
Lecture 3
From (Integer) Programs to Formulas

Viktor Kuncak



Verification Condition Generation Example

We examine algorithms for going from programs to their
verification conditions.

Program and postcondition:

def f(x : Int) : Int = {
if (x > 0)

2∗x + 1
else 42
} ensuring (res => res > 0)

Verification condition saying “program satisfies postcondition”:[
((x > 0) ∧ res = 2x + 1) ∨ (¬(x > 0) ∧ res = 42)

]
→ res > 0

For above formula, we would check validity: all variables are
universally quantified



Verification Condition Generation (VCG) For Functions

def f(x̄ : Intn) : Int = {
b(x̄)
} ensuring (res => Post(x̄ , res))

I Function f with arguments x̄ and body b(x̄), built from:
I Presburger Arithmetic (PA) expressions, as well as x/K , x%K
I if statement, and local value definitions (val in Scala)

I Postcondition Post(x̄ , res) written in quantifier-free PA

Claim: there is polynomial-time algorithm to construct formula
V (x̄) such that

I the execution of f on input x̄ meets the Post iff V (x̄)
Hence, it always meets postcondition iff ∀x̄ .V (x̄)

I V (x̄) is quantifier-free or has only top-level ∀ quantifiers

Idea: perhaps V (x̄) could be Post(x̄ , b(x̄)) ? Yes, if it was in PA



PA with x/K , x%K , if, val

Context-Free grammar (syntax) of extended PA formulas

F,b : Boolean, t : Int

F ::= b | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x .F | ∀x .F | t1 < t2 | t1 = t2
| {val x = t; F} | {val b = F1; F}

t ::= x | K | t1 + t2 | K · t
| t/K | t % K | if (F) t1 else t2 | {val x = t1; t2}

We show how to translate x/K , x%K , if, val into other constructs

I without changing the meaning of a formula

I without adding alternations of quantifiers

I in time polynomial in input
(result is thus also in polynomial size)



Reminder: Free Variables and Substitutions



Free Variables
FV (t),FV (F ) denotes free variables in term t or formula F
Normally we just collect all variables:

FV (x + y < z) = {x , y , z}

We do not count quantified occurrences of variables:

FV (∃x . x + y < z) = {y , z}

If it occurs quantified somewhere it can still be free overall:

FV ((∃x .∃y .x < y + u) ∧ (∃y .x + y < z + 100)) = {u, x , z}

Rules for FV are of two kinds: operations � (e.g., ∧, <, +) and
binders Q (e.g. ∀, ∃, val)

FV (F1 � F2) = FV (F1) ∪ FV (F2)
FV (Qx .F ) = FV (F ) \ {x}



Substitutions

One possible convention: write F (x) and later F (t). Then F is not
a formula but function from terms to formulas
(Or we do not even know what F is.)
Our notation: write F , and instead of F (t) write F [x := t]

I closer to a typical implementation

Definition of substitution:

(F1 � F2)[x := t] ; (F1[x := t])� (F2[x := t])
(Qy .F )[x := t] ; Qy .(F [x := t])

Capture:
The following formula is true in integers for all x : ∃y .x < y
If we naively substitute x with y + 1 we obtain: ∃y . y + 1 < y
Problem: t has y free. A solution: rename y to fresh y1

(Qy .F )[x := t] ; (Qy1.F [y := y1])[x := t] ; Qy1.(F [y := y1][x := t])



Summary of Our Translation Goal

Transform logic of this grammar
F,b : Boolean, t : Int

F ::= b | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x .F | ∀x .F | t1 < t2 | t1 = t2
| {val x = t; F} | {val b = F1; F}

t ::= x | K | t1 + t2 | K · t
| t/K | t % K | if (F) t1 else t2 | {val x = t1; t2}

Into a logic for which we did quantifier elimination, which omits
the bold symbols:

I val (let) definitions in formulas and terms

I conditionals

I division by a constant

I computing modulo by a constant as a term



About val Definitions

{val x = t; E}

Equivalent ways of saying:

I in the rest of the block, introduce read-only variable x with
value equal to t

I let x have the value t in E (written so in ML, Haskell)

I E , where x has the value E (math, Haskell’s where clause)

Slightly different cases depending on whether types of t and E
(each of which can be Boolean or Int)

Note: x is bound to t inside E , but not inside t or anywhere else



Free Variables and Substitution for val

Computing free variable:

FV ({val x = t; E}) = FV (t) ∪ (FV (E ) \ {x})

Substitution, for y 6= x and y /∈ FV (t):

({val x = t; E})[y := s] = {val x = t[y := s]; (E [y := s])}



How to Translate Value Definitions

Construct: {val x = t; F} where we require x /∈ FV (t)
(otherwise just rename it to {val x1 = t; F [x := x1]})

Example
{val x = y + 1; x < 2x + 5}

Becomes one of these:

(y + 1) < 2(y + 1) + 5 substitution
∃x . x = y + 1 ∧ x < 2x + 5 one-point rule
∀x . x = y + 1→ x < 2x + 5 dual one-point rule



Rule to Translate Value Definitions

In general, for x /∈ FV (t)

{val x = t; F}

Becomes one of these:

F [x := t] substitution
∃x . x = t ∧ F one-point rule
∀x . x = t → F dual one-point rule

Substitution can square formula size

I Do it several times ; exponential increase

The other rules add quantified variables

I but we can choose which way they are quantified, to avoid
adding quantifier alternations



Flattening: Remove All Nested Terms

Similar to compilation
Example:

x + 3y < z

flattening 3y and denoting it by y1 we get

{val y1 = 3y ; x + y1 < z}

and then flattening x + y1 denoting it by y2 we get

{val y1 = 3y ; {val y2 = x + y1; y2 < z}}

which we may write as

{ val y1=3y
val y2=x+y1
y2 < z
}



Flattening Rule

Suppose F contains t1 � t2 somewhere and we wish to pull it out.
For some fresh y1 then F becomes

{val y1 = t1 � t2; F [t1 � t2 := y1] }



We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas

{val x = a + 1; 2x}+ 5 < y

becomes
{val x = a + 1; 2x + 5 < y}



val given by val rule

{val x = {val y = a + 1; y + y}; x < 2x}

becomes

{val y = a + 1; {val x = y + y ; x < 2x}}

which we pretty-print as

{val y = a + 1; val x = y + y ; x < 2x}

Flat form:

I each operation � is inside a {val x = y1 � y2; F}
I atomic formulas only use variables

I val applies to formulas only (not terms)



Translating if
F,b : Boolean, t : Int

F ::= b | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x .F | ∀x .F | t1 < t2 | t1 = t2
| {val x = t; F} | {val b = F1; F}

t ::= x | K | t1 + t2 | K · t
| t/K | t % K | if (F) t1 else t2 | {val x = t1; t2}

Suppose terms are in flat form. We only need to handle:

{val x = (if (b1) t1 else t2); F}

Note that the logical equality

x = (if (b1) t1 else t2) (∗)

is equivalent to

(b1 ∧ x = t1) ∨ (¬b1 ∧ x = t2)

as well as to:

((b1 → x = t1) ∧ (¬b1 → x = t2))



Translating if

From two one-point rule translations of val, we can thus transform

{val x = (if (b1) t1 else t2); F}

into any of these:

∃x .
[
((b1 ∧ x = t1) ∨ (¬b1 ∧ x = t2)) ∧ F

]
∃x .

[
((b1 → x = t1) ∧ (¬b1 → x = t2)) ∧ F

]
∀x .

[
((b1 ∧ x = t1) ∨ (¬b1 ∧ x = t2))→ F

]
∀x .

[
((b1 → x = t1) ∧ (¬b1 → x = t2))→ F

]
This translates if-else without duplicating sub-formulas
(thanks to boolean variable b1).



Integer Division by a Constant

Consider
{val q = p/K ; F}

The corresponding equality q = p/K is equivalent to

Kq ≤ p ∧ p < K (q + 1)

Which gives corresponding translations:

∃x .
[
Kq ≤ p ∧ p < K (q + 1) ∧ F

]
∀x .

[
(Kq ≤ p ∧ p < K (q + 1))→ F

]



Remainder Modulo a Constant

{val r = p%K ; F}

One way:
{val r = p − K (p/K ); F}



Quantifier-Free Polynomial-Sized VC

def f(x̄ : Intn) : Int = {
b(x̄)
} ensuring (res => Post(x̄ , res))

VC in quantifier-free PA extended with val, if, /, % :

res = b(x̄)→ Post(res, x̄)

Eliminate extensions, choosing always existential quantifiers for
new variables z̄ . Moreover, such existentials can be pulled to
top-level, because we only introduced ∨,∧ and never ¬ for
sub-formulas. We obtain:

(∃z̄ .F (res, x̄ , z̄))→ Post(res, x̄)

which is equivalent to

∀z̄ .[F (res, x̄ , z̄)→ Post(res, x̄)]

So, all variables are universally quantified.



Explaining (∃F )→ G

Indeed, from first-order logic we have these equivalent formulas:

(∃z̄ .F (res, x̄ , z̄))→ Post(res, x̄)
¬(∃z̄ .F (res, x̄ , z̄)) ∨ Post(res, x̄)
(∀z̄ .¬F (res, x̄ , z̄)) ∨ Post(res, x̄)
∀z̄ .[¬F (res, x̄ , z̄) ∨ Post(res, x̄)]
∀z̄ .[F (res, x̄ , z̄)→ Post(res, x̄)]

Checking validity is same as showing that

F (res, x̄ , z̄)→ Post(res, x̄)

is true for all values of variables, or that

F (res, x̄ , z̄) ∧ ¬Post(res, x̄)

has no satisfying assignments.



VC Generation for Imperative Non-Deterministic Programs

Program can be represented by a formula relating initial and final
state.

program: x = x + 2; y = x + 10
relation: {(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
formula: x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z

Specification: z = old(z) ∧ (old(x) > 0→ (x > 0 ∧ y > 0))
Adhering to specification is relation subset:

{(x , y , z , x ′, y ′, z ′) | x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z}
⊆ {(x , y , z , x ′, y ′, z ′) | z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))}

or validity of the following implication:

x ′ = x + 2 ∧ y ′ = x + 12 ∧ z ′ = z
→ z ′ = z ∧ (x > 0→ (x ′ > 0 ∧ y ′ > 0))



Adding State and Non-Determinism



Imperative Presburger Arithmetic Programs
F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1, . . . , xn}
Imperative statements:

I x = t: change x ∈ V to have value given by t; leave vars in
V \ {x} unchanged

I if(F)c1 else c2: if F holds, execute c1 else execute c2
I c1; c2: first execute c1, then execute c2

Statements for introducing and restricting non-determinism:

I havoc(x): non-deterministically change x ∈ V to have an
arbitrary value; leave vars in V \ {x} unchanged

I if(∗) c1 else c2: arbitrarily choose to run c1 or c2
I assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: ∃z̄ .F (x̄ , z̄ , x̄ ′) describing
relation between initial values of variables x1, . . . , xn and final
values of variables x ′1, . . . , x

′
n



Construction Formula that Describe Relations

c - imperative command

R(c) - formula describing relation between initial and final states
of execution of c

If ρ(c) describes the relation, then R(c) is formula such that

ρ(c) = {(v̄ , v̄ ′) | R(c)}

R(c) is a formula between unprimed variables v̄ and primed
variables v̄ ′



Formula for Assignment

x = t

R(x = t):

x ′ = t ∧
∧

v∈V \{x}

v ′ = v



Formula for if-else

After flattening,
if (b) c1 else c2

R(if (b) c1 else c2):

(b ∧ R(c1)) ∨ (¬b ∧ R(c2))



Command semicolon

c1; c2

Reminder about relation composition and its definition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are
expressed?
R(c1; c2) ≡

∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ]

where z̄ are freshly picked names of intermediate states.



havoc

Definition of HAVOC

1. wide and general destruction: devastation

2. great confusion and disorder

Example of use:

y = 12; havoc(x); assume(x + x = y)

Translation, R(havoc(x)): ∧
v∈V \{x}

v ′ = v



Non-deterministic choice

if (∗) c1 else c2

R(if (∗) c1 else c2):
R(c1) ∨ R(c2)



assume

assume(F )

R(assume(F )):

F ∧
∧
v∈V

v ′ = v



Example of Translation

0

(if (b) x = x + 1 else y = x + 2);
1

x = x + 5;
2

(if (∗) y = y + 1 else x = y)
3

becomes

∃x1, y1, x2, y2. ((b ∧ x1 = x + 1 ∧ y1 = y) ∨ (¬b ∧ x1 = x ∧ y1 = x + 2))
∧ (x2 = x1 + 5 ∧ y2 = y1)
∧ ((x ′ = x2 ∧ y′ = y2 + 1) ∨ (x′ = y2 ∧ y ′ = y2))

Think of execution trace (x0, y0), (x1, y1), (x2, y2), (x3, y3) where

I (x0, y0) is denoted by (x , y)

I (x3, y3) is denoted by (x ′, y ′)



Imperative Presburger Arithmetic Programs
F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables V = {x1, . . . , xn}
Imperative statements:

I x = t: change x ∈ V to have value given by t; leave vars in
V \ {x} unchanged

I if(F)c1 else c2: if F holds, execute c1 else execute c2
I c1; c2: first execute c1, then execute c2

Statements for introducing and restricting non-determinism:

I havoc(x): non-deterministically change x ∈ V to have an
arbitrary value; leave vars in V \ {x} unchanged

I if(∗) c1 else c2: arbitrarily choose to run c1 or c2
I assume(F): block all executions where F does not hold

Given such loop-free program c with conditionals, compute a
polynomial-sized formula R(c) of form: ∃z̄ .F (x̄ , z̄ , x̄ ′) describing
relation between initial values of variables x1, . . . , xn and final
values of variables x ′1, . . . , x

′
n



Justifying the name for assume(F)

Compute and simplify as much as possible each of the following
expressions:

1. R(assume(F ); c)

2. R(c ; assume(F ))



Expressing if through non-deterministic choice and assume

if (b) c1 else c2

|||

if (∗) {
assume(b);
c1
} else {

assume(!b);
c2
}



Expressing assignment through havoc and assume

x = e

|||

havoc(x);
assume(x == e)

Under what conditions this holds?
x /∈ FV (e)

Illustration of the problem: havoc(x); assume(x == x + 1)

Luckily, we can rewrite it into xfresh = x + 1; x = xfresh



Synthesis: From Specification to Code



From Quantifier Elimination to Synthesis

Quantifier Elimination

If ȳ is a tuple of variables not containing x , then

∃x .(x = t(ȳ) ∧ F (x , ȳ)) ⇐⇒ F (t(ȳ), ȳ)

Synthesis

choose x .(x = t(ȳ) ∧ F (x , ȳ))

gives:

I precondition F (t(ȳ), ȳ), as before, but also

I program that realizes x , in this case, t(ȳ)


