Lecture 3 From (Integer) Programs to Formulas

Viktor Kuncak

(ロ)、(型)、(E)、(E)、 E) の(の)

Verification Condition Generation Example

We examine algorithms for going from programs to their verification conditions.

Program and postcondition:

def f(x : Int) : Int = { if (x > 0) 2*x + 1else 42 } ensuring (res => res > 0)

Verification condition saying "program satisfies postcondition":

$$\left[((x > 0) \land \mathit{res} = 2x + 1) \lor (\neg(x > 0) \land \mathit{res} = 42) \right] \rightarrow \mathit{res} > 0$$

For above formula, we would check *validity*: all variables are universally quantified

Verification Condition Generation (VCG) For Functions

```
\begin{array}{l} \mbox{def } f(\bar{x}: \mbox{Int}^n) : \mbox{Int} = \{ \\ b(\bar{x}) \\ \} \mbox{ ensuring } (\mbox{res} => \mbox{Post}(\bar{x}, \mbox{res})) \end{array}
```

• Function f with arguments \bar{x} and body $b(\bar{x})$, built from:

- Presburger Arithmetic (PA) expressions, as well as x/K, x%K
- ▶ if statement, and local value definitions (val in Scala)
- ▶ Postcondition $Post(\bar{x}, res)$ written in quantifier-free PA

Claim: there is **polynomial-time** algorithm to construct formula $V(\bar{x})$ such that

► the execution of f on input x̄ meets the Post iff V(x̄) Hence, it always meets postcondition iff ∀x̄.V(x̄)

► $V(\bar{x})$ is quantifier-free or has only top-level \forall quantifiers Idea: perhaps $V(\bar{x})$ could be $Post(\bar{x}, b(\bar{x}))$? Yes, if it was in PA PA with x/K, x%K, if, val

Context-Free grammar (syntax) of extended PA formulas

F,b : Boolean, t : Int

$$\begin{array}{rcl} F & ::= & b \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F \mid \exists x.F \mid \forall x.F \mid t_1 < t_2 \mid t_1 = t_2 \\ & \mid & \{ \mathsf{val} \; x = t; \; F \} \mid \{ \mathsf{val} \; b = F_1; \; F \} \\ t & ::= & x \mid K \mid t_1 + t_2 \mid K \cdot t \\ & \mid & t/\mathsf{K} \mid t \; \% \; \mathsf{K} \mid \mathsf{if}(\mathsf{F}) \, t_1 \; \mathsf{else} \; t_2 \mid \{ \mathsf{val} \; x = t_1; \; t_2 \} \end{array}$$

We show how to translate x/K, x%K, **if**, **val** into other constructs

- without changing the meaning of a formula
- without adding alternations of quantifiers
- in time polynomial in input (result is thus also in polynomial size)

Reminder: Free Variables and Substitutions

Free Variables

FV(t), FV(F) denotes free variables in term t or formula FNormally we just collect all variables:

$$FV(x + y < z) = \{x, y, z\}$$

We do not count quantified occurrences of variables:

$$FV(\exists x. x + y < z) = \{y, z\}$$

If it occurs quantified somewhere it can still be free overall:

$$FV((\exists x.\exists y.x < y + u) \land (\exists y.x + y < z + 100)) = \{u, x, z\}$$

Rules for FV are of two kinds: operations \odot (e.g., \land , <, +) and binders Q (e.g. \forall , \exists , val)

$$FV(F_1 \odot F_2) = FV(F_1) \cup FV(F_2)$$

$$FV(Qx.F) = FV(F) \setminus \{x\}$$

Substitutions

One possible convention: write F(x) and later F(t). Then F is not a formula but function from terms to formulas (Or we do not even know what F is.) Our notation: write F, and instead of F(t) write F[x := t]

closer to a typical implementation

Definition of substitution:

$$(F_1 \odot F_2)[x := t] \rightsquigarrow (F_1[x := t]) \odot (F_2[x := t])$$
$$(Qy.F)[x := t] \rightsquigarrow Qy.(F[x := t])$$

Capture:

The following formula is true in integers for all x: $\exists y.x < y$ If we naively substitute x with y + 1 we obtain: $\exists y. y + 1 < y$ Problem: t has y free. A solution: rename y to fresh y_1

$$(Qy.F)[x := t] \rightsquigarrow (Qy_1.F[y := y_1])[x := t] \rightsquigarrow Qy_1.(F[y := y_1][x := t])$$

Summary of Our Translation Goal

Transform logic of this grammar F,b : Boolean, t : Int

$$\begin{array}{rcl} F & ::= & b \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F \mid \exists x.F \mid \forall x.F \mid t_1 < t_2 \mid t_1 = t_2 \\ & \mid & \{ \mathsf{val} \; x = t; \; F \} \mid \{ \mathsf{val} \; b = \mathsf{F_1}; \; \mathsf{F} \} \\ t & ::= & x \mid K \mid t_1 + t_2 \mid K \cdot t \\ & \mid & \mathsf{t/K} \mid \mathsf{t} \; \% \; \mathsf{K} \mid \mathsf{if}(\mathsf{F}) \mathsf{t_1} \; \mathsf{else} \; \mathsf{t_2} \mid \{ \mathsf{val} \; x = \mathsf{t_1}; \; \mathsf{t_2} \} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Into a logic for which we did quantifier elimination, which omits the bold symbols:

- val (let) definitions in formulas and terms
- conditionals
- division by a constant
- computing modulo by a constant as a term

About val Definitions

$$\{val \ x = t; \ E\}$$

Equivalent ways of saying:

- in the rest of the block, introduce read-only variable x with value equal to t
- let x have the value t in E (written so in ML, Haskell)
- E, where x has the value E (math, Haskell's where clause) Slightly different cases depending on whether types of t and E (each of which can be Boolean or Int)

Note: x is bound to t inside E, but not inside t or anywhere else

Free Variables and Substitution for val

Computing free variable:

$$FV(\{val \ x = t; \ E\}) = FV(t) \cup (FV(E) \setminus \{x\})$$

Substitution, for $y \neq x$ and $y \notin FV(t)$:

$$(\{val \ x = t; \ E\})[y := s] = \{val \ x = t[y := s]; \ (E[y := s])\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

How to Translate Value Definitions

Construct: {*val* x = t; *F*} where we require $x \notin FV(t)$ (otherwise just rename it to {*val* $x_1 = t$; $F[x := x_1]$ })

Example

$$\{val \ x = y + 1; \ x < 2x + 5\}$$

Becomes one of these:

$$(y+1) < 2(y+1) + 5$$
 substitution
 $\exists x. x = y + 1 \land x < 2x + 5$ one-point rule
 $\forall x. x = y + 1 \rightarrow x < 2x + 5$ dual one-point rule

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Rule to Translate Value Definitions

In general, for $x \notin FV(t)$

$$\{val \ x = t; F\}$$

Becomes one of these:

F[x := t]substitution $\exists x. \ x = t \land F$ one-point rule $\forall x. \ x = t \rightarrow F$ dual one-point rule

Substitution can square formula size

▶ Do it several times ~→ exponential increase

The other rules add quantified variables

 but we can choose which way they are quantified, to avoid adding quantifier alternations

Flattening: Remove All Nested Terms

Similar to compilation Example:

x + 3y < z

flattening 3y and denoting it by y_1 we get

$$\{val \ y_1 = 3y; \ x + y_1 < z\}$$

and then flattening $x + y_1$ denoting it by y_2 we get

$$\{val \ y_1 = 3y; \{val \ y_2 = x + y_1; \ y_2 < z\}\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which we may write as

Flattening Rule

Suppose *F* contains $t_1 \odot t_2$ somewhere and we wish to pull it out. For some fresh y_1 then *F* becomes

$$\{val \ y_1 = t_1 \odot t_2; \ F[t_1 \odot t_2 := y_1] \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas

$$\{val \ x = a + 1; \ 2x\} + 5 < y$$

becomes

$$\{val \ x = a+1; \ 2x+5 < y\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

val given by val rule

$$\{val \ x = \{val \ y = a+1; \ y+y\}; \ x < 2x\}$$

becomes

$$\{val \ y = a + 1; \ \{val \ x = y + y; \ x < 2x\}\}$$

which we pretty-print as

$$\{val \ y = a + 1; \ val \ x = y + y; \ x < 2x\}$$

Flat form:

- each operation \odot is inside a {val $x = y_1 \odot y_2$; F}
- atomic formulas only use variables
- val applies to formulas only (not terms)

Translating if

F,b : Boolean, t : Int

$$\begin{array}{rcl} F & ::= & b \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \neg F \mid \exists x.F \mid \forall x.F \mid t_1 < t_2 \mid t_1 = t_2 \\ & \mid & \{ \mathsf{val} \; x = t; \; F \} \mid \{ \mathsf{val} \; b = \mathsf{F}_1; \; \mathsf{F} \} \\ t & ::= & x \mid K \mid t_1 + t_2 \mid K \cdot t \\ & \mid & \mathsf{t}/\mathsf{K} \mid \mathsf{t} \; \% \; \mathsf{K} \mid \mathsf{if}(\mathsf{F}) \, \mathsf{t}_1 \; \mathsf{else} \; \mathsf{t}_2 \mid \{ \mathsf{val} \; x = \mathsf{t}_1; \; \mathsf{t}_2 \} \end{array}$$

Suppose terms are in flat form. We only need to handle:

$$\{val \ x = (if(b_1) \ t_1 \ else \ t_2); \ F\}$$

Note that the logical equality

$$x = (if(b_1) t_1 else t_2)$$
 (*)

is equivalent to

$$(b_1 \wedge x = t_1) \vee (\neg b_1 \wedge x = t_2)$$

as well as to:

$$((b_1 o x = t_1) \land (\neg b_1 o x = t_2))$$

Translating if

From two one-point rule translations of val, we can thus transform

$$\{val \ x = (if(b_1) \ t_1 \ else \ t_2); F\}$$

into any of these:

$$\exists x. \left[((b_1 \land x = t_1) \lor (\neg b_1 \land x = t_2)) \land F \right] \\ \exists x. \left[((b_1 \rightarrow x = t_1) \land (\neg b_1 \rightarrow x = t_2)) \land F \right] \\ \forall x. \left[((b_1 \land x = t_1) \lor (\neg b_1 \land x = t_2)) \rightarrow F \right] \\ \forall x. \left[((b_1 \rightarrow x = t_1) \land (\neg b_1 \rightarrow x = t_2)) \rightarrow F \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This translates if-else without duplicating sub-formulas (thanks to boolean variable b_1).

Integer Division by a Constant

Consider

$$\{val \ q = p/K; F\}$$

The corresponding equality q = p/K is equivalent to

$$Kq \leq p \wedge p < K(q+1)$$

Which gives corresponding translations:

$$\exists x. [Kq \le p \land p < K(q+1) \land F] \\ \forall x. [(Kq \le p \land p < K(q+1)) \rightarrow F]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remainder Modulo a Constant

One way:

$$\{val \ r = p - K(p/K); F\}$$

Quantifier-Free Polynomial-Sized VC

def f(
$$\bar{x}$$
 : lntⁿ) : lnt = {
b(\bar{x})
} ensuring (res => Post(\bar{x} , res))

VC in quantifier-free PA extended with val, if, /, % :

$$res = b(\bar{x}) \rightarrow Post(res, \bar{x})$$

Eliminate extensions, choosing always existential quantifiers for new variables \bar{z} . Moreover, such existentials can be pulled to top-level, because we only introduced \lor , \land and never \neg for sub-formulas. We obtain:

$$(\exists \bar{z}.F(res,\bar{x},\bar{z})) \rightarrow Post(res,\bar{x})$$

which is equivalent to

$$\forall \bar{z}.[F(res, \bar{x}, \bar{z}) \rightarrow Post(res, \bar{x})]$$

So, all variables are universally quantified.

Explaining $(\exists F) \rightarrow G$

Indeed, from first-order logic we have these equivalent formulas:

$$\begin{array}{l} (\exists \overline{z}.F(res,\overline{x},\overline{z})) \rightarrow Post(res,\overline{x}) \\ \neg (\exists \overline{z}.F(res,\overline{x},\overline{z})) \lor Post(res,\overline{x}) \\ (\forall \overline{z}.\neg F(res,\overline{x},\overline{z})) \lor Post(res,\overline{x}) \\ \forall \overline{z}.[\neg F(res,\overline{x},\overline{z}) \lor Post(res,\overline{x})] \\ \forall \overline{z}.[F(res,\overline{x},\overline{z}) \rightarrow Post(res,\overline{x})] \end{array}$$

Checking validity is same as showing that

$$F(res, \bar{x}, \bar{z}) \rightarrow Post(res, \bar{x})$$

is true for all values of variables, or that

$$F(res, \bar{x}, \bar{z}) \land \neg Post(res, \bar{x})$$

has no satisfying assignments.

VC Generation for Imperative Non-Deterministic Programs

Program can be represented by a formula relating initial and final state.

program:
$$x = x + 2; y = x + 10$$
relation: $\{(x, y, z, x', y', z') \mid x' = x + 2 \land y' = x + 12 \land z' = z\}$ formula: $x' = x + 2 \land y' = x + 12 \land z' = z$

Specification: $z = old(z) \land (old(x) > 0 \rightarrow (x > 0 \land y > 0))$ Adhering to specification is relation subset:

$$\{ (x, y, z, x', y', z') \mid x' = x + 2 \land y' = x + 12 \land z' = z \}$$

$$\subseteq \ \{ (x, y, z, x', y', z') \mid z' = z \land (x > 0 \to (x' > 0 \land y' > 0)) \}$$

or validity of the following implication:

$$\begin{array}{ll} x'=x+2\wedge y'=x+12\wedge z'=z\\ \rightarrow & z'=z\wedge (x>0\rightarrow (x'>0\wedge y'>0))\end{array}$$

Adding State and Non-Determinism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Imperative Presburger Arithmetic Programs

F - formulas, *t* - terms - as in functional programs so far Fixed number of mutable integer variables $V = \{x_1, \ldots, x_n\}$ Imperative statements:

- x = t: change x ∈ V to have value given by t; leave vars in V \ {x} unchanged
- ▶ if(F) c_1 else c_2 : if F holds, execute c_1 else execute c_2
- c_1 ; c_2 : first execute c_1 , then execute c_2

Statements for introducing and restricting non-determinism:

- havoc(x): non-deterministically change x ∈ V to have an arbitrary value; leave vars in V \ {x} unchanged
- if(*) c_1 else c_2 : arbitrarily choose to run c_1 or c_2

► **assume**(**F**): block all executions where *F* does not hold Given such loop-free program *c* with conditionals, compute a polynomial-sized formula R(c) of form: $\exists \overline{z}.F(\overline{x}, \overline{z}, \overline{x}')$ describing relation between initial values of variables x_1, \ldots, x_n and final values of variables x'_1, \ldots, x'_n

Construction Formula that Describe Relations

c - imperative command

 $R(\boldsymbol{c})$ - formula describing relation between initial and final states of execution of \boldsymbol{c}

If $\rho(c)$ describes the relation, then R(c) is formula such that

$$\rho(c) = \{(\bar{v}, \bar{v}') \mid R(c)\}$$

R(c) is a formula between unprimed variables \bar{v} and primed variables \bar{v}'

Formula for Assignment

$$R(x=t)$$
: $x'=t\wedge igwedge_{v\in V\setminus\{x\}}v'=v$

x = t

Formula for if-else

After flattening,

if (b) c_1 else c_2

 $R(if(b) c_1 else c_2)$:

$$(b \wedge R(c_1)) \vee (\neg b \wedge R(c_2))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Command semicolon

*c*₁; *c*₂

Reminder about relation composition and its definition:

$$r_1 \circ r_2 = \{(a,c) \mid \exists b.(a,b) \in r_1 \land (b,c) \in r_2\}$$

What are $R(c_1)$ and $R(c_2)$ and in terms of which variables they are expressed? $R(c_1; c_2) \equiv$

$$\exists \bar{z}. \ R(c_1)[\bar{x}':=\bar{z}] \land R(c_2)[\bar{x}:=\bar{z}]$$

where \bar{z} are freshly picked names of intermediate states.

havoc

Definition of HAVOC

- 1. wide and general destruction: devastation
- 2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)):

$$\bigwedge_{v\in V\setminus\{x\}}v'=v$$

Non-deterministic choice

 $if(*) \ c_1 \ else \ c_2$ $R(if(*) \ c_1 \ else \ c_2):$ $R(c_1) \lor R(c_2)$

assume

assume(F)

R(assume(F)):

$$F \wedge \bigwedge_{v \in V} v' = v$$

Example of Translation

$$(if (b) x = x + 1 else y = x + 2);$$

$$x = x + 5;$$

$$(if (*) y = y + 1 else x = y)$$

becomes

$$\exists x_1, y_1, x_2, y_2. \ ((b \land x_1 = x + 1 \land y_1 = y) \lor (\neg b \land x_1 = x \land y_1 = x + 2)) \\ \land \ (x_2 = x_1 + 5 \land y_2 = y_1) \\ \land \ ((x' = x_2 \land y' = y_2 + 1) \lor (x' = y_2 \land y' = y_2))$$

Think of execution trace $(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)$ where

- (x_0, y_0) is denoted by (x, y)
- (x_3, y_3) is denoted by (x', y')

Imperative Presburger Arithmetic Programs

F - formulas, *t* - terms - as in functional programs so far Fixed number of mutable integer variables $V = \{x_1, \ldots, x_n\}$ Imperative statements:

- x = t: change x ∈ V to have value given by t; leave vars in V \ {x} unchanged
- ▶ if(F) c_1 else c_2 : if F holds, execute c_1 else execute c_2
- c_1 ; c_2 : first execute c_1 , then execute c_2

Statements for introducing and restricting non-determinism:

- havoc(x): non-deterministically change x ∈ V to have an arbitrary value; leave vars in V \ {x} unchanged
- if(*) c_1 else c_2 : arbitrarily choose to run c_1 or c_2

► **assume**(**F**): block all executions where *F* does not hold Given such loop-free program *c* with conditionals, compute a polynomial-sized formula R(c) of form: $\exists \overline{z}.F(\overline{x}, \overline{z}, \overline{x}')$ describing relation between initial values of variables x_1, \ldots, x_n and final values of variables x'_1, \ldots, x'_n

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

- 1. R(assume(F); c)
- 2. R(c; assume(F))

Expressing if through non-deterministic choice and assume

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Expressing assignment through havoc and assume

x = e

havoc(x); assume(x == e)

Under what conditions this holds? $x \notin FV(e)$

Illustration of the problem: havoc(x); assume(x = x + 1)

Luckily, we can rewrite it into $x_{fresh} = x + 1$; $x = x_{fresh}$

Synthesis: From Specification to Code

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

From Quantifier Elimination to Synthesis

Quantifier Elimination

If \bar{y} is a tuple of variables not containing x, then

$$\exists x.(x = t(\bar{y}) \land F(x, \bar{y})) \iff F(t(\bar{y}), \bar{y})$$

Synthesis

choose
$$x.(x = t(\bar{y}) \land F(x, \bar{y}))$$

gives:

- precondition $F(t(\bar{y}), \bar{y})$, as before, but also
- program that realizes x, in this case, $t(\bar{y})$