Lecture 4
Refinement, Equivalence, and Synthesis

Viktor Kuncak

Local Mutable Variables

Local Variables
Assume our global variables are V = {x,y}
Program P:
x=x+1L{vary,y=x+3;z=x+y+zhx=x+z

R(P) should be a relation between (x, y) and (x’,y’).
Each statement should be relation between variables in scope

z=x+y+z

is relation between x, y,z and x,y’, 2/
Convention: consider the initial values of variables to be arbitrary
Rly=x+3z=x+y+z)=

R({vary;y =x+3,z=x+y+z})=

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Ry({var y; P}) =

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Rv({var y; P}) = 3y.Rvug,(P)

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Rv({var y; P}) = 3y.Ryugy(P)

Exercise: express havoc(x) using var.

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Rv({var y; P}) = 3y.Ryugy(P)

Exercise: express havoc(x) using var.

Ry(havoc(x)) <= Ry({var y; x=y})

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Rv({var y; P}) = 3y.Ryugy(P)

Exercise: express havoc(x) using var.
Ryv(havoc(x)) <= Ry({var y; x=y})

Exercise: give transformation that lifts all variables to be global

Expressing Specifications as Commands

Shorthand: Havoc Multiple Variables at Once

Variables V' = {x1,...,xn}
Translation of R(havoc(yi,...,ym)):

Shorthand: Havoc Multiple Variables at Once

Variables V' = {x1,...,xn}
Translation of R(havoc(yi,...,ym)):

A v
veV\{yi,...,ym}

Exercise: the resulting formula is the same as for:

Programs and Specs are Relations

program: x=x4+2;y=x+10
relation: {(x,y,z,x,y,Z) | X' =x+2ANy =x+12NZ =z}
formula: X =x+2N Ny =x+12NZ =z

Specification:
Z=zA(x>0—=(xX>0Ay >0)

Adhering to specification is relation subset:

{(y 2.1,y 2) | X =X+2/\y —x+12A2 =2}
C {(xy,z,x,y2)|Z =2zA(x>0— (X >0Ay >0))}

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0

Corresponding program:

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:

havoc(x,y); assume(x >0 Ay > 0)

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?
Use local variables to store initial values.

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0;
x0 =x; y0 =y;
havoc(x,y);
assume(x > x0 && y > y0)

}

Writing Specs Using Havoc and Assume

Global variables V = {x1,...,xp}
Specification
F(X15 ey Xy Xes o5 X0)

Becomes

Writing Specs Using Havoc and Assume

Global variables V = {x1,...,xp}
Specification
F(X15 ey Xy Xes o5 X0)

Becomes

{ var yi,...,¥Yn

havoc(xi, ..., Xn);
assume(F(y1, ...y Yny X1, -+, %n)) }

Program Refinement and Equivalence

For two programs, define refinement P; C P iff

is a valid formula.
(Some books use the opposite meaning of C.)
As usuaI, P2 Q P1 iff P1 E P2.

> Py C Py iff p(P1) C p(P2)

Define equivalence P, = P, ift PP C P, AP, C P
> Py = Py iff p(P1) = p(P2)

Example for V = {x, y}

{var x0; havoc(x); assume(x > x0)} J (x = x + 1)

Proof: Use R to compute formulas for both sides and simplify.

Program Refinement and Equivalence

For two programs, define refinement P; C P iff

is a valid formula.
(Some books use the opposite meaning of C.)
As usuaI, P2 Q P1 iff P1 E P2.

> Py C Py iff p(P1) C p(P2)

Define equivalence P, = P, ift PP C P, AP, C P
> Py = Py iff p(P1) = p(P2)

Example for V = {x, y}

{var x0; havoc(x); assume(x > x0)} J (x = x + 1)
Proof: Use R to compute formulas for both sides and simplify.

X =x+1—-x>x

Stepwise Refinement Methodology

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification Py
Refine the program until it becomes deterministic and efficiently
executable.

Po3d P 3...3P,

Example:

havoc(x); assume(x > 0); havoc(y); assume(x > y)
havoc(x); assume(x > 0);y = x + 1

x=42;y =x+1

x=42;y =43

I

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if P; C P, then (Py1; P) C (P2; P)
Theorem: if P; C P, then (P; P1) C (P; Pz)
Theorem: if P; C P and P] C P} then

(if (%)Py else Py) C (if (x)Ps else P})

Checking Commutativity and ldempotence

Associativity of Commands

Under what conditions on commands ¢, ¢ is

c; (e a) = (a; @)

Associativity of Commands

Under what conditions on commands ¢, ¢ is
a(@a) = (aa)a

always

Commutativity of Commands

Under what conditions on commands ¢, ¢ is

.0 = ;G

Commutativity of Commands

Under what conditions on commands ¢, ¢ is
0 = ;. a

In general, when the resulting relations are equal and formulas
equivalent, i.e. iff

R(Cl; C2) <~ R(Cz; C1)

is a valid formula (true for all variables).

Commutativity of Commands

Under what conditions on commands ¢, ¢ is
0 = ;. a

In general, when the resulting relations are equal and formulas
equivalent, i.e. iff

R(Cl; C2) <~ R(Cz; C1)

is a valid formula (true for all variables).
Example: does this hold?

(x=x4+Ly=x+42) = (y=x+2,x=x+1)

Show formulas for each sides

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity
equivalence holds

Example 1:

(x =2%x+T7xz; y =bxy+2z) = (y=5*y+z; x =2xx+7%2)

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity
equivalence holds

Example 1:

(x =2%x+T7xz; y =bxy+2z) = (y=5*y+z; x =2xx+7%2)

Can you state a generalization of the above example?

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity
equivalence holds

Example 1:
(x =2%x+T7xz; y =bxy+2z) = (y=5*y+z; x =2xx+7%2)

Can you state a generalization of the above example?
Example 2:

(x=x+1x=x+5) = (x=x+5x=x+1)

Examples of Commutativity of Commands

Show the formula for each example and check if the commutativity
equivalence holds

Example 1:
(x =2%x+T7xz; y =bxy+2z) = (y=5*y+z; x =2xx+7%2)

Can you state a generalization of the above example?
Example 2:

(x=x+1x=x+5) = (x=x+5x=x+1)

Requires knowing properties of +.

Preserving Domain in Refinement

Preserving Domain

It is not interesting program development step P 3 P is P’ is
false, or is false for most inputs.
Example:

(havoc(x); assume(x + x = y)) 2 (assume(y = 6);x = 3)
When doing refinement P J P’, which ensures
R(P") — R(P)

we also wish to preserve the domain of the relation between X, X’

» if P has some execution from X ending in x’

» then P’ should also have some execution, ending in some x”

(even if it has fewer choices)
(3X'.R(P)) — (3X".R(P"))

This is weaker than R(P) — R(P').
Definition: domain formula of P is the formula 3X".R(P)

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» R(P) =

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x'4+x=yny =y
> R(Pl):

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:

» domain of P is

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pis 3x',y/ X'+ x' =y Ay =y

> equivalent to:

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pisax',y/ X' +xX' =y Ay =y
» equivalent to: y%2 =10
» domain of P is:

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pis 3x',y/ X'+ x' =y Ay =y
» equivalent to: y%2 =10
» domainof Pis: 3x',y/x =3 Ay =6Ay =y

» equivalent to:

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6);x =

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pis 3x',y/ X'+ x' =y Ay =y
» equivalent to: y%2 =10
» domainof Pis: 3x',y/x =3 Ay =6Ay =y
> equivalent to: y =6

Does domain formula of P’ imply the domain formula of P?

Preserving Domain: Exercise

Given P:
havoc(x); assume(x + x = y)
Find P; and P> such that
» PO P3P
» no two programs among P, P;, P, are equivalent
» programs P, P; and P, have equivalent domains

» the relation described by P, is a partial function

Complete Functional Synthesis

Synthesis from Relations

Complete Functional Synthesis

Domain-preserving refinement algorithm that produces a partial
function

» assignment: res = choose x. F
» corresponds to: {var x; assume(F); res = x}

» we refine it preserving domain into: assume(D);res =t
(where t does not have 'choose’)

More abstractly, given formula F and variable x find
> formula D
» term t not containing x
such that, for all free variables:
» D — F[x:=1t] (tisa term such that refinement holds)
» D <= 3Ix.F (D is the domain, says when t is correct)
Consequence of the definition: D <= F[x := t]

See Comfusy Examples on the Web

From Quantifier Elimination to Synthesis

Quantifier Elimination

If ¥ is a tuple of variables not containing x, then

Ix.(x = t(y) A F(x,7) <= F(t(7),7)

Synthesis

choose x.(x = t(¥) A F(x,¥))

gives:
» precondition F(t(y),¥), as before, but also

» program that realizes x, in this case, t(y)

Handling Disjunctions

We had
Ix.(F1(x) V F2(x))

is equivalent to

(3x.F1(x)) V (3x.F2(x))
Now:

choose x.(F1(x) V Fa(x))

becomes:
if (D1) (choose x.F1(x)) else (choose x.Fa(x))

where Dj is the domain, equivalent to 3x.F;(x) and computed
while computing choose x.Fi(x).

Framework for Synthesis Procedures

We define the framework as a transformation
» from specification formula F to

» the maximal domain D where the result x can be found, and
the program t that computes the result

(D | t) denotes: the domain (formula) D and program (term) t
Main transformation relation

choose x.F + (D | t)

means

» D — F[x:=1t] (tisa term such that refinement holds)
» D <= 3x.F (D is the domain, says when t is correct)

Rule for Synthesizing Conditionals

choose x.F1 (D1 | t1) choose x.Fp F (Dy | tp)
choose x.(F1 V Fy) + (Dy Vv Dy | if (D) t1 else tp)

To synthesize the thing below the — , synthesize the things above
and put the pieces together.

Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N

choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1

Then apply:

Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N

choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1

Then apply:

» rule for conditionals

Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N
choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1
Then apply:
> rule for conditionals

> one-point rule

Synthesis using Test Terms

L N

choose x. \/ \/(x =ak+iNF)
k=1i=1

produces the same precondition as the result of QE, and the
generated term is:

if (Fl[X =a; + 1]) a+1
elseif (Fi[x :=a1+2]) a1 +2

elseif (Fi[x :=ax+1i]) ax +i
elseif (Fi[x:=aL+ N])a.+ N
Linear search over the possible values, taking the first one that

works.
This could be optimized in many cases.

Synthesizing a Tuple of Outputs

choose x.F + (Di | t1) choose y.D1 F (D5 | to)
choose (x,y).F F (Dy | (t1]y := ta], t2))

Note that y can appear inside D; and ty, but not in D, or t;

Substitution of Variables

In quantifier elimination, we used a step where we replace M - y
with x
choose x.F + (Dy | t1) choose y.D1 = (D, | t2)
choose (x,y).F F (Dy | (ti]ly := ta], t2))

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks whether the solution
for x is unique?

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks whether the solution
for x is unique?
Solution is not unique if this PA formula is satisfiable:

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks whether the solution
for x is unique?
Solution is not unique if this PA formula is satisfiable:

FAFly =x]Ax#y

If we find such x, y, a we report them as an example that, for input
a, there are two possible outputs, x and y

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution
does not exist.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks if there are cases
when no solution x exists?

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution
does not exist.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks if there are cases
when no solution x exists?
Check satisfiability of this PA formula:

—-3dx.F

If there is a solution a, report it as an example for which no
solutions exist.

Further Topics

> demo
» handling equality and the consequence of Euclid's algorithm

> synthesis for sets with cardinality bounds

Q>

Q>

