Lecture 3
From (Integer) Programs to Formulas

Viktor Kuncak

Verification Condition Generation Example

We examine algorithms for going from programs to their
verification conditions.

Program and postcondition:
def f(x : Int) : Int = {
if (x> 0)
2xx + 1
else 42
} ensuring (res => res > 0)

Verification condition saying “program satisfies postcondition™:
[((x >0)Ares=2x+ 1)V (=(x > 0) Ares =42)] — res>0

For above formula, we would check validity: all variables are
universally quantified

Verification Condition Generation (VCG) For Functions

def f(x : Int") : Int = {
b(x)
} ensuring (res => Post(x, res))

» Function f with arguments X and body b(x), built from:

» Presburger Arithmetic (PA) expressions, as well as x/K, x%K
» if statement, and local value definitions (val in Scala)

» Postcondition Post(x, res) written in quantifier-free PA
Claim: there is polynomial-time algorithm to construct formula
V(x) such that

> the execution of f on input X meets the Post iff V(%)
Hence, it always meets postcondition iff Vx.V/(X)

» V(x) is quantifier-free or has only top-level ¥V quantifiers
Idea: perhaps V/(x) could be Post(x, b(x)) ? Yes, if it was in PA

PA with x/K, x%K, if, val

Context-Free grammar (syntax) of extended PA formulas

F,b : Boolean, t: Int

F = b‘F1/\F2|F1\/F2‘—\F’E|X.F‘VX.F‘t1<t2|t1:1.'2
| {valx=t; F}|{val b= F;; F}

t = x|K|lth+t|K-t
|

t/K|t % K |if (F)ty else tp | {val x =t3; t2}

We show how to translate x/K, x%K, if, val into other constructs
» without changing the meaning of a formula
» without adding alternations of quantifiers
> in time polynomial in input
(result is thus also in polynomial size)

Reminder: Free Variables and Substitutions

Free Variables

FV(t), FV(F) denotes free variables in term t or formula F
Normally we just collect all variables:

FV(x+y<z)={xy,z}
We do not count quantified occurrences of variables:
FV(3x. x+y<z)={y,z}
If it occurs quantified somewhere it can still be free overall:
FV((3x3yx <y+u)AN(By.x+y < z+100)) = {u, x, z}

Rules for FV are of two kinds: operations ® (e.g., A, <, +) and
binders Q (e.g. ¥, 3, val)

FV(FL ® Fy) = FV(F1) U FV(F)
FV(Qx.F) = FV(F)\ {x}

Substitutions

One possible convention: write F(x) and later F(t). Then F is not
a formula but function from terms to formulas

(Or we do not even know what F is.)

Our notation: write F, and instead of F(t) write F[x := t]

» closer to a typical implementation
Definition of substitution:

(FLO R)[x:=t]~ (FAl[x:=t]) © (F[x :=t])
(Qy.F)[x :=t] ~ Qy.(F[x :=t])

Capture:

The following formula is true in integers for all x: Jy.x <y
If we naively substitute x with y +1 we obtain: dy. y+1 <y
Problem: t has y free. A solution: rename y to fresh y;

(Qy-F)lx = t]~ (Qu1.Fly == y])[x := t] ~ Qu1.(Fly := n][x :=t])

Summary of Our Translation Goal

Transform logic of this grammar
F.b : Boolean, t: Int

F = b|AANR|AVE|-F|3xF|VxF|lti<t|ti=t
| {valx=t; F}|{valb=Fy; F}

t = x|K|ti+t|K-t
|

t/K |t % K|if (F)t; else tp | {val x = ty; ta2}
Into a logic for which we did quantifier elimination, which omits
the bold symbols:

» val (let) definitions in formulas and terms
» conditionals

» division by a constant

» computing modulo by a constant as a term

About val Definitions

{val x=1t; E}

Equivalent ways of saying:

> in the rest of the block, introduce read-only variable x with
value equal to t

» let x have the value t in E (written so in ML, Haskell)
» E, where x has the value E (math, Haskell's where clause)

Slightly different cases depending on whether types of t and E
(each of which can be Boolean or Int)

Note: x is bound to t inside E, but not inside t or anywhere else

Free Variables and Substitution for val

Computing free variable:
FV({val x=t; E}) = FV(t)U(FV(E)\ {x})
Substitution, for y # x and y ¢ FV/(t):

({val x=t; E})[y :=s] ={val x =t]y :=s]; (Ely :=s])}

How to Translate Value Definitions

Construct: {val x = t; F} where we require x ¢ FV/(t)
(otherwise just rename it to {val x; = t; F[x := x1]})

Example
{val x=y +1; x < 2x + 5}
Becomes one of these:
(v+1)<2(y+1)+5 substitution

Ix. x=y+1Ax<2x+5 one-point rule
Vx.x=y+1— x<2x+5 dual one-point rule

Rule to Translate Value Definitions

In general, for x ¢ FV(t)
{val x=1t; F}
Becomes one of these:

Flx :=t] substitution
dx. x=tAF one-point rule
Vx. x =t — F dual one-point rule

Substitution can square formula size
» Do it several times ~» exponential increase
The other rules add quantified variables

» but we can choose which way they are quantified, to avoid
adding quantifier alternations

Flattening: Remove All Nested Terms

Similar to compilation
Example:
x+3y <z

flattening 3y and denoting it by y; we get
{val y1 =3y; x+y1 < z}

and then flattening x + y;1 denoting it by y» we get

{val y1 =3y; {val yo = x+y1; yo < z}}

which we may write as

{ val y1=3y
val y2=x+yl
y2 < z

}

Flattening Rule

Suppose F contains t; ® tp somewhere and we wish to pull it out.
For some fresh y; then F becomes

{val iy =t10t; FltOt:=wn]}

We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas
{val x=a+1;2x} +5<y

becomes
{val x=a+1;2x+5<y}

val given by val rule

{val x={valy =a+1;, y +y}; x < 2x}

becomes

{valy =a+1; {val x=y +y; x < 2x}}
which we pretty-print as

{valy=a+1, val x=y+y, x<2x}

Flat form:
» each operation @ is inside a {val x = y; ® y»; F}
» atomic formulas only use variables

» val applies to formulas only (not terms)

Translating if
F.b : Boolean, t: Int

F = b‘F1/\F2|F1\/F2‘—|F’E|X.F‘VX.F‘t1<t2|t1:1.'2
| {valx=t; F}|{valb=F;; F}

t :X‘K‘tl—i-tz‘K%‘
|

t/K|t % K|if (F)t; else ta | {val x =t3; ta}
Suppose terms are in flat form. We only need to handle:
{val x = (if(b1) t; else tp); F}
Note that the logical equality

x = (if(b1) t1 else ta) (%)

is equivalent to

(bl/\X:tl)\/(ﬁbl/\X:tQ)

as well as to:

((bl — X = tl) A (—\bl — X = t2))

Translating if

From two one-point rule translations of val, we can thus transform
{val x = (if(b1) t1 else tp); F}

into any of these:

dx. [((bl ANX = tl (—|b1 N X = tz)) VAN F]
dx. [((bl — X = tl) (—|b1 — X = t2)) A F]
Vx. [((bl ANX = tl (—|b1 AN X = tz)) — F]
Vx. [b1—>X—t1) (—|b1—>XIt2))—>F]

This translates if-else without duplicating sub-formulas
(thanks to boolean variable by).

Integer Division by a Constant

Consider
{val g = p/K; F}
The corresponding equality ¢ = p/K is equivalent to
Ke<pAp<K(g+1)

Which gives corresponding translations:

Ix. [Kg<pAp<K(qg+1)AF]
Vx. [(Kg<pAp<K(g+1))— F|

Remainder Modulo a Constant

{val r = p%K; F}

One way:
{val r=p—K(p/K); F}

Quantifier-Free Polynomial-Sized VC

def f(x : Int") : Int = {
b(x)
} ensuring (res => Post(x, res))

VC in quantifier-free PA extended with val, if, /, % :
res = b(x) — Post(res, X)

Eliminate extensions, choosing always existential quantifiers for
new variables Z. Moreover, such existentials can be pulled to
top-level, because we only introduced V, A and never — for
sub-formulas. We obtain:

(3z.F(res, x,z)) — Post(res, X)
which is equivalent to
Vz.[F(res,x,z) — Post(res, X)]|

So, all variables are universally quantified.

Explaining (3F) — G

Indeed, from first-order logic we have these equivalent formulas:
(3z.F(res, x,z)) — Post(res, X)
—(3z.F(res,x,z)) V Post(res, x)
(Vz.=F(res,x,z)) V Post(res, X)
Vz.[-~F(res,x,Z) V Post(res, x)]
Vz.[F(res,x,z) — Post(res, X)]|

Checking validity is same as showing that

F(res,x,z) — Post(res, X)
is true for all values of variables, or that

F(res,x,z) A ~Post(res,X)

has no satisfying assignments.

VC Generation for Imperative Non-Deterministic Programs

Program can be represented by a formula relating initial and final

state.

program: x=x4+2;y=x+10

relation: {(x,y,z,x,y",2') | X' =x+2ANy =x+ 12727 =z}
formula: X =x+2ANy' =x+12NZ =2z

Specification: z = old(z) A (old(x) >0 — (x >0Ay > 0))
Adhering to specification is relation subset:

{(X,y,Z,X/,y/,Z/) |X/:X+2/\y/:X+].2/\Z/:Z}
C {(ay.zxXy'2) |2 =2 A (x>0 (X >0Ay > 0))}

or validity of the following implication:

X =x4+2ANy =x+12ANZ =z
— Z=zA(x>0—=>(X>0Ay >0))

Adding State and Non-Determinism

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1,...,x,}
Imperative statements:

» x = t: change x € V to have value given by t; leave vars in
V'\ {x} unchanged

» if(F)cy else ca: if F holds, execute ¢ else execute ¢
» C1;Cy: first execute ¢q, then execute ¢
Statements for introducing and restricting non-determinism:

» havoc(x): non-deterministically change x € V to have an
arbitrary value; leave vars in V' \ {x} unchanged
» if(x) c1 else cy: arbitrarily choose to run ¢; or o
» assume(F): block all executions where F does not hold
Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: 3z.F(x,z,x") describing
relation between initial values of variables xi, ..., x, and final

values of variables x1,...,x},

Construction Formula that Describe Relations

c - imperative command

R(c) - formula describing relation between initial and final states
of execution of ¢

If p(c) describes the relation, then R(c) is formula such that

p(c) ={(@.7) | R(c)}

R(c) is a formula between unprimed variables v and primed
variables v/

Formula for Assignment

Formula for if-else

After flattening,
if(b) c1 else ¢z

R(if(b) c1 else c):

(bAR(c1))V (mb A R(c))

Command semicolon

C1, @

Reminder about relation composition and its definition:
rnorn ={(ac)|3b.(a,b) € 1 N(b,c) € n}

What are R(c1) and R(cz) and in terms of which variables they are

expressed?
R(c;) =

Jz. R(c1)[X' = 2] A R()[x = Z]

where Z are freshly picked names of intermediate states.

havoc

Definition of HAVOC
1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

/
A vy

veV\{x}

Non-deterministic choice

if(x) c1 else &

R(if(x) c1 else c):
R(Cl) V R(C2)

assume

assume(F)

F/\/\v':v

R(assume(F)):

Example of Translation

0

(if (b) x=x+1else y =x+2);
1

X =x+5;

2

(if (x)y=y+1else x=y)

3

becomes

I,y e, y2. (BAX1=x+1Ay1=y)V(7bAxi =xAy1=x+2))
A(x2=x1+5Ay2=y1)
AKX =AY =y2+1) V(X =y2 Ay =y))

Think of execution trace (xo, y0), (x1,¥1), (x2, ¥2), (X3, y3) where
> (x0,Y0) is denoted by (x, y)
> (x3,y3) is denoted by (x',y’)

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1,...,x,}
Imperative statements:

» x = t: change x € V to have value given by t; leave vars in
V'\ {x} unchanged

» if(F)cy else ca: if F holds, execute ¢ else execute ¢
» C1;Cy: first execute ¢q, then execute ¢
Statements for introducing and restricting non-determinism:

» havoc(x): non-deterministically change x € V to have an
arbitrary value; leave vars in V' \ {x} unchanged
» if(x) c1 else cy: arbitrarily choose to run ¢; or o
» assume(F): block all executions where F does not hold
Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: 3z.F(x,z,x") describing
relation between initial values of variables xi, ..., x, and final

values of variables x1,...,x},

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F); c)
2. R(c; assume(F))

Expressing if through non-deterministic choice and assume

if (b) cl else c2

1l
if (+) {

assume(b);
cl

} else {
assume(!b);
c2

}

Expressing assignment through havoc and assume

havoc(x);
assume(x == e)

Under what conditions this holds?
x ¢ FV(e)

[llustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into Xpesph = X 4+ 1; X = Xfresh

Synthesis: From Specification to Code

From Quantifier Elimination to Synthesis

Quantifier Elimination

If ¥ is a tuple of variables not containing x, then

Ix.(x = t(y) A F(x,7) <= F(t(7),7)

Synthesis

choose x.(x = t(¥) A F(x,¥))

gives:
» precondition F(t(y),¥), as before, but also

» program that realizes x, in this case, t(y)

