Lecture 4
 Refinement, Equivalence, and Synthesis

Viktor Kuncak

Local Mutable Variables

Local Variables

Assume our global variables are $V=\{x, y\}$
Program P:

$$
x=x+1 ;\{\operatorname{var} y ; y=x+3 ; z=x+y+z\} ; x=x+z
$$

$R(P)$ should be a relation between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$.
Each statement should be relation between variables in scope

$$
z=x+y+z
$$

is relation between x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$
Convention: consider the initial values of variables to be arbitrary $R(y=x+3 ; z=x+y+z)=$
$R(\{\operatorname{var} y ; y=x+3 ; z=x+y+z\})=$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables P For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define $R_{V}(\{\operatorname{var} y ; P\})=$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables P For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define

$$
R_{V}(\{\operatorname{var} y ; P\})=\exists y \cdot R_{V \cup\{y\}}(P)
$$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables P For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define $R_{V}(\{\operatorname{var} y ; P\})=\exists y \cdot R_{V \cup\{y\}}(P)$

Exercise: express havoc(x) using var.

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables P For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define
$R_{V}(\{\operatorname{var} y ; P\})=\exists y \cdot R_{V \cup\{y\}}(P)$
Exercise: express havoc(x) using var.

$$
R_{V}(\operatorname{havoc}(x)) \Longleftrightarrow R_{V}(\{\operatorname{var} y ; x=y\})
$$

Local Variable Translation

$R_{V}(P)$ is formula for P in the scope that has the set of variables P For example,

$$
R_{V}(x=t)=x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Then define
$R_{V}(\{\operatorname{var} y ; P\})=\exists y \cdot R_{V \cup\{y\}}(P)$
Exercise: express havoc(x) using var.

$$
R_{V}(\operatorname{havoc}(x)) \Longleftrightarrow R_{V}(\{\operatorname{var} y ; x=y\})
$$

Exercise: give transformation that lifts all variables to be global

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

Variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Translation of $R\left(\right.$ havoc $\left.\left(y_{1}, \ldots, y_{m}\right)\right)$:

Shorthand: Havoc Multiple Variables at Once

Variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Translation of $R\left(\right.$ havoc $\left.\left(y_{1}, \ldots, y_{m}\right)\right)$:

$$
\bigwedge_{v \in V \backslash\left\{y_{1}, \ldots, y_{m}\right\}} v^{\prime}=v
$$

Exercise: the resulting formula is the same as for:

$$
\operatorname{havoc}\left(y_{1}\right) ; \ldots ; \operatorname{havoc}\left(y_{n}\right)
$$

Programs and Specs are Relations

$$
\begin{array}{rc}
\text { program: } & x=x+2 ; y=x+10 \\
\text { relation: } & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\text { formula: } & x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z
\end{array}
$$

Specification:

$$
z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right.
$$

Adhering to specification is relation subset:

$$
\begin{aligned}
& \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\subseteq & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)\right\}
\end{aligned}
$$

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?
Use local variables to store initial values.

Writing Specs Using Havoc and Assume: Examples

Program variables $V=\{x, y, z\}$
Formula for relation (talks only about resulting state):

$$
z^{\prime}=z \wedge x^{\prime}>0 \wedge y^{\prime}>0
$$

Corresponding program:

$$
\operatorname{havoc}(x, y) ; \operatorname{assume}(x>0 \wedge y>0)
$$

Formula for relation:

$$
z^{\prime}=z \wedge x^{\prime}>x \wedge y^{\prime}>y
$$

Corresponding program?
Use local variables to store initial values.
\{ var $\times 0$; var y 0 ;
$x 0=x ; y 0=y$;
havoc (x, y);
assume $(x>x 0 \& \& y>y 0)$

Writing Specs Using Havoc and Assume

Global variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Specification

$$
F\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Becomes

Writing Specs Using Havoc and Assume

Global variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$
Specification

$$
F\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Becomes

$$
\begin{aligned}
& \left\{\operatorname{var} y_{1}, \ldots, y_{n}\right. \text {; } \\
& y_{1}=x_{1} ; \ldots ; y_{n}=x_{n} ; \\
& \text { havoc }\left(x_{1}, \ldots, x_{n}\right) \text {; } \\
& \left.\operatorname{assume}\left(F\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)\right)\right\}
\end{aligned}
$$

Program Refinement and Equivalence

For two programs, define refinement $P_{1} \sqsubseteq P_{2}$ iff

$$
R\left(P_{1}\right) \rightarrow R\left(P_{2}\right)
$$

is a valid formula.
(Some books use the opposite meaning of \sqsubseteq.)
As usual, $P_{2} \sqsupseteq P_{1}$ iff $P_{1} \sqsubseteq P_{2}$.

- $P_{1} \sqsubseteq P_{2}$ iff $\rho\left(P_{1}\right) \subseteq \rho\left(P_{2}\right)$

Define equivalence $P_{1} \equiv P_{2}$ iff $P_{1} \sqsubseteq P_{2} \wedge P_{2} \sqsubseteq P_{1}$

- $P_{1} \equiv P_{2}$ iff $\rho\left(P_{1}\right)=\rho\left(P_{2}\right)$

Example for $V=\{x, y\}$

$$
\{\operatorname{var} x 0 ; \operatorname{havoc}(x) ; \operatorname{assume}(x>x 0)\} \sqsupseteq(x=x+1)
$$

Proof: Use R to compute formulas for both sides and simplify.

Program Refinement and Equivalence

For two programs, define refinement $P_{1} \sqsubseteq P_{2}$ iff

$$
R\left(P_{1}\right) \rightarrow R\left(P_{2}\right)
$$

is a valid formula.
(Some books use the opposite meaning of \sqsubseteq.)
As usual, $P_{2} \sqsupseteq P_{1}$ iff $P_{1} \sqsubseteq P_{2}$.

- $P_{1} \sqsubseteq P_{2}$ iff $\rho\left(P_{1}\right) \subseteq \rho\left(P_{2}\right)$

Define equivalence $P_{1} \equiv P_{2}$ iff $P_{1} \sqsubseteq P_{2} \wedge P_{2} \sqsubseteq P_{1}$

- $P_{1} \equiv P_{2}$ iff $\rho\left(P_{1}\right)=\rho\left(P_{2}\right)$

Example for $V=\{x, y\}$

$$
\{\operatorname{var} x 0 ; \operatorname{havoc}(x) ; \operatorname{assume}(x>x 0)\} \sqsupseteq(x=x+1)
$$

Proof: Use R to compute formulas for both sides and simplify.

$$
x^{\prime}=x+1 \rightarrow x^{\prime}>x
$$

Stepwise Refinement Methodology

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification P_{0} Refine the program until it becomes deterministic and efficiently executable.

$$
P_{0} \sqsupseteq P_{1} \sqsupseteq \ldots \sqsupseteq P_{n}
$$

Example:

$$
\begin{array}{ll}
& \operatorname{havoc}(x) ; \operatorname{assume}(x>0) ; \text { havoc }(y) ; \text { assume }(x>y) \\
\sqsupseteq & \operatorname{havoc}(x) ; \operatorname{assume}(x>0) ; y=x+1 \\
\sqsupseteq & x=42 ; y=x+1 \\
\sqsupseteq & x=42 ; y=43
\end{array}
$$

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P_{1} ; P\right) \sqsubseteq\left(P_{2} ; P\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ then $\left(P ; P_{1}\right) \sqsubseteq\left(P ; P_{2}\right)$
Theorem: if $P_{1} \sqsubseteq P_{2}$ and $P_{1}^{\prime} \sqsubseteq P_{2}^{\prime}$ then
(if $(*) P_{1}$ else $\left.P_{1}^{\prime}\right) \sqsubseteq\left(\right.$ if $(*) P_{2}$ else $\left.P_{2}^{\prime}\right)$

Checking Commutativity and Idempotence

Associativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ;\left(c_{2} ; c_{3}\right) \equiv\left(c_{1} ; c_{2}\right) ; c_{3}
$$

Associativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ;\left(c_{2} ; c_{3}\right) \equiv\left(c_{1} ; c_{2}\right) ; c_{3}
$$

always

Commutativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ; c_{2} \equiv c_{2} ; c_{1}
$$

Commutativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ; c_{2} \equiv c_{2} ; c_{1}
$$

In general, when the resulting relations are equal and formulas equivalent, i.e. iff

$$
R\left(c_{1} ; c_{2}\right) \Longleftrightarrow R\left(c_{2} ; c_{1}\right)
$$

is a valid formula (true for all variables).

Commutativity of Commands

Under what conditions on commands c_{1}, c_{2} is

$$
c_{1} ; c_{2} \equiv c_{2} ; c_{1}
$$

In general, when the resulting relations are equal and formulas equivalent, i.e. iff

$$
R\left(c_{1} ; c_{2}\right) \Longleftrightarrow R\left(c_{2} ; c_{1}\right)
$$

is a valid formula (true for all variables).
Example: does this hold?

$$
(x=x+1 ; y=x+2) \equiv(y=x+2 ; x=x+1)
$$

Show formulas for each sides

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:

$$
(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)
$$

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:
$(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)$
Can you state a generalization of the above example?

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:
$(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)$
Can you state a generalization of the above example? Example 2:

$$
(x=x+1 ; x=x+5) \equiv(x=x+5 ; x=x+1)
$$

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity equivalence holds

Example 1:
$(x=2 * x+7 * z ; y=5 * y+z) \equiv(y=5 * y+z ; x=2 * x+7 * z)$
Can you state a generalization of the above example? Example 2:

$$
(x=x+1 ; x=x+5) \equiv(x=x+5 ; x=x+1)
$$

Requires knowing properties of + .

Preserving Domain in Refinement

Preserving Domain

It is not interesting program development step $P \sqsupseteq P^{\prime}$ is P^{\prime} is false, or is false for most inputs.
Example:

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

When doing refinement $P \sqsupseteq P^{\prime}$, which ensures

$$
R\left(P^{\prime}\right) \rightarrow R(P)
$$

we also wish to preserve the domain of the relation between $\bar{x}, \bar{x}^{\prime}$

- if P has some execution from \bar{x} ending in x^{\prime}
- then P^{\prime} should also have some execution, ending in some $x^{\prime \prime}$ (even if it has fewer choices)

$$
\left(\exists \bar{x}^{\prime} \cdot R(P)\right) \rightarrow\left(\exists \bar{x}^{\prime \prime} \cdot R\left(P^{\prime}\right)\right)
$$

This is weaker than $R(P) \rightarrow R\left(P^{\prime}\right)$.
Definition: domain formula of P is the formula $\exists \bar{x}^{\prime} . R(P)$

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \quad(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=$

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=$

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold?
Now consider the right hand side:

- domain of P is

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold?
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to:

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \sqsupseteq(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold?
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to: $y \% 2=0$
- domain of P is:

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \quad(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold?
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to: $y \% 2=0$
- domain of P is: $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$
- equivalent to:

Domains in the Example

Consider our example $P \sqsupseteq P^{\prime}$

$$
(\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)) \quad(\operatorname{assume}(y=6) ; x=3)
$$

- $R(P)=x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- $R\left(P^{\prime}\right)=x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$

Does $P \sqsupseteq P^{\prime}$ really hold?
Now consider the right hand side:

- domain of P is $\exists x^{\prime}, y^{\prime} \cdot x^{\prime}+x^{\prime}=y \wedge y^{\prime}=y$
- equivalent to: $y \% 2=0$
- domain of P is: $\exists x^{\prime}, y^{\prime} . x^{\prime}=3 \wedge y^{\prime}=6 \wedge y^{\prime}=y$
- equivalent to: $y=6$

Does domain formula of P^{\prime} imply the domain formula of P ?

Preserving Domain: Exercise

Given P :

$$
\operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)
$$

Find P_{1} and P_{2} such that

- $P \sqsupseteq P_{1} \sqsupseteq P_{2}$
- no two programs among P, P_{1}, P_{2} are equivalent
- programs P, P_{1} and P_{2} have equivalent domains
- the relation described by P_{2} is a partial function

Complete Functional Synthesis

Synthesis from Relations

Complete Functional Synthesis

Domain-preserving refinement algorithm that produces a partial function

- assignment: res $=$ choose $\mathbf{x} . \mathbf{F}$
- corresponds to: $\{\operatorname{var} \mathbf{x}$; assume(\mathbf{F}); $\mathbf{r e s}=\mathbf{x}\}$
- we refine it preserving domain into: assume(D); res $=\mathbf{t}$ (where t does not have 'choose')
More abstractly, given formula F and variable x find
- formula D
- term t not containing x
such that, for all free variables:
- $D \rightarrow F[x:=t] \quad(t$ is a term such that refinement holds)
- $D \Longleftrightarrow \exists x . F \quad$ (D is the domain, says when t is correct)

Consequence of the definition: $D \Longleftrightarrow F[x:=t]$

See Comfusy Examples on the Web

From Quantifier Elimination to Synthesis

Quantifier Elimination

If \bar{y} is a tuple of variables not containing x, then

$$
\exists x \cdot(x=t(\bar{y}) \wedge F(x, \bar{y})) \Longleftrightarrow F(t(\bar{y}), \bar{y})
$$

Synthesis

$$
\text { choose } x .(x=t(\bar{y}) \wedge F(x, \bar{y}))
$$

gives:

- precondition $F(t(\bar{y}), \bar{y})$, as before, but also
- program that realizes x, in this case, $t(\bar{y})$

Handling Disjunctions

We had

$$
\exists x .\left(F_{1}(x) \vee F_{2}(x)\right)
$$

is equivalent to

$$
\left(\exists x . F_{1}(x)\right) \vee\left(\exists x . F_{2}(x)\right)
$$

Now:

$$
\text { choose } x .\left(F_{1}(x) \vee F_{2}(x)\right)
$$

becomes:

$$
\text { if } \left.\left.\left(D_{1}\right) \text { (choose } x . F_{1}(x)\right) \text { else (choose } x . F_{2}(x)\right)
$$

where D_{1} is the domain, equivalent to $\exists x \cdot F_{1}(x)$ and computed while computing choose $x . F_{1}(x)$.

Framework for Synthesis Procedures

We define the framework as a transformation

- from specification formula F to
- the maximal domain D where the result x can be found, and the program t that computes the result
$\langle D \mid t\rangle$ denotes: the domain (formula) D and program (term) t Main transformation relation \vdash

$$
\text { choose x.F } \vdash\langle D \mid t\rangle
$$

means

- $D \rightarrow F[x:=t] \quad(t$ is a term such that refinement holds)
- $D \Longleftrightarrow \exists x . F \quad(D$ is the domain, says when t is correct)

Rule for Synthesizing Conditionals

$$
\frac{\text { choose } \times . F_{1} \vdash\left\langle D_{1} \mid t_{1}\right\rangle \quad \text { choose } x . F_{2} \vdash\left\langle D_{2} \mid t_{2}\right\rangle}{\text { choose } \left.x .\left(F_{1} \vee F_{2}\right) \vdash\left\langle D_{1} \vee D_{2}\right| \text { if }\left(D_{1}\right) t_{1} \text { else } t_{2}\right\rangle}
$$

To synthesize the thing below the - , synthesize the things above and put the pieces together.

Test Terms Methods for Presburger Arithmetic Synthesis

Recall that the most complex step in QE for PA was replacing

$$
\exists x . F_{1}(x)
$$

with

$$
\bigvee_{k=1}^{L} \bigvee_{i=1}^{N} F_{1}\left(a_{k}+i\right)
$$

Now we transform choose $x . F_{1}(x)$ first into:

$$
\text { choose } x . \bigvee_{k=1}^{L} \bigvee_{i=1}^{N}\left(x=a_{k}+i \wedge F_{1}(x)\right)
$$

Then apply:

Test Terms Methods for Presburger Arithmetic Synthesis

Recall that the most complex step in QE for PA was replacing

$$
\exists x . F_{1}(x)
$$

with

$$
\bigvee_{k=1}^{L} \bigvee_{i=1}^{N} F_{1}\left(a_{k}+i\right)
$$

Now we transform choose $x . F_{1}(x)$ first into:

$$
\text { choose } x . \bigvee_{k=1}^{L} \bigvee_{i=1}^{N}\left(x=a_{k}+i \wedge F_{1}(x)\right)
$$

Then apply:

- rule for conditionals

Test Terms Methods for Presburger Arithmetic Synthesis

Recall that the most complex step in QE for PA was replacing

$$
\exists x . F_{1}(x)
$$

with

$$
\bigvee_{k=1}^{L} \bigvee_{i=1}^{N} F_{1}\left(a_{k}+i\right)
$$

Now we transform choose $x . F_{1}(x)$ first into:

$$
\text { choose } x . \bigvee_{k=1}^{L} \bigvee_{i=1}^{N}\left(x=a_{k}+i \wedge F_{1}(x)\right)
$$

Then apply:

- rule for conditionals
- one-point rule

Synthesis using Test Terms

$$
\text { choose } x . \bigvee_{k=1}^{L} \bigvee_{i=1}^{N}\left(x=a_{k}+i \wedge F_{1}\right)
$$

produces the same precondition as the result of QE, and the generated term is:

$$
\begin{aligned}
& \text { if }\left(F_{1}\left[x:=a_{1}+1\right]\right) a_{1}+1 \\
& \text { elseif }\left(F_{1}\left[x:=a_{1}+2\right]\right) a_{1}+2 \\
& \ldots \\
& \text { elseif }\left(F_{1}\left[x:=a_{k}+i\right]\right) a_{k}+i \\
& \ldots \\
& \text { elseif }\left(F_{1}\left[x:=a_{L}+N\right]\right) a_{L}+N
\end{aligned}
$$

Linear search over the possible values, taking the first one that works.
This could be optimized in many cases.

Synthesizing a Tuple of Outputs

$$
\frac{\text { choose x.F } \vdash\left\langle D_{1} \mid t_{1}\right\rangle \text { choose } y . D_{1} \vdash\left\langle D_{2} \mid t_{2}\right\rangle}{\text { choose }(x, y) . F \vdash\left\langle D_{2} \mid\left(t_{1}\left[y:=t_{2}\right], t_{2}\right)\right\rangle}
$$

Note that y can appear inside D_{1} and t_{1}, but not in D_{2} or t_{2}

Substitution of Variables

In quantifier elimination, we used a step where we replace $M \cdot y$ with x

$$
\frac{\text { choose x.F } \vdash\left\langle D_{1} \mid t_{1}\right\rangle \text { choose y. } D_{1} \vdash\left\langle D_{2} \mid t_{2}\right\rangle}{\text { choose }(x, y) . F \vdash\left\langle D_{2} \mid\left(t_{1}\left[y:=t_{2}\right], t_{2}\right)\right\rangle}
$$

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two different solutions.

Let the variables in scope be denoted by a and consider the synthesis problem:

$$
\text { choose } x . F
$$

What is the verification condition that checks whether the solution for x is unique?

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two different solutions.

Let the variables in scope be denoted by a and consider the synthesis problem:
choose x. F

What is the verification condition that checks whether the solution for x is unique?
Solution is not unique if this PA formula is satisfiable:

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two different solutions.

Let the variables in scope be denoted by a and consider the synthesis problem:
choose x. F

What is the verification condition that checks whether the solution for x is unique?
Solution is not unique if this PA formula is satisfiable:

$$
F \wedge F[y:=x] \wedge x \neq y
$$

If we find such x, y, a we report them as an example that, for input a, there are two possible outputs, x and y

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution does not exist.

Let the variables in scope be denoted by a and consider the synthesis problem:

$$
\text { choose } x . F
$$

What is the verification condition that checks if there are cases when no solution x exists?

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution does not exist.

Let the variables in scope be denoted by a and consider the synthesis problem:
choose x. F

What is the verification condition that checks if there are cases when no solution x exists?
Check satisfiability of this PA formula:

$$
\neg \exists x . F
$$

If there is a solution a, report it as an example for which no solutions exist.

Further Topics

- demo
- handling equality and the consequence of Euclid's algorithm
- synthesis for sets with cardinality bounds

