0 \& \& n==q * d+r \& \& 0<=r\} \\
& \text { (} \mathrm{r}>=\mathrm{d} \text {) }\{ \\
& / /\{d>0 \& \& n==q * d+r \& \& d<=r\} \\
& \mathrm{q}=\mathrm{q}+1 \\
& / /\{d>0 \& \& n==(q-1) * d+r \& \& d<=r\} \\
& r=r-d \\
& / /\{d>0 \& \& n==(q-1) * d+r+d \& \& 0<=r\} \\
& / /\{d>0 \& \& n==q * d+r \& \& 0<=r\} \\
& \text { \} } \\
& / /\{d>0 \& \& n==q * d+r \& \& 0<=r \& \& r<d\} \\
& / /\{n==q * d+r \& \& 0<=r<d\}
\end{aligned}
$$

What can be omitted to still have sufficiently annotated program?

